这是一篇来自已证抗体库的有关大鼠 Mapt的综述,是根据456篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Mapt 抗体。
Mapt 同义词: Mtapt; RNPTAU; Tau; pTau

赛默飞世尔
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:1000; 图 4a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Mapt抗体(Thermo Fischer, 44-752G)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Front Aging Neurosci (2022) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:200; 图 3e
  • 免疫印迹; 人类; 1:1000; 图 s2
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
赛默飞世尔 Mapt抗体(Thermo Scientific, AHB0042)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e), 被用于免疫印迹在人类样本上浓度为1:1000 (图 s2) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a). Mol Ther Nucleic Acids (2022) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 1:250; 图 6d
  • 免疫组化; 人类; 1:200; 图 7f
  • 免疫印迹; 人类; 1:1000; 图 6a, 7a
  • 免疫细胞化学; 小鼠; 1:250; 图 6d
  • 免疫组化; 小鼠; 1:200; 图 7f
  • 免疫印迹; 小鼠; 1:1000; 图 5c, 6a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 6d), 被用于免疫组化在人类样本上浓度为1:200 (图 7f), 被用于免疫印迹在人类样本上浓度为1:1000 (图 6a, 7a), 被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 6d), 被用于免疫组化在小鼠样本上浓度为1:200 (图 7f) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c, 6a). Nat Commun (2022) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1a1, s1b1
赛默飞世尔 Mapt抗体(Invitrogen, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1a1, s1b1). Brain Commun (2022) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 图 1c
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Acta Neuropathol Commun (2022) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 3d
赛默飞世尔 Mapt抗体(Invitrogen, 44-752G)被用于被用于其他在人类样本上 (图 3d). ACS Chem Neurosci (2022) ncbi
小鼠 单克隆(AT8)
  • 其他; 人类; 图 3c
  • 免疫组化-自由浮动切片; 人类; 图 4d
  • 免疫印迹; 人类; 1:1000; 图 s9
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于其他在人类样本上 (图 3c), 被用于免疫组化-自由浮动切片在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s9). ACS Chem Neurosci (2022) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). EBioMedicine (2022) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 1a
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 1a). Cell Mol Life Sci (2022) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:500; 图 2
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 2
赛默飞世尔 Mapt抗体(Thermo Scientific, MA5-12808)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 2). Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2a
赛默飞世尔 Mapt抗体(Thermo Fischer, 44-752G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a). J Neurochem (2022) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 图 s9b
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫组化在小鼠样本上 (图 s9b). Sci Transl Med (2021) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔 Mapt抗体(Invitrogen, MN1040)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Biol Chem (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 1:100; 图 2e
  • 免疫印迹; 人类; 图 2f
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2e) 和 被用于免疫印迹在人类样本上 (图 2f). Nat Commun (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 s5f
赛默飞世尔 Mapt抗体(Thermo Fisher, MA5-12808)被用于被用于免疫印迹在人类样本上 (图 s5f). Nat Commun (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1c
赛默飞世尔 Mapt抗体(Thermofisher, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1c). Acta Neuropathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔 Mapt抗体(生活技术, 44-750G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Front Neurol (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛默飞世尔 Mapt抗体(生活技术, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Front Neurol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 2a
赛默飞世尔 Mapt抗体(Invitrogen, 44734G)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2a). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 1:400; 图 7f
赛默飞世尔 Mapt抗体(Thermofisher, MN1020)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 7f). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 1a
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 1a). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛默飞世尔 Mapt抗体(Invitrogen, 44734G)被用于被用于免疫印迹在小鼠样本上 (图 1a). Clin Transl Med (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:500; 图 2f
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2f). Life Sci Alliance (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500; 图 3a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). J Alzheimers Dis (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1a). Aging Cell (2021) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; fruit fly ; 1:1000; 图 3g
赛默飞世尔 Mapt抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 3g). Nat Commun (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:200; 图 s6d
  • 免疫印迹; fruit fly ; 1:1000; 图 3g
赛默飞世尔 Mapt抗体(Invitrogen, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6d) 和 被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 3g). Nat Commun (2021) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; fruit fly ; 1:1000; 图 s3c
  • 免疫组化; 小鼠; 1:200; 图 s6a
赛默飞世尔 Mapt抗体(Invitrogen, MN1040)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 s3c) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 s6a). Nat Commun (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:500; 图 2n
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2n). Int J Mol Sci (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛默飞世尔 Mapt抗体(Thermo, MA5-12805)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). elife (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:1000; 图 4d
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4d). elife (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:200; 图 2b
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2b). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛默飞世尔 Mapt抗体(Thermo, 44-752G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Mapt抗体(生活技术, 44758G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Acta Neuropathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Mapt抗体(生活技术, 44752G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Acta Neuropathol (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Mapt抗体(Invitrogen, MN1020)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Rep (2021) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, 13-6400)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类
赛默飞世尔 Mapt抗体(Invitrogen, MN1020)被用于被用于免疫组化在人类样本上. Front Aging Neurosci (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:600
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫印迹在大鼠样本上浓度为1:600. Animals (Basel) (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:600
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫印迹在大鼠样本上浓度为1:600. Aging (Albany NY) (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:600
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫印迹在大鼠样本上浓度为1:600. Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 图 3a
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Acta Neuropathol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 0.5 ug/ml; 图 6d
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫细胞化学在人类样本上浓度为0.5 ug/ml (图 6d). Acta Neuropathol (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫印迹在大鼠样本上 (图 4). Brain Pathol (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 大鼠; 1:400; 图 s2b
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 s2b). Alzheimers Dement (N Y) (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1000; 图 s1a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1a). Front Neurol (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 1:300; 图 4c
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:300 (图 4c). Alzheimers Res Ther (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:800
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫组化在人类样本上浓度为1:800. Acta Neuropathol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, AHB0042)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). Nat Commun (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2f
赛默飞世尔 Mapt抗体(Invitrogen, MN1020)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2f). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neuroinflammation (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500; 图 4d
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d) 和 被用于免疫印迹在小鼠样本上 (图 4a). Cell Death Dis (2020) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫组化在小鼠样本上浓度为1:200. Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500; 图 2a
赛默飞世尔 Mapt抗体(Invitrogen, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Nat Commun (2020) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 图 3a
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫组化在小鼠样本上 (图 3a). iScience (2020) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠; 图 1c
  • 免疫组化; 人类; 图 7e
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1040)被用于被用于免疫组化在小鼠样本上 (图 1c) 和 被用于免疫组化在人类样本上 (图 7e). iScience (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:100; 图 2a
赛默飞世尔 Mapt抗体(Thermofisher, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). Front Neurosci (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; fruit fly ; 1:250; 图 4a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化在fruit fly 样本上浓度为1:250 (图 4a). elife (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
  • 免疫组化-石蜡切片; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 1a, 1b
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a), 被用于免疫组化-石蜡切片在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 1a, 1b). Neuropsychiatr Dis Treat (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:2000; 表 1
赛默飞世尔 Mapt抗体(Fisher Scientific, AT8)被用于被用于免疫组化在人类样本上浓度为1:2000 (表 1). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:2000; 图 1g
赛默飞世尔 Mapt抗体(Invitrogen, MN1020)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 1g). JCI Insight (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5a
  • 免疫印迹; 小鼠; 1:2000; 图 4a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4a). J Neuroinflammation (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 4k
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4k). Aging Cell (2020) ncbi
小鼠 单克隆(AT8)
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, Rockford, IL, USA, AT8)被用于. Nutrients (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 1:1000; 图 2a
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1c
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1c). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3e
赛默飞世尔 Mapt抗体(Thermo Fisher, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3e). Brain Sci (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:3000; 图 5d
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000 (图 5d). Int J Mol Sci (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4a). Mol Neurodegener (2020) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 Mapt抗体(Thermo, P10636)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4a). Mol Neurodegener (2020) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 人类; 1:100; 图 s2b
  • 免疫印迹; 人类; 1:500-1:1000; 图 5, 6
赛默飞世尔 Mapt抗体(ThermoFisher Scientific, MN1040)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s2b) 和 被用于免疫印迹在人类样本上浓度为1:500-1:1000 (图 5, 6). Nat Commun (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:200; 图 1, s2b
  • 免疫印迹; 人类; 图 5, 6
赛默飞世尔 Mapt抗体(ThermoFisher Scientific, MN1020/AT8)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1, s2b) 和 被用于免疫印迹在人类样本上 (图 5, 6). Nat Commun (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:100; 图 4s2a
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4s2a). elife (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 人类; 1:2000; 图 3a
赛默飞世尔 Mapt抗体(Pierce Biotechnology, AT8)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2000 (图 3a). J Neuropathol Exp Neurol (2020) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠; 1:1000; 图 s4
赛默飞世尔 Mapt抗体(Thermo Scientific,, MN1040)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛默飞世尔 Mapt抗体(Thermo Scientific,, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Nat Commun (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
赛默飞世尔 Mapt抗体(Thermofisher, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:600; 图 2a13
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (图 2a13). Neurobiol Aging (2020) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 3b
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b) 和 被用于免疫细胞化学在人类样本上 (图 3b). Sci Transl Med (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5s1b
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5s1b) 和 被用于免疫印迹在小鼠样本上 (图 5a). J Neurosci (2020) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, 44-758G)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, 44-C744)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类; 图 5a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1010)被用于被用于酶联免疫吸附测定在人类样本上 (图 5a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 重组(2H23L4)
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, 701,054)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 重组(1H6L6)
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, 701,056)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, 44-752G)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 重组(5H9L11)
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, 701,530)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1f
赛默飞世尔 Mapt抗体(Thermo Fischer, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1f). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2h
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2h). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛默飞世尔 Mapt抗体(Invitrogen, 44-750G)被用于被用于免疫印迹在人类样本上 (图 4c). PLoS ONE (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:2000; 表 2
赛默飞世尔 Mapt抗体(Thermo Fisher, AT8)被用于被用于免疫组化在人类样本上浓度为1:2000 (表 2). Neurology (2020) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500; 图 s6e
赛默飞世尔 Mapt抗体(Thermo Fisher, MA5-12808)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s6e). Nature (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 1a
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nature (2019) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:200; 图 3a
赛默飞世尔 Mapt抗体(TFS, P10636)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Aging Cell (2019) ncbi
小鼠 单克隆(TauC3)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 1:200; 图 3a
赛默飞世尔 Mapt抗体(TFS, AHB0061)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Aging Cell (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:200; 图 3a
赛默飞世尔 Mapt抗体(TFS, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Aging Cell (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 猫; 1:2000; 图 1
赛默飞世尔 Mapt抗体(Fisher Scientific, MN1020)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:2000 (图 1). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猫; 1:1000; 图 3e
赛默飞世尔 Mapt抗体(Invitrogen, 44-742G)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:1000 (图 3e). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猫; 1:1000; 图 3b
赛默飞世尔 Mapt抗体(Invitrogen, 44-738G)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:1000 (图 3b). J Comp Neurol (2020) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 人类; 图 4a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4a). Eur J Nucl Med Mol Imaging (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6a
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; roundworm ; 图 9d
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在roundworm 样本上 (图 9d). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:1000; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 s9a
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9a). Nat Commun (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 猕猴; 1:500; 图 4b
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫印迹在猕猴样本上浓度为1:500 (图 4b). Aging Cell (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1e
赛默飞世尔 Mapt抗体(Fisher Sientific-Invitrogen, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1e). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 s15a
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 s15a). Acta Neuropathol (2019) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 s15a
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 s15a). Acta Neuropathol (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Neurobiol Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:300; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化在人类样本上浓度为1:300 (图 1a). Nature (2019) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1c, 1f
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1c, 1f). BMC Neurol (2019) ncbi
小鼠 单克隆(AT8)
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于. Cell Rep (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 图 1c
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫组化在小鼠样本上 (图 1c). Cell Rep (2018) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 图 1e
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在小鼠样本上 (图 1e). Cell Rep (2018) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图 s4a
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化在人类样本上 (图 s4a). Front Cell Neurosci (2018) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-冰冻切片; 小鼠; 图 4e
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, AT180)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4e). Neurobiol Aging (2018) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛默飞世尔 Mapt抗体(Thermo Fisher, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). Cancer Res (2018) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 图 s10b
  • 免疫印迹; 人类; 图 s10a
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于被用于免疫细胞化学在人类样本上 (图 s10b) 和 被用于免疫印迹在人类样本上 (图 s10a). Nat Med (2018) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 1f
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1040)被用于被用于免疫印迹在人类样本上 (图 1f). Nat Med (2018) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫组化在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; African green monkey; 1:500; 图 6a
赛默飞世尔 Mapt抗体(ThermoScientific, MN1020)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:500 (图 6a). Neurobiol Aging (2018) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2c
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, AT8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2c). J Alzheimers Dis (2018) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2c
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, AT180)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2c). J Alzheimers Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
  • 免疫印迹基因敲除验证; 人类; 1:500; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
赛默飞世尔 Mapt抗体(Thermo Fisher, 44-752G)被用于被用于免疫印迹在小鼠样本上, 被用于免疫印迹基因敲除验证在人类样本上浓度为1:500 (表 1) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2). Mol Neurodegener (2017) ncbi
domestic rabbit 重组(1H6L6)
  • 免疫印迹; 小鼠
  • 免疫印迹基因敲除验证; 人类; 1:500; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
赛默飞世尔 Mapt抗体(Thermo Fisher, 701056)被用于被用于免疫印迹在小鼠样本上, 被用于免疫印迹基因敲除验证在人类样本上浓度为1:500 (表 1) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2). Mol Neurodegener (2017) ncbi
domestic rabbit 重组(5H9L11)
  • 免疫印迹基因敲除验证; 人类; 1:500; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Thermo Fisher, 701530)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:500 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2) 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2017) ncbi
小鼠 单克隆(BT2)
  • 免疫印迹; 小鼠
  • 免疫印迹基因敲除验证; 人类; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1010)被用于被用于免疫印迹在小鼠样本上, 被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (表 1) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2). Mol Neurodegener (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
  • 免疫印迹基因敲除验证; 人类; 1:500; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
赛默飞世尔 Mapt抗体(Thermo Fisher, 44-744)被用于被用于免疫印迹在小鼠样本上, 被用于免疫印迹基因敲除验证在人类样本上浓度为1:500 (表 1) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2). Mol Neurodegener (2017) ncbi
domestic rabbit 重组(2H23L4)
  • 免疫印迹基因敲除验证; 人类; 1:500; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Thermo Fisher, 701054)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:500 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2) 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 表 2
  • 免疫印迹; 人类; 1:500; 表 1
  • 免疫印迹; 小鼠; 1:100
赛默飞世尔 Mapt抗体(Thermo Fisher, 44-758G)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 2), 被用于免疫印迹在人类样本上浓度为1:500 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:100. Mol Neurodegener (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛默飞世尔 Mapt抗体(Invitrogen, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛默飞世尔 Mapt抗体(Invitrogen, 44750G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛默飞世尔 Mapt抗体(Invitrogen, 44-752G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 s5b
赛默飞世尔 Mapt抗体(Invitrogen, 44-750G)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). Cell Rep (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000; 图 s5b
赛默飞世尔 Mapt抗体(Thermo, MN1040)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). Cell Rep (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:500; 图 1a
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 s5b
赛默飞世尔 Mapt抗体(Invitrogen, 44-734G)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). Cell Rep (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:500; 图 1a
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1a). Cell Rep (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 图 2a
赛默飞世尔 Mapt抗体(Invitrogen, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 Mapt抗体(Thermo, P10636)被用于被用于免疫组化在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 2A
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2A). Neurochem Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2A
赛默飞世尔 Mapt抗体(Invitrogen, 44-744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2A). Neurochem Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2A
赛默飞世尔 Mapt抗体(Invitrogen, 44-742G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2A). Neurochem Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2A
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2A). Neurochem Res (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1040)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Mapt抗体(ThermoFisher, 44740G)被用于被用于免疫印迹在人类样本上 (图 4a). Eur J Pharm Sci (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 4a). Eur J Pharm Sci (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Mapt抗体(ThermoFisher, MN1040)被用于被用于免疫印迹在人类样本上 (图 4a). Eur J Pharm Sci (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛默飞世尔 Mapt抗体(Thermo, MA5-12805)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化在小鼠样本上 (图 4). Nat Commun (2017) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 小鼠; 图 4a
赛默飞世尔 Mapt抗体(Fisher Scientific, MN1010)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛默飞世尔 Mapt抗体(Millipore, 44-752G)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2017) ncbi
小鼠 单克隆(T46)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:1000; 图 1b
赛默飞世尔 Mapt抗体(Thermo Fisher, 13-6400)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, 44-750G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1000; 图 1a
  • 免疫细胞化学; 小鼠; 1:1000; 图 1d
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
赛默飞世尔 Mapt抗体(生活技术, AHB0042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). J Alzheimers Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于被用于免疫印迹在小鼠样本上 (图 4a). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛默飞世尔 Mapt抗体(Thermo Scientific, 44-758G)被用于被用于免疫印迹在小鼠样本上 (图 2e). Aging Cell (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 0.2 ug/ml; 图 2a
赛默飞世尔 Mapt抗体(Sigma, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml (图 2a). Aging Cell (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 0.2 ug/ml; 图 2b
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为0.2 ug/ml (图 2b). Aging Cell (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1a). Neuron (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1a
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1a). Neuron (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:5000; 图 4b
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4b). Exp Mol Med (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3b
赛默飞世尔 Mapt抗体(Thermo Fisher, AT8)被用于被用于免疫细胞化学在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3b). Acta Neuropathol (2017) ncbi
domestic rabbit 重组(5H9L11)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛默飞世尔 Mapt抗体(Thermo Fisher, 701530)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Acta Neuropathol (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 人类; 1:500; 图 7d
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫组化在人类样本上浓度为1:500 (图 7d). Acta Neuropathol (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:2000; 图 7a
赛默飞世尔 Mapt抗体(Thermo Fisher, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Acta Neuropathol (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:500; 图 7c
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化在人类样本上浓度为1:500 (图 7c). Acta Neuropathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7a
赛默飞世尔 Mapt抗体(Thermo Fisher, 44-758G)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Acta Neuropathol (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:1000; 图 3d
赛默飞世尔 Mapt抗体(Endogen, AT8)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3d). Acta Neuropathol (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔 Mapt抗体(Thermo, AT8)被用于被用于免疫组化-冰冻切片在人类样本上. Nucl Med Biol (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3m
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3m). Hum Mutat (2017) ncbi
小鼠 单克隆(T46)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1b
赛默飞世尔 Mapt抗体(Thermofisher, T46)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s5d
赛默飞世尔 Mapt抗体(生活技术, 44738G)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s5d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠; 1:250; 图 5b
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 Mapt抗体(Pierce, MN1040)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(T46)
  • 免疫细胞化学; 大鼠; 1:100; 图 4b
赛默飞世尔 Mapt抗体(Thermofisher, 13-6400)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4b). J Chem Neuroanat (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500; 图 5
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在人类样本上 (图 2). Acta Neuropathol (2017) ncbi
小鼠 单克隆(T46)
  • 免疫细胞化学; 人类; 1:200; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔 Mapt抗体(Invitrogen, 136400)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). J Neuroinflammation (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:3000; 图 1
赛默飞世尔 Mapt抗体(ThermoFisher Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000 (图 1). J Neuropathol Exp Neurol (2016) ncbi
domestic rabbit 重组(1H6L6)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 4
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4
赛默飞世尔 Mapt抗体(生活技术, 701056)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 4) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 Mapt抗体(Invitrogen, AT180)被用于被用于免疫印迹在人类样本上 (图 4a). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:600; 图 3
赛默飞世尔 Mapt抗体(Thermo scientific, MN1020)被用于被用于免疫组化在人类样本上浓度为1:600 (图 3). Brain (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 图 3a
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Acta Neuropathol (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 4b
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 4b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 4a
赛默飞世尔 Mapt抗体(生活技术, 44750G)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1a
赛默飞世尔 Mapt抗体(Invitrogen, Tau-5)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学基因敲除验证; 小鼠; 图 3
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图 4
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 图 7d
赛默飞世尔 Mapt抗体(Thermo Fisher, AT8)被用于被用于免疫组化在小鼠样本上 (图 7d). J Immunol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 3d
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 3d). J Biol Chem (2016) ncbi
小鼠 单克隆(S.125.0)
  • 免疫细胞化学; 人类; 1:300; 图 5b
赛默飞世尔 Mapt抗体(Pierce, MA5-15108)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5b). Neurotoxicology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 Mapt抗体(Invitrogen, 44740G)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 Mapt抗体(Invitrogen, 44738G)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6c
赛默飞世尔 Mapt抗体(Invitrogen, 44742G)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). J Alzheimers Dis (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
赛默飞世尔 Mapt抗体(Pierce, MN1040)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 Mapt抗体(Invitrogen, 44734G)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔 Mapt抗体(Invitrogen, 44758G)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Alzheimers Dis (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 图 6g
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6g). J Alzheimers Dis (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 6
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 6
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 6). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(S.125.0)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2d
赛默飞世尔 Mapt抗体(Thermo Fisher, MA5-15108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛默飞世尔 Mapt抗体(Biosource, 44-750G)被用于被用于免疫印迹在小鼠样本上 (图 6a). J Neurosci (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:200; 图 3a
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Biol Psychiatry (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:500; 图 8
  • 免疫印迹; 小鼠; 1:500; 图 3a
赛默飞世尔 Mapt抗体(BD Biosciences, MN1020)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). EMBO Mol Med (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:500; 图 ev1
赛默飞世尔 Mapt抗体(BD Biosciences, MN1040)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 ev1). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Invitrogen, 44740G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Dis Model Mech (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2016) ncbi
小鼠 单克隆(TauC3)
  • 免疫印迹; 大鼠; 1:1000; 图 9
赛默飞世尔 Mapt抗体(Invitrogen, AHB0061)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9). PLoS ONE (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 5a
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 5a). Autophagy (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 2
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25 (图 2). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Invitrogen, 44750G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Aging Cell (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; domestic rabbit; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 3). Front Aging Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
赛默飞世尔 Mapt抗体(Invitrogen, 44752)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). Acta Neuropathol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 s3
  • 免疫印迹; 人类; 图 s3
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 s3) 和 被用于免疫印迹在人类样本上 (图 s3). Mol Neurodegener (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 s3
赛默飞世尔 Mapt抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上 (图 s3). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 抑制或激活实验; 人类; 图 3
赛默飞世尔 Mapt抗体(生活技术, 44752)被用于被用于抑制或激活实验在人类样本上 (图 3). Ann Neurol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 7
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 7). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 人类; 图 2
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-自由浮动切片在人类样本上 (图 2). Brain Pathol (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:500; 图 6
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Alzheimers Dement (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, EN-MN1040)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Cereb Cortex (2017) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:80
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:80 和 被用于免疫印迹在小鼠样本上浓度为1:500. Neurobiol Dis (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Lancet Neurol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Neurobiol Dis (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 6). Eneuro (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 图 3c
赛默飞世尔 Mapt抗体(Thermo Fisher, AT8)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). J Neurol Sci (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠; 图 4
  • 免疫组化-自由浮动切片; 人类; 图 4
  • 免疫印迹; fruit fly ; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 4), 被用于免疫组化-自由浮动切片在人类样本上 (图 4) 和 被用于免疫印迹在fruit fly 样本上 (图 3). Mol Psychiatry (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1
赛默飞世尔 Mapt抗体(生活技术, 44740G)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 人类; 1:250; 图 2
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:250 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 6
  • 免疫印迹; 人类; 1:2500; 图 5
赛默飞世尔 Mapt抗体(Pierce, MN-1020)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:600; 图 4
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫细胞化学在人类样本上浓度为1:600 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:1000
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 免疫印迹; 小鼠; 1:500; 图 6
赛默飞世尔 Mapt抗体(Thermo Fisher, AT180)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 1
  • 免疫印迹; 小鼠; 1:500; 表 1
赛默飞世尔 Mapt抗体(Biosource International, AHB0042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; fruit fly ; 图 2
赛默飞世尔 Mapt抗体(Thermo, AT180)被用于被用于免疫印迹在fruit fly 样本上 (图 2). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; fruit fly ; 1:1000; 图 4
  • 免疫印迹; fruit fly ; 1:2000; 图 4
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:1000 (图 4) 和 被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 4). Mol Neurobiol (2017) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; fruit fly ; 1:1000; 图 4
  • 免疫印迹; fruit fly ; 1:2000; 图 4
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:1000 (图 4) 和 被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 4). Mol Neurobiol (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 2). F1000Res (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔 Mapt抗体(ThermoFisher Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Acta Neuropathol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:10,000; 图 3f
赛默飞世尔 Mapt抗体(Invitrogen, Tau-5)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3f). Nat Commun (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:2000; 图 4
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 人类; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). EMBO Rep (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 人类; 1:800; 表 2
赛默飞世尔 Mapt抗体(Therno Fisher, MN1020)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:800 (表 2). Neurobiol Aging (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 1). Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Mapt抗体(生活技术, 444-740 g)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Eur J Med Chem (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛默飞世尔 Mapt抗体(ThermoFisher Scientific, MN1020)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neuropharmacology (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1040)被用于被用于免疫印迹在小鼠样本上 (图 8). Am J Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 8). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔 Mapt抗体(Thermo Fisher, 44738G)被用于被用于免疫印迹在小鼠样本上 (图 8). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔 Mapt抗体(Thermo Fisher, 44734G)被用于被用于免疫印迹在小鼠样本上 (图 8). Am J Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:100; 图 5
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1
赛默飞世尔 Mapt抗体(Thermo Scientifi, AT180)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1). Neurobiol Learn Mem (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1
赛默飞世尔 Mapt抗体(Thermo Scientifi, AT8)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1). Neurobiol Learn Mem (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫组化; 小鼠; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Pierce, MN1040)被用于被用于免疫组化在人类样本上 (图 3), 被用于免疫印迹在人类样本上浓度为1:1000 (图 3), 被用于免疫组化在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Neuropharmacology (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫组化; 小鼠; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化在人类样本上 (图 3), 被用于免疫印迹在人类样本上浓度为1:1000 (图 3), 被用于免疫组化在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Neuropharmacology (2016) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 Mapt抗体(Invitrogen, T46)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Brain (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:100; 图 7
  • 免疫印迹; 小鼠; 1:750; 图 7
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:750 (图 7). Brain (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1000; 表 1
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛默飞世尔 Mapt抗体(Thermo Fisher, AT8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 表 1
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛默飞世尔 Mapt抗体(Thermo Fisher, TAU-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000; 表 1
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛默飞世尔 Mapt抗体(Thermo Fisher, AT180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Neurobiol Dis (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Neurobiol Dis (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 3e
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 3e). Sci Rep (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:800; 表 2
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫组化在人类样本上浓度为1:800 (表 2). J Neuroinflammation (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500; 图 3a
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Neuroscience (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:100; 图 2
赛默飞世尔 Mapt抗体(Pierce, AT180)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2). Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 3
赛默飞世尔 Mapt抗体(生活技术, 44-742G)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3). Nat Med (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 3). Pharmacol Res (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Neuropathology (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Brain (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Brain (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 猫; 1:1000; 图 4
赛默飞世尔 Mapt抗体(生活技术, TAU-5)被用于被用于免疫印迹在猫样本上浓度为1:1000 (图 4). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 猫; 1:100; 图 6
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:100 (图 6). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫印迹在人类样本上 (图 3). Stem Cell Reports (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在人类样本上 (图 7). Mol Brain (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫印迹在人类样本上 (图 7). Mol Brain (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛默飞世尔 Mapt抗体(Invitrogen, ahb0042)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). J Neuroinflammation (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫印迹在人类样本上 (图 3). J Neuroimmunol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在人类样本上 (图 3). J Neuroimmunol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图 1c
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于被用于免疫组化在人类样本上 (图 1c). Biometals (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 1
赛默飞世尔 Mapt抗体(Invitrogen, 44-752G)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). Neurosci Lett (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1,000 ug/ml; 图 10
赛默飞世尔 Mapt抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1,000 ug/ml (图 10). Brain Res (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44-738G)被用于. BMC Cancer (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500; 图 5
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Neuropharmacology (2016) ncbi
小鼠 单克隆(T46)
  • 免疫组化; 人类; 1:500; 图 6
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Mapt抗体(Thermo Scientific, T46)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6) 和 被用于免疫印迹在人类样本上 (图 2). Acta Neuropathol (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在人类样本上 (图 2). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44742G)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44740G)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44738G)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44734G)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44758G)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:5000; 图 7
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(AT8)
  • 酶联免疫吸附测定; 人类; 图 2
  • 酶联免疫吸附测定; 小鼠; 图 2
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于酶联免疫吸附测定在人类样本上 (图 2) 和 被用于酶联免疫吸附测定在小鼠样本上 (图 2). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT180)
  • 酶联免疫吸附测定; 小鼠; 图 2
  • 酶联免疫吸附测定; 人类; 图 2
赛默飞世尔 Mapt抗体(Pierce, AT180)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2) 和 被用于酶联免疫吸附测定在人类样本上 (图 2). Mol Neurodegener (2015) ncbi
小鼠 单克隆(TauC3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 Mapt抗体(Invitrogen, Tau-C3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Neuropathol Appl Neurobiol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(生活技术, 44758G)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(生活技术, 44734G)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(生活技术, 44760G)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(生活技术, 44752G)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(生活技术, 44750G)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(生活技术, 44738G)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Acta Neuropathol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 0.3 ug/ml; 图 1
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Mapt抗体(ThermoScientific, AT8)被用于被用于免疫组化在人类样本上浓度为0.3 ug/ml (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Acta Neuropathol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Mapt抗体(ThermoScientific, AT180)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Acta Neuropathol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Nat Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Mapt抗体(ThermoFisher Scientific, MN1020)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). J Neurosci Res (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Med (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapt抗体(生活技术, AHB0042)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Neurobiol Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Mapt抗体(ThermoFisher, Ser202/Thr205)被用于被用于免疫印迹在小鼠样本上 (图 3). Hum Mol Genet (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图 s1
  • 免疫印迹; 人类; 图 s2
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化在人类样本上 (图 s1) 和 被用于免疫印迹在人类样本上 (图 s2). Vaccines (Basel) (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 s2
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在人类样本上 (图 s2). Vaccines (Basel) (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:2500
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2500. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 仓鼠; 1:10,000; 图 2
赛默飞世尔 Mapt抗体(Pierce, MN1040)被用于被用于免疫组化在仓鼠样本上浓度为1:10,000 (图 2). Hippocampus (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 表 1
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在人类样本上 (表 1). Alzheimers Dement (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1040)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; degu; 1:200; 图 5
  • 免疫印迹; degu; 图 5n
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在degu样本上浓度为1:200 (图 5) 和 被用于免疫印迹在degu样本上 (图 5n). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
  • 免疫印迹; 家羊
  • 免疫组化-石蜡切片; 犬; 1:1000
  • 免疫印迹; 牛
  • 免疫印迹; African green monkey
  • 免疫印迹; baboons
赛默飞世尔 Mapt抗体(生活技术, 44-744)被用于被用于免疫组化在大鼠样本上, 被用于免疫印迹在大鼠样本上, 被用于免疫印迹在小鼠样本上, 被用于免疫印迹在家羊样本上, 被用于免疫组化-石蜡切片在犬样本上浓度为1:1000, 被用于免疫印迹在牛样本上, 被用于免疫印迹在African green monkey样本上 和 被用于免疫印迹在baboons样本上. J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:1000; 图 7
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(生活技术, 44734G)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 7), 被用于免疫印迹在人类样本上, 被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. J Comp Neurol (2016) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
  • 免疫组化-石蜡切片; 犬; 1:1000
赛默飞世尔 Mapt抗体(生活技术, 355300)被用于被用于免疫印迹在大鼠样本上, 被用于免疫印迹在小鼠样本上 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:1000. J Comp Neurol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 犬; 1:1000; 图 3
赛默飞世尔 Mapt抗体(生活技术, MN1020)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:1000 (图 3). J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 1:1000; 图 7
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(生活技术, 44758G)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 7), 被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
  • 免疫组化-石蜡切片; 犬; 图 3
  • 免疫印迹; 犬; 1:1000; 图 7
赛默飞世尔 Mapt抗体(生活技术, 44742G)被用于被用于免疫印迹在人类样本上, 被用于免疫组化-石蜡切片在犬样本上 (图 3) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 7). J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:1000
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(生活技术, 44750G)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:1000, 被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬
  • 免疫印迹; 犬; 1:1000; 图 7
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛默飞世尔 Mapt抗体(生活技术, 44738G)被用于被用于免疫组化-石蜡切片在犬样本上, 被用于免疫印迹在犬样本上浓度为1:1000 (图 7), 被用于免疫印迹在人类样本上, 被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在大鼠样本上. J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; baboons
  • 免疫印迹; African green monkey
  • 免疫印迹; 牛
  • 免疫组化-石蜡切片; 犬
  • 免疫印迹; 犬; 1:1000; 图 7
  • 免疫印迹; 家羊
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛默飞世尔 Mapt抗体(生活技术, 44740G)被用于被用于免疫印迹在baboons样本上, 被用于免疫印迹在African green monkey样本上, 被用于免疫印迹在牛样本上, 被用于免疫组化-石蜡切片在犬样本上, 被用于免疫印迹在犬样本上浓度为1:1000 (图 7), 被用于免疫印迹在家羊样本上, 被用于免疫印迹在人类样本上, 被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在大鼠样本上. J Comp Neurol (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 人类
  • 免疫组化-石蜡切片; 犬; 1:1000; 图 3
赛默飞世尔 Mapt抗体(生活技术, MN1040)被用于被用于免疫组化在人类样本上 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:1000 (图 3). J Comp Neurol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2) 和 被用于免疫印迹在人类样本上 (图 5). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫印迹在小鼠样本上 (图 1). Aging Cell (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 1). Aging Cell (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类
赛默飞世尔 Mapt抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上. Cell Mol Neurobiol (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 Mapt抗体(Waltham, MN1040)被用于被用于免疫印迹在大鼠样本上 (图 3). Nutr Neurosci (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44740G)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 10 ug/ml; 图 2
赛默飞世尔 Mapt抗体(Pierce Biotechnology, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10 ug/ml (图 2). Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 Mapt抗体(Thermo Fisher, AT8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Neuroreport (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛默飞世尔 Mapt抗体(Thermo Fisher, AT180)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Neuroreport (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:2000; 图 3
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 3). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:3000
赛默飞世尔 Mapt抗体(生活技术, MN1020)被用于被用于免疫印迹在人类样本上浓度为1:3000. J Neurosci Res (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:200; 图 3
赛默飞世尔 Mapt抗体(Thermo, AT8)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Mol Psychiatry (2016) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:200; 图 3
赛默飞世尔 Mapt抗体(Thermo, AT180)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Mol Psychiatry (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:500
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于被用于免疫组化在人类样本上浓度为1:500. Tremor Other Hyperkinet Mov (N Y) (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Brain (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类
赛默飞世尔 Mapt抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:1000
  • 酶联免疫吸附测定; 人类
赛默飞世尔 Mapt抗体(Thermo Scientific, clone AT8)被用于被用于免疫组化在人类样本上浓度为1:1000 和 被用于酶联免疫吸附测定在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类
赛默飞世尔 Mapt抗体(Thermo Scientific, BT2)被用于被用于酶联免疫吸附测定在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 重组(1H6L6)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Invitrogen/Life Technologies, 701056)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Gerontol (2015) ncbi
domestic rabbit 重组(2H23L4)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Invitrogen/Life Technologies, 2H23L4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Gerontol (2015) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Invitrogen/Life Technologies, 35-5300)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Gerontol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Neurodegener (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫印迹在人类样本上 (图 1b). Mol Neurodegener (2015) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类; 图 7
赛默飞世尔 Mapt抗体(Thermo Scientific, BT2)被用于被用于酶联免疫吸附测定在人类样本上 (图 7). Mol Neurodegener (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于. Cell Death Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类
赛默飞世尔 Mapt抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在人类样本上. Chem Biol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 3, 4
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫印迹在人类样本上 (图 3, 4). Brain (2015) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 人类; 图 3, 4
赛默飞世尔 Mapt抗体(Pierce, PHF1)被用于被用于免疫印迹在人类样本上 (图 3, 4). Brain (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 3, 4
赛默飞世尔 Mapt抗体(Pierce, AT180)被用于被用于免疫印迹在人类样本上 (图 3, 4). Brain (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:5000; 图 1a
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). Brain (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:2500; 图 1a
赛默飞世尔 Mapt抗体(Pierce, AT180)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1a). Brain (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Mapt抗体(Thermo Scientific, clone AT-8)被用于被用于免疫组化-石蜡切片在人类样本上. Front Neuroanat (2015) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Zymed, T46)被用于被用于免疫印迹在人类样本上浓度为1:1000. Brain Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 1:100; 图 5e
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5e). PLoS ONE (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 Mapt抗体(Pierce, AT180)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Neuroscience (2015) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 Mapt抗体(Biosource, PHF-1)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Neuroscience (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Neuroscience (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在人类样本上. Brain Pathol (2016) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Pierce Thermo Fisher, MN1020)被用于被用于免疫印迹在小鼠样本上. Sci Transl Med (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
赛默飞世尔 Mapt抗体(Thermo Fisher, MN1020)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Exp Neurol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 人类; 1:500
赛默飞世尔 Mapt抗体(Thermo, AT8)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500. J Exp Med (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-自由浮动切片; 人类; 1:500
赛默飞世尔 Mapt抗体(Thermo, AT180)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500. J Exp Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44740G)被用于. J Med Chem (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在小鼠样本上. Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Ann Neurol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图 s4
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在小鼠样本上 (图 s4). Sci Rep (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:50; 图 9
赛默飞世尔 Mapt抗体(Pierce, MN-1020)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 9). J Neurosci Methods (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
赛默飞世尔 Mapt抗体(Thermo, MN1040)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. Curr Gene Ther (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:500. Neuropharmacology (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44734G)被用于. Age (Dordr) (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于. Age (Dordr) (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44738G)被用于. Age (Dordr) (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44758G)被用于. Age (Dordr) (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 1:400
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Alzheimer Dis Assoc Disord (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen Corporation, 44752G)被用于. J Neuroimmune Pharmacol (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 小鼠; 1:500; 图 8
  • 免疫组化-石蜡切片; 人类; 1:500; 图 5
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 8) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 5). J Neurosci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上. Alzheimers Dement (2015) ncbi
小鼠 单克隆(AT8)
  • 酶联免疫吸附测定; 小鼠; 图 5
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:2500
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2500. Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:100. Surg Neurol Int (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Thermo, AT180)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图 s2
赛默飞世尔 Mapt抗体(Pierce Endogen, MN1040B)被用于被用于免疫印迹在小鼠样本上 (图 s2). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Neurodegener (2014) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapt抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在人类样本上 (图 1). Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 小鼠; 1:40
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫细胞化学在小鼠样本上浓度为1:40 和 被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 1:30
  • 免疫印迹; 小鼠; 1:100
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:30 和 被用于免疫印迹在小鼠样本上浓度为1:100. Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:100
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:100. Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
  • 免疫印迹; 人类; 1:250; 图 4
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 4). Mol Neurodegener (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 Mapt抗体(Invitrogen, TAU5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Neurodegener (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Neurodegener (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; fruit fly
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Pierce, MN1040)被用于被用于免疫组化在fruit fly 样本上 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 Mapt抗体(Thermo (Pierce), AT8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 大鼠; 图 2
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 Mapt抗体(Thermo Fisher, AT8)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 1). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 大鼠; 图 2
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 Mapt抗体(Thermo Fisher, AT180)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 1). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(TauC3)
  • 免疫印迹; 人类; 1:500
赛默飞世尔 Mapt抗体(Thermo, tauC3)被用于被用于免疫印迹在人类样本上浓度为1:500. J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:500
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在人类样本上浓度为1:500. Acta Neuropathol Commun (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44758G)被用于. Proteomics (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Mapt抗体(Invitrogen, Tau5)被用于被用于免疫印迹在小鼠样本上 (图 2). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Mapt抗体(Pierce Biotechnology, AT180)被用于被用于免疫印迹在小鼠样本上 (图 2). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Mapt抗体(Pierce Biotechnology, AT8)被用于被用于免疫印迹在小鼠样本上 (图 2). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 大鼠; 1:200
赛默飞世尔 Mapt抗体(Thermo Scientific Pierce, MN1020)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200. J Neurosci (2014) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 Mapt抗体(Invitrogen, PHF13.6)被用于被用于免疫印迹在大鼠样本上 (图 3). BMC Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Nat Commun (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44734G)被用于. Neurobiol Aging (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44752G)被用于. Neurobiol Aging (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapt抗体(Invitrogen, 44738G)被用于. Neurobiol Aging (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠; 1:250
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 和 被用于免疫印迹在小鼠样本上浓度为1:2000. J Neurosci (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:20,000
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Brain Pathol (2015) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫印迹在人类样本上 (图 4). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫印迹在人类样本上 (图 4). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:800
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800. Acta Neuropathol (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化-自由浮动切片在小鼠样本上. Brain (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 1:50
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Neurobiol Dis (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). EMBO Mol Med (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类
赛默飞世尔 Mapt抗体(Thermo Scientific Pierce, MN1020)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 1:3000
赛默飞世尔 Mapt抗体(生活技术, tau-5)被用于被用于免疫组化在小鼠样本上浓度为1:3000. Ann Neurol (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:80
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化在小鼠样本上浓度为1:80. Ann Neurol (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫组化-石蜡切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Mapt抗体(Invitrogen, AT180)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Neurochem (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Mapt抗体(Invitrogen, AT8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Neurochem (2015) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1,000
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在人类样本上浓度为1:1,000. Nat Med (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Thermo Scientific, AT-8)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠; 1:250
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Mapt抗体(Thermo Scientific, AT180)被用于被用于免疫组化在小鼠样本上浓度为1:250 和 被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 2
赛默飞世尔 Mapt抗体(Fisher, MN1020)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 2
赛默飞世尔 Mapt抗体(Fisher, MN1040)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 0.1 ug/ml; 图 2
赛默飞世尔 Mapt抗体(Thermo Fischer Scientific, AT8)被用于被用于免疫组化在人类样本上浓度为0.1 ug/ml (图 2). Mol Neurodegener (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1040)被用于被用于免疫印迹在小鼠样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫印迹在小鼠样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Mapt抗体(NeoMarkers, tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:150; 图 s3b
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫印迹在人类样本上浓度为1:150 (图 s3b). Nature (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 人类; 图 1
赛默飞世尔 Mapt抗体(Pierce, AT-8)被用于被用于免疫组化-自由浮动切片在人类样本上 (图 1). FASEB J (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠
赛默飞世尔 Mapt抗体(Pierce, NM1020)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 大鼠; 1:400
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化在大鼠样本上浓度为1:400. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4
赛默飞世尔 Mapt抗体(Innogenetics, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 0.1 ug/ml
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化在人类样本上浓度为0.1 ug/ml. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:1000
赛默飞世尔 Mapt抗体(Pierce Biotechnology, AT8)被用于被用于免疫组化在人类样本上浓度为1:1000. J Anat (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:4000
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, Tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Eur J Neurosci (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, AT8)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Thermo Fisher Scientific, AT180)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:25
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Acta Neuropathol (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:2000
赛默飞世尔 Mapt抗体(Thermo Scientific, clone AT8)被用于被用于免疫组化在人类样本上浓度为1:2000. JAMA Psychiatry (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; lowland gorilla; 1:1000
  • 免疫组化; African green monkey; 1:1000
赛默飞世尔 Mapt抗体(ThermoFisher, MN1020)被用于被用于免疫组化-自由浮动切片在lowland gorilla样本上浓度为1:1000 和 被用于免疫组化在African green monkey样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫组化-冰冻切片在小鼠样本上. Age (Dordr) (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Mapt抗体(Invitrogen, #AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 6). Neurobiol Aging (2013) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 小鼠
赛默飞世尔 Mapt抗体(Thermo, MN1040)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛默飞世尔 Mapt抗体(Thermo-Fisher, AT8)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Acta Neuropathol (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:200; 图 2
赛默飞世尔 Mapt抗体(Lab Vision, MS-247-P0)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Neurochem Res (2013) ncbi
小鼠 单克隆(AT180)
  • 免疫细胞化学; fruit fly ; 图 s4
赛默飞世尔 Mapt抗体(Thermo Fisher, AT180)被用于被用于免疫细胞化学在fruit fly 样本上 (图 s4). Acta Neuropathol (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; fruit fly ; 图 s4
赛默飞世尔 Mapt抗体(Thermo Fisher, AT8)被用于被用于免疫细胞化学在fruit fly 样本上 (图 s4). Acta Neuropathol (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Mapt抗体(Pierce Biotechnology, MN1020)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Mapt抗体(Thermo Scientific, Tau-5)被用于被用于免疫组化在人类样本上浓度为1:1000, 被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 人类; 1:1000
赛默飞世尔 Mapt抗体(Biosource, AT180)被用于被用于免疫组化在人类样本上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 1:1000
赛默飞世尔 Mapt抗体(Biosource, AT8)被用于被用于免疫组化在人类样本上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:50; 图 1
  • 免疫组化; 人类; 1:50
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1) 和 被用于免疫组化在人类样本上浓度为1:50. Neurobiol Aging (2013) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Pierce, AT180)被用于被用于免疫印迹在小鼠样本上. Diabetes (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Diabetes (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛默飞世尔 Mapt抗体(BioSource, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Age (Dordr) (2013) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; leopard cat; 1:100; 图 5
赛默飞世尔 Mapt抗体(Thermo Scientific, AT8)被用于被用于免疫组化-石蜡切片在leopard cat样本上浓度为1:100 (图 5). PLoS ONE (2012) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Mapt抗体(Invitrogen, Tau-5)被用于被用于免疫印迹在小鼠样本上 (图 3). FEBS Lett (2012) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; fruit fly ; 图 3
赛默飞世尔 Mapt抗体(Thermo, AT180)被用于被用于免疫印迹在fruit fly 样本上 (图 3). PLoS Genet (2012) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 0.25 ug/ml; 图 8
赛默飞世尔 Mapt抗体(Thermo Scientific, MN1020)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.25 ug/ml (图 8). Alzheimers Res Ther (2012) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 Mapt抗体(Pierce, AT-8)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Neurobiol Aging (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 大鼠; 1:2000
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Toxicol Sci (2012) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Pierce, AT180)被用于被用于免疫印迹在人类样本上浓度为1:1000. Sci Rep (2012) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫印迹在人类样本上浓度为1:1000. Sci Rep (2012) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Mapt抗体(BIOSOURCE, Tau-5)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2012) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 Mapt抗体(Thermoscientific, AT8)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Acta Neuropathol (2012) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类
赛默飞世尔 Mapt抗体(Pierce, MN1040)被用于被用于免疫印迹在人类样本上. PLoS ONE (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫印迹在人类样本上. PLoS ONE (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫组化在小鼠样本上 (图 3). BMC Neurosci (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 Mapt抗体(BioSource, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Neurosci Res (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Mapt抗体(Thermo, MN1020)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). J Alzheimers Dis (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 Mapt抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Eur J Neurosci (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500; 图 3
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔 Mapt抗体(Pierce, AT180)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 人类; 图 4
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫组化在人类样本上 (图 4). J Neurosci (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 4
  • 免疫组化; 小鼠; 1:20
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 4) 和 被用于免疫组化在小鼠样本上浓度为1:20. J Neuroinflammation (2010) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5
  • 免疫印迹; 大鼠; 1:2000; 图 4
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4). Neurol Sci (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛默飞世尔 Mapt抗体(Pierce, MN1020)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). J Biol Chem (2010) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Mapt抗体(Biosource, AT180)被用于被用于免疫印迹在人类样本上 (图 5). J Neurosci Res (2010) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; fruit fly ; 1:100; 图 2
赛默飞世尔 Mapt抗体(Endogen, MN1020)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2). Nat Protoc (2010) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neurosci Res (2010) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫印迹; 人类; 1:500
赛默飞世尔 Mapt抗体(Invitrogen, 355300)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neurosci Res (2010) ncbi
小鼠 单克隆(Tau-5)
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 Mapt抗体(Biosource International, Tau-5)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Neurobiol Aging (2011) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 Mapt抗体(Pierce Biotechnology, AT8)被用于被用于免疫印迹在人类样本上 (图 1c). Neurobiol Aging (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Biosci Biotechnol Biochem (2009) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Biosource, AT8)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Biosci Biotechnol Biochem (2009) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Mapt抗体(Biosource, AT8)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Life Sci (2009) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Mapt抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Life Sci (2009) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Mapt抗体(Biosource, AT8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicology (2009) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Mapt抗体(Biosource, tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicology (2009) ncbi
小鼠 单克隆(AT180)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Mapt抗体(Endogen, AT180)被用于被用于免疫印迹在人类样本上 (图 4). J Neuroimmunol (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:200
赛默飞世尔 Mapt抗体(NeoMarkers, MS247P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neural Eng (2008) ncbi
小鼠 单克隆(AT8)
  • 免疫细胞化学; 大鼠; 1:500; 图 3
  • 免疫印迹; 大鼠; 1:500; 图 3
赛默飞世尔 Mapt抗体(BioSource International, clone AT8)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). J Neurochem (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛默飞世尔 Mapt抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Food Chem Toxicol (2008) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛默飞世尔 Mapt抗体(Biosource, AT8)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Food Chem Toxicol (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Invitrogen, TAU- 5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Neurosci Lett (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔 Mapt抗体(Biosource, Tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Cell Mol Med (2008) ncbi
小鼠 单克隆(AT8)
  • 免疫组化; 小鼠; 1:1000; 图 4
赛默飞世尔 Mapt抗体(Pierce, AT8)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). J Neurosci (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔 Mapt抗体(BioSource/Invitrogen, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Br J Pharmacol (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 人类; 1:500
  • 免疫印迹; 人类; 1:500
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:500. Nucleic Acids Res (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Mapt抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Cell Biol (2007) ncbi
小鼠 单克隆(AT180)
  • 免疫组化; 人类; 图 2B
赛默飞世尔 Mapt抗体(Zymed, AT180)被用于被用于免疫组化在人类样本上 (图 2B). Neurobiol Aging (2009) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔 Mapt抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Neuroscience (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 人类; 1:10,000; 表 1
  • 免疫印迹; 人类; 1:10,000; 表 1
赛默飞世尔 Mapt抗体(Biosource, Tau-5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (表 1). Am J Pathol (2006) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapt抗体(Biosource, TAU-5)被用于被用于免疫印迹在小鼠样本上. J Neural Transm (Vienna) (2006) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Mapt抗体(BioSource, Tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2005) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Mapt抗体(Endogen, clone AT-8)被用于被用于免疫印迹在小鼠样本上 (图 2). J Neurochem (2004) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 小鼠; 5 ug/ml; 图 1
赛默飞世尔 Mapt抗体(Endogen, AT-8)被用于被用于免疫印迹在小鼠样本上浓度为5 ug/ml (图 1). J Biol Chem (2003) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠
赛默飞世尔 Mapt抗体(BioSource, tau-5)被用于被用于免疫印迹在大鼠样本上. Biochem Biophys Res Commun (2002) ncbi
小鼠 单克隆(AT8)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Mapt抗体(Biosource, AT8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Acta Neuropathol (2002) ncbi
小鼠 单克隆(PHF13.6)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Mapt抗体(Biosource, PHF-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Acta Neuropathol (2002) ncbi
小鼠 单克隆(AT8)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔 Mapt抗体(Biosource, AT8)被用于被用于免疫印迹在大鼠样本上浓度为1:500. J Neurochem (2000) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR1884(2))
  • 免疫印迹; 小鼠; 1:3000; 图 s2
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab170892)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s2). Exp Ther Med (2022) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 3e, s8d
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab75603)被用于被用于其他在人类样本上 (图 3e, s8d). ACS Chem Neurosci (2022) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 2f
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000 (图 2f). Int J Biol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6k
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab4749)被用于被用于免疫印迹在小鼠样本上 (图 6k). EBioMedicine (2022) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 1c, 1e, 1l, 2c
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上 (图 1c, 1e, 1l, 2c) 和 被用于免疫印迹在小鼠样本上 (图 5a). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(EPR2402)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab108387)被用于被用于免疫印迹在小鼠样本上 (图 5a). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(EPR2488)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab151559)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EPR2605)
  • 免疫印迹; 人类; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab92676)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 1:2000; 图 1a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, Ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Ann Neurol (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 Mapt抗体(abcam, ab109401)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Front Neurol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上 (图 1a). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s1c
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s1c). Aging Cell (2021) ncbi
domestic rabbit 单克隆(E178)
  • 免疫印迹; 小鼠; 图 2c
  • 免疫组化; 人类; 图 1d
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, E178)被用于被用于免疫印迹在小鼠样本上 (图 2c) 和 被用于免疫组化在人类样本上 (图 1d). Sci Transl Med (2021) ncbi
domestic rabbit 单克隆(E178)
  • 免疫印迹; 小鼠; 图 5n
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab32057)被用于被用于免疫印迹在小鼠样本上 (图 5n). Redox Biol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Commun Biol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell (2021) ncbi
小鼠 单克隆(Tau-5)
  • proximity ligation assay; 小鼠; 1:250; 图 s3
  • proximity ligation assay; 人类; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于proximity ligation assay在小鼠样本上浓度为1:250 (图 s3) 和 被用于proximity ligation assay在人类样本上浓度为1:2000 (图 1d). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫印迹; 人类; 1:10,000; 图 1d
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR2605)
  • 免疫组化; 小鼠; 1:400; 图 2a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab92676)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2a). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫印迹; 人类; 1:10,000; 图 4a, s2b
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4a, s2b). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 1a, 1b
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上 (图 1a, 1b). Neuropsychiatr Dis Treat (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab75714)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2a). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR1884(2))
  • 免疫印迹; 小鼠; 图 2b, d-f
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab170892)被用于被用于免疫印迹在小鼠样本上 (图 2b, d-f). Front Aging Neurosci (2019) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 4a
  • 免疫印迹; 大鼠; 1:10,000; 图 4b
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 4b). Brain Behav (2020) ncbi
小鼠 单克隆(Tau-5)
  • 酶联免疫吸附测定; 人类; 图 5a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于酶联免疫吸附测定在人类样本上 (图 5a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 人类; 图 1a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab51053)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 人类; 图 1a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab4861)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). PLoS ONE (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109401)被用于被用于免疫印迹在人类样本上 (图 5c). PLoS ONE (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 图 1b, 2a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b, 2a). Aging Cell (2020) ncbi
domestic rabbit 单克隆(E178)
  • 免疫印迹; 小鼠; 1:1000; 图 2g
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab32057)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). CNS Neurosci Ther (2020) ncbi
domestic rabbit 单克隆(EPR2488)
  • 免疫印迹; 猕猴; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab151559)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 4b). Aging Cell (2019) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫印迹; 猕猴; 1:10,000; 图 4b
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫印迹在猕猴样本上浓度为1:10,000 (图 4b). Aging Cell (2019) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Neurobiol Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab131354)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Neurobiol Dis (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫沉淀; 人类; 图 4b
艾博抗(上海)贸易有限公司 Mapt抗体(AbCam, ab80579)被用于被用于免疫沉淀在人类样本上 (图 4b). elife (2019) ncbi
domestic rabbit 单克隆(EPR2605)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab92676)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Rep (2019) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 4b
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 4b). Front Aging Neurosci (2018) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫印迹; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫印迹在小鼠样本上 (图 2c). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab76128)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1e). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:50; 表 2
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, Tau5)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:50 (表 2) 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 6b'
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab4861)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 6b'). Mol Neurodegener (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 小鼠; 1:250; 图 2a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 2a). J Immunol Methods (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 图 1f
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫细胞化学在大鼠样本上 (图 1f). Mol Cell Neurosci (2017) ncbi
domestic rabbit 单克隆(E178)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, 32057)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EPR2401Y)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab81268)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(EPR2402)
  • 免疫印迹; 人类; 1:4000; 图 4a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab108387)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1884(2))
  • 免疫印迹; 人类; 1:4000; 图 4a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab170892)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:100; 图 4d
  • 免疫印迹; 大鼠; 1:500; 图 4e
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 4e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫细胞化学; 大鼠; 1:100; 图 4d
  • 免疫印迹; 大鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(E178)
  • 免疫组化-石蜡切片; 猕猴; 1:500; 图 4
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, 32057)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:500 (图 4). J Neuroinflammation (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫组化在人类样本上 (图 3). Aging Cell (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Mapt抗体(abcam, ab80579)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫印迹; 人类; 1:5000; 图 4c
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4c). Nat Commun (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:800; 图 3
  • 免疫印迹; 人类; 1:800; 图 3
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:800 (图 3). Neuropharmacology (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:5000; 图 7
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Nat Commun (2015) ncbi
domestic rabbit 单克隆(E178)
  • 免疫印迹; 人类; 1:5000; 图 3
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, E178)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Acta Neuropathol (2015) ncbi
domestic rabbit 单克隆(E178)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab 32057)被用于被用于免疫印迹在人类样本上 (图 7). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Psychiatry (2016) ncbi
domestic rabbit 单克隆(E178)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab32057)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(Tau-5)
  • 酶联免疫吸附测定; 人类; 图 2a,b
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于酶联免疫吸附测定在人类样本上 (图 2a,b). Int J Mol Epidemiol Genet (2014) ncbi
domestic rabbit 单克隆(EPR2731)
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab109390)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuroreport (2014) ncbi
domestic rabbit 单克隆(E178)
  • 免疫印迹; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab32057)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). Neuroreport (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:800; 图 1
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 1). J Alzheimers Dis (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Biol Chem (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 Mapt抗体(Abcam, Tau5)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上 (图 2a). Mol Psychiatry (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-10)
  • 免疫印迹; 小鼠; 1:3000; 图 s2
圣克鲁斯生物技术 Mapt抗体(Santa Cruz, sc-390476)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 s2). Exp Ther Med (2022) ncbi
小鼠 单克隆(A-12)
  • 流式细胞仪; 人类; 图 6b
圣克鲁斯生物技术 Mapt抗体(Santa Cruz Biotechnology, A-12)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 小鼠; 图 2d, 3b-d
圣克鲁斯生物技术 Mapt抗体(Santa Cruz, CA, United States, sc-390476)被用于被用于免疫印迹在小鼠样本上 (图 2d, 3b-d). Front Aging Neurosci (2019) ncbi
小鼠 单克隆(A-10)
  • 免疫细胞化学; 小鼠; 1:800; 图 6
圣克鲁斯生物技术 Mapt抗体(Santa, sc-390476)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 6). Front Mol Neurosci (2019) ncbi
小鼠 单克隆(PHF-13)
  • 免疫印迹; 大鼠; 1:50; 图 7a
圣克鲁斯生物技术 Mapt抗体(Santa Cruz Biotechnology, sc-32275)被用于被用于免疫印迹在大鼠样本上浓度为1:50 (图 7a). Neuropharmacology (2019) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
圣克鲁斯生物技术 Mapt抗体(Santa Cruz Biotechnology, sc-390476)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Neuropharmacology (2019) ncbi
小鼠 单克隆(Tau 46)
  • 免疫印迹; 小鼠; 1:2000; 图 8b
圣克鲁斯生物技术 Mapt抗体(Santa Cruz Biotechnology, sc-32274)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8b). J Cell Biol (2017) ncbi
小鼠 单克隆(Tau 46)
  • 酶联免疫吸附测定; 小鼠; 图 2a
圣克鲁斯生物技术 Mapt抗体(Santa Cruz, Tau46)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2a). Am J Pathol (2017) ncbi
小鼠 单克隆
  • 酶联免疫吸附测定; 小鼠; 图 2a
圣克鲁斯生物技术 Mapt抗体(Santa Cruz, Tau46)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2a). Am J Pathol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术 Mapt抗体(Santa Cruz, Tau46)被用于被用于免疫印迹在小鼠样本上 (图 6a). J Neurosci (2016) ncbi
小鼠 单克隆(Tau 46)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术 Mapt抗体(Santa Cruz, Tau46)被用于被用于免疫印迹在小鼠样本上 (图 6a). J Neurosci (2016) ncbi
小鼠 单克隆(D-8)
  • 其他; 人类; 2 ug/ml
圣克鲁斯生物技术 Mapt抗体(Santa Cruz, SC-166060)被用于被用于其他在人类样本上浓度为2 ug/ml. J Alzheimers Dis (2016) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapt抗体(Santa Cruz Biotechnology, sc-390476)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Gerontol (2015) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapt抗体(Santa Cruz Biotechnology, sc-166060)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Gerontol (2015) ncbi
Synaptic Systems
小鼠 单克隆(2,48E+07)
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
Synaptic Systems Mapt抗体(Synaptic Systems, 314011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b). Biol Open (2021) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2c
Synaptic Systems Mapt抗体(Synaptic systems, 314004)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2c). J Neural Transm (Vienna) (2021) ncbi
MyBioSource
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; African green monkey; 1:500; 图 2m
MyBioSource Mapt抗体(BioScience, MBS857154)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:500 (图 2m). Front Aging Neurosci (2016) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(PHF13)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling Technology, 9632)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Adv (2021) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 9632)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(PHF13)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 9632)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4a). Mol Neurodegener (2020) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 9632s)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Neurosci (2020) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 4019)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nature (2019) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 小鼠; 图 e1a
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 9632)被用于被用于免疫印迹在小鼠样本上 (图 e1a). Nature (2019) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 小鼠; 1:200; 图 3a
赛信通(上海)生物试剂有限公司 Mapt抗体(CST, 9632)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Aging Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1s1c
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 11837S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1s1c). elife (2019) ncbi
小鼠 单克隆(PHF13)
  • 免疫组化-自由浮动切片; 小鼠; 图 s5d
  • 免疫印迹; 小鼠; 图 s5g
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling Technology, 9632)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s5d) 和 被用于免疫印迹在小鼠样本上 (图 s5g). Cell (2019) ncbi
小鼠 单克隆(PHF13)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 14b, 14h
赛信通(上海)生物试剂有限公司 Mapt抗体(CST, 9632)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 14b, 14h). Histochem Cell Biol (2019) ncbi
小鼠 单克隆(PHF13)
  • 免疫组化; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 9632)被用于被用于免疫组化在小鼠样本上 (图 1f). Cell Rep (2018) ncbi
小鼠 单克隆(Tau46)
  • 免疫组化; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 4019)被用于被用于免疫组化在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3e
  • 免疫印迹; 大鼠; 图 3b
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 11834)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3e) 和 被用于免疫印迹在大鼠样本上 (图 3b). J Biol Chem (2018) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 图 3b
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 4019)被用于被用于免疫印迹在大鼠样本上 (图 3b). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:75; 图 3b
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 11834S)被用于被用于免疫印迹在小鼠样本上浓度为1:75 (图 3b). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 人类; 1:4000; 图 4a
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 9632)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 小鼠; 1:200; 图 3a
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, PHF13)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Biol Psychiatry (2017) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 4019P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neural Regen Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell signaling, 11834)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling Technology, 4019)被用于被用于免疫印迹在小鼠样本上 (图 6). Eneuro (2016) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 9632)被用于被用于免疫印迹在人类样本上 (图 3). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 11834)被用于被用于免疫印迹在人类样本上 (图 3). J Neurosci (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signal, 4019)被用于被用于免疫印迹在人类样本上. Stem Cell Reports (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1500; 图 1
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 11837)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 1). Neurosci Lett (2016) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling Technology, 9632)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling Technology, 4019)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell signaling, 9632)被用于被用于免疫印迹在小鼠样本上 (图 1). Aging Cell (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell signaling, 4019)被用于被用于免疫印迹在小鼠样本上 (图 1). Aging Cell (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 4019)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). BMC Genomics (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling Technology, 4019S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(PHF13)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Mapt抗体(Cell Signaling, 9632)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Neurobiol Aging (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:500; 图 4a
西格玛奥德里奇 Mapt抗体(Sigma-Aldrich, T9450)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4a). Cell Rep (2022) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
西格玛奥德里奇 Mapt抗体(Sigma, T9450)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(Tau46)
  • 免疫细胞化学; 大鼠; 1:500; 图 8e
西格玛奥德里奇 Mapt抗体(Sigma, T9450)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 8e). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3l
西格玛奥德里奇 Mapt抗体(Sigma-Aldrich, T6402)被用于被用于免疫细胞化学在人类样本上 (图 3l). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
西格玛奥德里奇 Mapt抗体(Sigma, T6402)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 1:4000; 图 5b
西格玛奥德里奇 Mapt抗体(Sigma, T9450)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5b). Autophagy (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 1b
西格玛奥德里奇 Mapt抗体(Sigma Aldrich, T9450)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 1b). Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7
西格玛奥德里奇 Mapt抗体(Sigma, T-6402)被用于被用于免疫细胞化学在小鼠样本上 (图 7). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:750; 图 3e
西格玛奥德里奇 Mapt抗体(Sigma, T-6402)被用于被用于免疫组化在大鼠样本上浓度为1:750 (图 3e). Acta Biomater (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4
西格玛奥德里奇 Mapt抗体(Sigma, SAB4501821)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇 Mapt抗体(Sigma-Aldrich, T6402)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Methods Mol Biol (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Mapt抗体(Sigma, T9450)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
碧迪BD
小鼠 单克隆(15/Tau)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 7a
碧迪BD Mapt抗体(BD, 610672)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 7a). J Comp Neurol (2019) ncbi
小鼠 单克隆(15/Tau)
  • 免疫细胞化学; 大鼠
碧迪BD Mapt抗体(BD Bioscience, 610672)被用于被用于免疫细胞化学在大鼠样本上. Sci Rep (2017) ncbi
小鼠 单克隆(15/Tau)
  • 免疫印迹; 小鼠; 图 11
碧迪BD Mapt抗体(BD Transduction Laboratories, 610672)被用于被用于免疫印迹在小鼠样本上 (图 11). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠
碧迪BD Mapt抗体(Pharmingen, 556319)被用于被用于免疫印迹在小鼠样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠
碧迪BD Mapt抗体(BD Pharmingen, Tau-5)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
文章列表
  1. Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen T, et al. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep. 2022;40:111417 pubmed 出版商
  2. Kasica N, Zhou X, Jester H, Holland C, Ryazanov A, Forshaw T, et al. Homozygous knockout of eEF2K alleviates cognitive deficits in APP/PS1 Alzheimer's disease model mice independent of brain amyloid β pathology. Front Aging Neurosci. 2022;14:959326 pubmed 出版商
  3. Easton A, Jensen M, Wang C, Hagedorn P, Li Y, WEED M, et al. Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. Mol Ther Nucleic Acids. 2022;29:625-642 pubmed 出版商
  4. Hausrat T, Janiesch P, Breiden P, Lutz D, Hoffmeister Ullerich S, Hermans Borgmeyer I, et al. Disruption of tubulin-alpha4a polyglutamylation prevents aggregation of hyper-phosphorylated tau and microglia activation in mice. Nat Commun. 2022;13:4192 pubmed 出版商
  5. Nakamori M, Shimizu H, Ogawa K, Hasuike Y, Nakajima T, Sakurai H, et al. Cell type-specific abnormalities of central nervous system in myotonic dystrophy type 1. Brain Commun. 2022;4:fcac154 pubmed 出版商
  6. Liu H, Li Q, Zhang X, Shi Y, Li J. Effect of ginkgolide K on calcium channel activity in Alzheimer's disease. Exp Ther Med. 2022;23:426 pubmed 出版商
  7. Rauskolb S, Andreska T, Fries S, von Collenberg C, Blum R, Monoranu C, et al. Insulin-like growth factor 5 associates with human Aß plaques and promotes cognitive impairment. Acta Neuropathol Commun. 2022;10:68 pubmed 出版商
  8. Permanne B, Sand A, Ousson S, N xe9 ny M, Hantson J, Schubert R, et al. O-GlcNAcase Inhibitor ASN90 is a Multimodal Drug Candidate for Tau and α-Synuclein Proteinopathies. ACS Chem Neurosci. 2022;13:1296-1314 pubmed 出版商
  9. Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H, et al. Forsythoside A Mitigates Alzheimer's-like Pathology by Inhibiting Ferroptosis-mediated Neuroinflammation via Nrf2/GPX4 Axis Activation. Int J Biol Sci. 2022;18:2075-2090 pubmed 出版商
  10. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  11. Marengo L, Armbrust F, Schoenherr C, Storck S, Schmitt U, Zampar S, et al. Meprin β knockout reduces brain Aβ levels and rescues learning and memory impairments in the APP/lon mouse model for Alzheimer's disease. Cell Mol Life Sci. 2022;79:168 pubmed 出版商
  12. Schiapparelli L, Sharma P, He H, Li J, Shah S, McClatchy D, et al. Proteomic screen reveals diverse protein transport between connected neurons in the visual system. Cell Rep. 2022;38:110287 pubmed 出版商
  13. Andr xe9 s Benito P, Carmona M, Jord xe1 n M, Fern xe1 ndez Irigoyen J, Santamar xed a E, Del Rio J, et al. Host Tau Genotype Specifically Designs and Regulates Tau Seeding and Spreading and Host Tau Transformation Following Intrahippocampal Injection of Identical Tau AD Inoculum. Int J Mol Sci. 2022;23: pubmed 出版商
  14. Zou Y, Gan C, Xin Z, Zhang H, Zhang Q, Lee T, et al. Programmed Cell Death Protein 1 Blockade Reduces Glycogen Synthase Kinase 3β Activity and Tau Hyperphosphorylation in Alzheimer's Disease Mouse Models. Front Cell Dev Biol. 2021;9:769229 pubmed 出版商
  15. Kasica N, Zhou X, Yang Q, Wang X, Yang W, Zimmermann H, et al. Antagonists targeting eEF2 kinase rescue multiple aspects of pathophysiology in Alzheimer's disease model mice. J Neurochem. 2022;160:524-539 pubmed 出版商
  16. Barker S, Raju R, Milman N, Wang J, Davila Velderrain J, Gunter Rahman F, et al. MEF2 is a key regulator of cognitive potential and confers resilience to neurodegeneration. Sci Transl Med. 2021;13:eabd7695 pubmed 出版商
  17. Gao C, Deng J, Zhang H, Li X, Gu S, Zheng M, et al. HSPA13 facilitates NF-κB-mediated transcription and attenuates cell death responses in TNFα signaling. Sci Adv. 2021;7:eabh1756 pubmed 出版商
  18. Mroczek K, Fernando S, Fisher P, Annesley S. Interactions and Cytotoxicity of Human Neurodegeneration- Associated Proteins Tau and α-Synuclein in the Simple Model Dictyostelium discoideum. Front Cell Dev Biol. 2021;9:741662 pubmed 出版商
  19. Nies S, Takahashi H, Herber C, Huttner A, Chase A, Strittmatter S. Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β. J Biol Chem. 2021;297:101159 pubmed 出版商
  20. Villanueva E, Tresse E, Liu Y, Duarte J, Jimenez Duran G, Ejlerskov P, et al. Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice. Ann Neurol. 2021;90:789-807 pubmed 出版商
  21. Yuste Checa P, Trinkaus V, Riera Tur I, Imamoglu R, Schaller T, Wang H, et al. The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nat Commun. 2021;12:4863 pubmed 出版商
  22. Bampton A, Gatt A, Humphrey J, Cappelli S, Bhattacharya D, Foti S, et al. HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol. 2021;142:609-627 pubmed 出版商
  23. Valencia A, Bieber V, Bajrami B, Marsh G, Hamann S, Wei R, et al. Antisense Oligonucleotide-Mediated Reduction of HDAC6 Does Not Reduce Tau Pathology in P301S Tau Transgenic Mice. Front Neurol. 2021;12:624051 pubmed 出版商
  24. Zheng J, Tian N, Liu F, Zhang Y, Su J, Gao Y, et al. A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies. Signal Transduct Target Ther. 2021;6:269 pubmed 出版商
  25. Cores A, Abril S, Michalska P, Duarte P, Olives A, Martín M, et al. Bisavenathramide Analogues as Nrf2 Inductors and Neuroprotectors in In Vitro Models of Oxidative Stress and Hyperphosphorylation. Antioxidants (Basel). 2021;10: pubmed 出版商
  26. Wu D, Gao D, Yu H, Pi G, Xiong R, Lei H, et al. Medial septum tau accumulation induces spatial memory deficit via disrupting medial septum-hippocampus cholinergic pathway. Clin Transl Med. 2021;11:e428 pubmed 出版商
  27. Guix F, Capitán A, Casadomé Perales Á, Palomares Perez I, López Del Castillo I, Miguel V, et al. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021;4: pubmed 出版商
  28. Sakakibara Y, Hirota Y, Ibaraki K, Takei K, Chikamatsu S, Tsubokawa Y, et al. Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-β Amyloidosis. J Alzheimers Dis. 2021;82:1513-1530 pubmed 出版商
  29. Frei J, Brandenburg C, Nestor J, Hodzic D, Plachez C, McNeill H, et al. Postnatal expression profiles of atypical cadherin FAT1 suggest its role in autism. Biol Open. 2021;10: pubmed 出版商
  30. Zhang J, Wu N, Wang S, Yao Z, Xiao F, Lu J, et al. Neuronal loss and microgliosis are restricted to the core of Aβ deposits in mouse models of Alzheimer's disease. Aging Cell. 2021;20:e13380 pubmed 出版商
  31. Subramanian M, Hyeon S, Das T, Suh Y, Kim Y, Lee J, et al. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun. 2021;12:3291 pubmed 出版商
  32. Qiu C, Albayram O, Kondo A, Wang B, Kim N, Arai K, et al. Cis P-tau underlies vascular contribution to cognitive impairment and dementia and can be effectively targeted by immunotherapy in mice. Sci Transl Med. 2021;13: pubmed 出版商
  33. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  34. Zhang X, Zou L, Meng L, Xiong M, Pan L, Chen G, et al. Amphiphysin I cleavage by asparagine endopeptidase leads to tau hyperphosphorylation and synaptic dysfunction. elife. 2021;10: pubmed 出版商
  35. Galán Ganga M, Rodríguez Cueto C, Merchán Rubira J, Hernandez F, Avila J, Posada Ayala M, et al. Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration. Acta Neuropathol Commun. 2021;9:90 pubmed 出版商
  36. Liu Y, Cong P, Zhang T, Wang R, Wang X, Liu J, et al. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol. 2021;43:102002 pubmed 出版商
  37. Dong Y, Liang F, Huang L, Fang F, Yang G, Tanzi R, et al. The anesthetic sevoflurane induces tau trafficking from neurons to microglia. Commun Biol. 2021;4:560 pubmed 出版商
  38. Park G, Lee J, Han H, An H, Jin Z, Jeong E, et al. Ablation of dynamin-related protein 1 promotes diabetes-induced synaptic injury in the hippocampus. Cell Death Dis. 2021;12:445 pubmed 出版商
  39. García Escudero V, Ruiz Gabarre D, Gargini R, Perez M, Garcia E, Cuadros R, et al. A new non-aggregative splicing isoform of human Tau is decreased in Alzheimer's disease. Acta Neuropathol. 2021;142:159-177 pubmed 出版商
  40. Tseng J, Ajit A, Tabassum Z, Patel N, Tian X, Chen Y, et al. Tau seeds are subject to aberrant modifications resulting in distinct signatures. Cell Rep. 2021;35:109037 pubmed 出版商
  41. Shin M, Vázquez Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón Pérez C, et al. Reducing acetylated tau is neuroprotective in brain injury. Cell. 2021;184:2715-2732.e23 pubmed 出版商
  42. Miguel J, Perez S, Malek Ahmadi M, Mufson E. Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Front Aging Neurosci. 2021;13:645334 pubmed 出版商
  43. Shili C, Habibi M, Sutton J, Barnes J, Burch Konda J, Pezeshki A. Effect of a Phytogenic Water Additive on Growth Performance, Blood Metabolites and Gene Expression of Amino Acid Transporters in Nursery Pigs Fed with Low-Protein/High-Carbohydrate Diets. Animals (Basel). 2021;11: pubmed 出版商
  44. Wang X, Kuang N, Chen Y, Liu G, Wang N, Kong F, et al. Transplantation of olfactory ensheathing cells promotes the therapeutic effect of neural stem cells on spinal cord injury by inhibiting necrioptosis. Aging (Albany NY). 2021;13:9056-9070 pubmed 出版商
  45. Perez Garcia G, De Gasperi R, Gama Sosa M, Perez G, Otero Pagan A, Pryor D, et al. Laterality and region-specific tau phosphorylation correlate with PTSD-related behavioral traits in rats exposed to repetitive low-level blast. Acta Neuropathol Commun. 2021;9:33 pubmed 出版商
  46. Sokratian A, Ziaee J, Kelly K, Chang A, Bryant N, Wang S, et al. Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathol. 2021;141:547-564 pubmed 出版商
  47. Almeida M, Piehler T, Carstens K, Zhao M, Samadi M, Dudek S, et al. Distinct and dementia-related synaptopathy in the hippocampus after military blast exposures. Brain Pathol. 2021;31:e12936 pubmed 出版商
  48. Jansch C, Ziegler G, Forero A, Gredy S, W xe4 ldchen S, Vitale M, et al. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna). 2021;128:225-241 pubmed 出版商
  49. Ly H, Verma N, Sharma S, Kotiya D, Despa S, Abner E, et al. The association of circulating amylin with β-amyloid in familial Alzheimer's disease. Alzheimers Dement (N Y). 2021;7:e12130 pubmed 出版商
  50. Zareba Paslawska J, Patra K, Kluzer L, Revesz T, Svenningsson P. Tau Isoform-Driven CBD Pathology Transmission in Oligodendrocytes in Humanized Tau Mice. Front Neurol. 2020;11:589471 pubmed 出版商
  51. Bengoa Vergniory N, Velentza Almpani E, Silva A, Scott C, Vargas Caballero M, Sastre M, et al. Tau-proximity ligation assay reveals extensive previously undetected pathology prior to neurofibrillary tangles in preclinical Alzheimer's disease. Acta Neuropathol Commun. 2021;9:18 pubmed 出版商
  52. Choi Y, Dunn Meynell A, Marchese M, Blumberg B, Gaindh D, Dowling P, et al. Erythropoietin-derived peptide treatment reduced neurological deficit and neuropathological changes in a mouse model of tauopathy. Alzheimers Res Ther. 2021;13:32 pubmed 出版商
  53. Hondius D, Koopmans F, Leistner C, Pita Illobre D, Peferoen Baert R, Marbus F, et al. The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer's disease. Acta Neuropathol. 2021;141:341-358 pubmed 出版商
  54. Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed 出版商
  55. Sobue A, Komine O, Hara Y, Endo F, Mizoguchi H, Watanabe S, et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:1 pubmed 出版商
  56. Biechele G, Franzmeier N, Blume T, Ewers M, Luque J, Eckenweber F, et al. Glial activation is moderated by sex in response to amyloidosis but not to tau pathology in mouse models of neurodegenerative diseases. J Neuroinflammation. 2020;17:374 pubmed 出版商
  57. Chiu C, Weng Y, Huang Y, Chen R, Liu Y, Yeh T, et al. (D620N) VPS35 causes the impairment of Wnt/β-catenin signaling cascade and mitochondrial dysfunction in a PARK17 knockin mouse model. Cell Death Dis. 2020;11:1018 pubmed 出版商
  58. Wang Q, Ge X, Zhang J, Chen L. Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer's disease via inhibition of the miR-375/SIX4 axis. Aging (Albany NY). 2020;12:23974-23995 pubmed 出版商
  59. Lin L, Petralia R, Lake R, Wang Y, Hoffman D. A novel structure associated with aging is augmented in the DPP6-KO mouse brain. Acta Neuropathol Commun. 2020;8:197 pubmed 出版商
  60. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  61. Tang S, Fesharaki Zadeh A, Takahashi H, Nies S, Smith L, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96 pubmed 出版商
  62. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  63. Wander C, Tseng J, Song S, Al Housseiny H, Tart D, Ajit A, et al. The Accumulation of Tau-Immunoreactive Hippocampal Granules and Corpora Amylacea Implicates Reactive Glia in Tau Pathogenesis during Aging. iScience. 2020;23:101255 pubmed 出版商
  64. Ren P, Chen J, Li B, Zhang M, Yang B, Guo X, et al. Nrf2 Ablation Promotes Alzheimer's Disease-Like Pathology in APP/PS1 Transgenic Mice: The Role of Neuroinflammation and Oxidative Stress. Oxid Med Cell Longev. 2020;2020:3050971 pubmed 出版商
  65. LeBlang C, Medalla M, Nicoletti N, Hays E, Zhao J, Shattuck J, et al. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci. 2020;14:285 pubmed 出版商
  66. Leong W, Xu W, Wang B, Gao S, Zhai X, Wang C, et al. PP2A subunit PPP2R2C is downregulated in the brains of Alzheimer's transgenic mice. Aging (Albany NY). 2020;12:6880-6890 pubmed 出版商
  67. Ma X, Zhu Y, Lu J, Xie J, Li C, Shin W, et al. Nicotinamide mononucleotide adenylyltransferase uses its NAD+ substrate-binding site to chaperone phosphorylated Tau. elife. 2020;9: pubmed 出版商
  68. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F, et al. Phosphorylation of Tau and α-Synuclein Induced Neurodegeneration in MPTP Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat. 2020;16:651-663 pubmed 出版商
  69. Yilmazer Hanke D, Mayer T, Müller H, Neugebauer H, Abaei A, Scheuerle A, et al. Histological correlates of postmortem ultra-high-resolution single-section MRI in cortical cerebral microinfarcts. Acta Neuropathol Commun. 2020;8:33 pubmed 出版商
  70. Xing Z, Zhang L, Zhang Y, Sun X, Sun X, Yu H, et al. DIP2B Interacts With α-Tubulin to Regulate Axon Outgrowth. Front Cell Neurosci. 2020;14:29 pubmed 出版商
  71. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  72. Liao X, Cai F, Sun Z, Zhang Y, Wang J, Jiao B, et al. Identification of Alzheimer's disease-associated rare coding variants in the ECE2 gene. JCI Insight. 2020;5: pubmed 出版商
  73. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease. J Neuroinflammation. 2020;17:72 pubmed 出版商
  74. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  75. Yao X, Xian X, Fang M, Fan S, Li W. Loss of miR-369 Promotes Tau Phosphorylation by Targeting the Fyn and Serine/Threonine-Protein Kinase 2 Signaling Pathways in Alzheimer's Disease Mice. Front Aging Neurosci. 2019;11:365 pubmed 出版商
  76. Krishnan M, Hwang J, Kim M, Kim Y, Seo J, Jung J, et al. β-hydroxybutyrate Impedes the Progression of Alzheimer's Disease and Atherosclerosis in ApoE-Deficient Mice. Nutrients. 2020;12: pubmed 出版商
  77. Schrank S, McDaid J, Briggs C, Mustaly Kalimi S, Brinks D, Houcek A, et al. Human-Induced Neurons from Presenilin 1 Mutant Patients Model Aspects of Alzheimer's Disease Pathology. Int J Mol Sci. 2020;21: pubmed 出版商
  78. Kaalund S, Passamonti L, Allinson K, Murley A, Robbins T, Spillantini M, et al. Locus coeruleus pathology in progressive supranuclear palsy, and its relation to disease severity. Acta Neuropathol Commun. 2020;8:11 pubmed 出版商
  79. Bencze J, Szarka M, Bencs V, Szabó R, Módis L, Aarsland D, et al. Lemur Tyrosine Kinase 2 (LMTK2) Level Inversely Correlates with Phospho-Tau in Neuropathological Stages of Alzheimer's Disease. Brain Sci. 2020;10: pubmed 出版商
  80. Walker D, Tang T, Mendsaikhan A, Tooyama I, Serrano G, Sue L, et al. Patterns of Expression of Purinergic Receptor P2RY12, a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer's Disease Brains. Int J Mol Sci. 2020;21: pubmed 出版商
  81. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  82. Li C, Liu W, Li X, Zhang Z, Qi H, Liu S, et al. The novel GLP-1/GIP analogue DA5-CH reduces tau phosphorylation and normalizes theta rhythm in the icv. STZ rat model of AD. Brain Behav. 2020;10:e01505 pubmed 出版商
  83. Inda M, Joshi S, Wang T, Bolaender A, Gandu S, Koren Iii J, et al. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat Commun. 2020;11:319 pubmed 出版商
  84. Bowie E, Goetz S. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. elife. 2020;9: pubmed 出版商
  85. Braak H, Del Tredici K. From the Entorhinal Region via the Prosubiculum to the Dentate Fascia: Alzheimer Disease-Related Neurofibrillary Changes in the Temporal Allocortex. J Neuropathol Exp Neurol. 2020;79:163-175 pubmed 出版商
  86. He Z, McBride J, Xu H, Changolkar L, Kim S, Zhang B, et al. Transmission of tauopathy strains is independent of their isoform composition. Nat Commun. 2020;11:7 pubmed 出版商
  87. Arenas F, Castro F, Núñez S, Gay G, Garcia Ruiz C, Fernandez Checa J. STARD1 and NPC1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with Alzheimer's disease and Down syndrome. Aging (Albany NY). 2020;12:571-592 pubmed 出版商
  88. Shafei R, Woollacott I, Mummery C, Bocchetta M, Guerreiro R, Bras J, et al. Two pathologically confirmed cases of novel mutations in the MAPT gene causing frontotemporal dementia. Neurobiol Aging. 2020;87:141.e15-141.e20 pubmed 出版商
  89. Wheeler J, McMillan P, Strovas T, Liachko N, Amlie Wolf A, Kow R, et al. Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain. Sci Transl Med. 2019;11: pubmed 出版商
  90. Fan Q, He W, Gayen M, Benoit M, Luo X, Hu X, et al. Activated CX3CL1/Smad2 Signals Prevent Neuronal Loss and Alzheimer's Tau Pathology-Mediated Cognitive Dysfunction. J Neurosci. 2020;40:1133-1144 pubmed 出版商
  91. Casci I, Krishnamurthy K, Kour S, Tripathy V, Ramesh N, Anderson E, et al. Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization. Nat Commun. 2019;10:5583 pubmed 出版商
  92. Ercan Herbst E, Ehrig J, Schöndorf D, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun. 2019;7:192 pubmed 出版商
  93. Kirabali T, Rigotti S, Siccoli A, Liebsch F, Shobo A, Hock C, et al. The amyloid-β degradation intermediate Aβ34 is pericyte-associated and reduced in brain capillaries of patients with Alzheimer's disease. Acta Neuropathol Commun. 2019;7:194 pubmed 出版商
  94. Pires G, McElligott S, Drusinsky S, Halliday G, Potier M, Wisniewski T, et al. Secernin-1 is a novel phosphorylated tau binding protein that accumulates in Alzheimer's disease and not in other tauopathies. Acta Neuropathol Commun. 2019;7:195 pubmed 出版商
  95. Sonntag T, Moresco J, Yates J, Montminy M. The KLDpT activation loop motif is critical for MARK kinase activity. PLoS ONE. 2019;14:e0225727 pubmed 出版商
  96. Yu L, Boyle P, Dawe R, Bennett D, Arfanakis K, Schneider J. Contribution of TDP and hippocampal sclerosis to hippocampal volume loss in older-old persons. Neurology. 2020;94:e142-e152 pubmed 出版商
  97. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  98. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  99. Faraco G, Hochrainer K, Segarra S, Schaeffer S, Santisteban M, Menon A, et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature. 2019;: pubmed 出版商
  100. di Meco A, Pratico D. Early-life exposure to high-fat diet influences brain health in aging mice. Aging Cell. 2019;18:e13040 pubmed 出版商
  101. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  102. Zhang R, Liu Y, Chen Y, Li Q, Marshall C, Wu T, et al. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci Ther. 2020;26:228-239 pubmed 出版商
  103. Fiock K, Smith J, Crary J, Hefti M. β-amyloid and tau pathology in the aging feline brain. J Comp Neurol. 2020;528:108-113 pubmed 出版商
  104. Kroth H, Oden F, Molette J, Schieferstein H, Capotosti F, Mueller A, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019;46:2178-2189 pubmed 出版商
  105. Latimer C, Burke B, Liachko N, Currey H, Kilgore M, Gibbons L, et al. Resistance and resilience to Alzheimer's disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol Commun. 2019;7:9 pubmed 出版商
  106. Gamache J, Benzow K, Forster C, Kemper L, Hlynialuk C, Furrow E, et al. Factors other than hTau overexpression that contribute to tauopathy-like phenotype in rTg4510 mice. Nat Commun. 2019;10:2479 pubmed 出版商
  107. Zhang J, Chen B, Lu J, Wu Y, Wang S, Yao Z, et al. Brains of rhesus monkeys display Aβ deposits and glial pathology while lacking Aβ dimers and other Alzheimer's pathologies. Aging Cell. 2019;18:e12978 pubmed 出版商
  108. Libard S, Alafuzoff I. Alzheimer's disease neuropathological change and loss of matrix/neuropil in patients with idiopathic Normal Pressure Hydrocephalus, a model of Alzheimer's disease. Acta Neuropathol Commun. 2019;7:3 pubmed 出版商
  109. Sartori M, Mendes T, Desai S, Lasorsa A, Herledan A, Malmanche N, et al. BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr348 phosphorylation. Acta Neuropathol. 2019;: pubmed 出版商
  110. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  111. Silva M, Ferguson F, Cai Q, Donovan K, Nandi G, Patnaik D, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. elife. 2019;8: pubmed 出版商
  112. Falcon B, Zivanov J, Zhang W, Murzin A, Garringer H, Vidal R, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019;568:420-423 pubmed 出版商
  113. Stejskalova Z, Rohan Z, Rusina R, Tesar A, Kukal J, Kovacs G, et al. Pyramidal system involvement in progressive supranuclear palsy - a clinicopathological correlation. BMC Neurol. 2019;19:42 pubmed 出版商
  114. Martorell A, Paulson A, Suk H, Abdurrob F, Drummond G, Guan W, et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell. 2019;177:256-271.e22 pubmed 出版商
  115. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  116. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  117. Pierzynowska K, Podlacha M, Gaffke L, Majkutewicz I, Mantej J, Wegrzyn A, et al. Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer's disease. Neuropharmacology. 2019;148:332-346 pubmed 出版商
  118. Paonessa F, Evans L, Solanki R, Larrieu D, Wray S, Hardy J, et al. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Rep. 2019;26:582-593.e5 pubmed 出版商
  119. Merezhko M, Brunello C, Yan X, Vihinen H, Jokitalo E, Uronen R, et al. Secretion of Tau via an Unconventional Non-vesicular Mechanism. Cell Rep. 2018;25:2027-2035.e4 pubmed 出版商
  120. Thygesen C, Ilkjær L, Kempf S, Hemdrup A, von Linstow C, Babcock A, et al. Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APPSWE/PS1ΔE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease. Front Cell Neurosci. 2018;12:397 pubmed 出版商
  121. Kubo A, Misonou H, Matsuyama M, Nomori A, Wada Kakuda S, Takashima A, et al. Distribution of endogenous normal tau in the mouse brain. J Comp Neurol. 2019;527:985-998 pubmed 出版商
  122. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  123. Liu D, Lu H, Stein E, Zhou Z, Yang Y, Mattson M. Brain regional synchronous activity predicts tauopathy in 3×TgAD mice. Neurobiol Aging. 2018;70:160-169 pubmed 出版商
  124. Quaranta V, Rainer C, Nielsen S, Raymant M, Ahmed M, Engle D, et al. Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer. Cancer Res. 2018;78:4253-4269 pubmed 出版商
  125. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  126. Li H, Ren Y, Mao K, Hua F, Yang Y, Wei N, et al. FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signaling. Biochem Biophys Res Commun. 2018;498:234-239 pubmed 出版商
  127. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  128. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  129. Cramer P, Gentzel R, Tanis K, Vardigan J, Wang Y, Connolly B, et al. Aging African green monkeys manifest transcriptional, pathological, and cognitive hallmarks of human Alzheimer's disease. Neurobiol Aging. 2018;64:92-106 pubmed 出版商
  130. Brici D, G tz J, Nisbet R. A Novel Antibody Targeting Tau Phosphorylated at Serine 235 Detects Neurofibrillary Tangles. J Alzheimers Dis. 2018;61:899-905 pubmed 出版商
  131. Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, et al. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res. 2018;46:1412-1423 pubmed 出版商
  132. Ercan E, Eid S, Weber C, Kowalski A, Bichmann M, Behrendt A, et al. A validated antibody panel for the characterization of tau post-translational modifications. Mol Neurodegener. 2017;12:87 pubmed 出版商
  133. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  134. Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods. 2017;451:90-99 pubmed 出版商
  135. Qu X, Yuan F, Corona C, Pasini S, Pero M, Gundersen G, et al. Stabilization of dynamic microtubules by mDia1 drives Tau-dependent Aβ1-42 synaptotoxicity. J Cell Biol. 2017;216:3161-3178 pubmed 出版商
  136. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  137. Siedlak S, Jiang Y, Huntley M, Wang L, Gao J, Xie F, et al. TMEM230 Accumulation in Granulovacuolar Degeneration Bodies and Dystrophic Neurites of Alzheimer's Disease. J Alzheimers Dis. 2017;58:1027-1033 pubmed 出版商
  138. Nobuhara C, DeVos S, Commins C, Wegmann S, Moore B, Roe A, et al. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro. Am J Pathol. 2017;187:1399-1412 pubmed 出版商
  139. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  140. Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res. 2017;42:2326-2335 pubmed 出版商
  141. Maphis N, Jiang S, Binder J, Wright C, Gopalan B, Lamb B, et al. Whole Genome Expression Analysis in a Mouse Model of Tauopathy Identifies MECP2 as a Possible Regulator of Tau Pathology. Front Mol Neurosci. 2017;10:69 pubmed 出版商
  142. Wu X, Kosaraju J, Tam K. SLM, a novel carbazole-based fluorophore attenuates okadaic acid-induced tau hyperphosphorylation via down-regulating GSK-3? activity in SH-SY5Y cells. Eur J Pharm Sci. 2017;110:101-108 pubmed 出版商
  143. Zhang Z, Obianyo O, Dall E, Du Y, Fu H, Liu X, et al. Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer's disease. Nat Commun. 2017;8:14740 pubmed 出版商
  144. Croft C, Wade M, Kurbatskaya K, Mastrandreas P, Hughes M, Phillips E, et al. Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures. Cell Death Dis. 2017;8:e2671 pubmed 出版商
  145. Loss O, Stephenson F. Developmental changes in trak-mediated mitochondrial transport in neurons. Mol Cell Neurosci. 2017;80:134-147 pubmed 出版商
  146. Trzeciakiewicz H, Tseng J, Wander C, Madden V, Tripathy A, Yuan C, et al. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy. Sci Rep. 2017;7:44102 pubmed 出版商
  147. Li Y, Li Z, Jin T, Wang Z, Zhao P. Tau Pathology Promotes the Reorganization of the Extracellular Matrix and Inhibits the Formation of Perineuronal Nets by Regulating the Expression and the Distribution of Hyaluronic Acid Synthases. J Alzheimers Dis. 2017;57:395-409 pubmed 出版商
  148. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  149. He X, Li Z, Rizak J, Wu S, Wang Z, He R, et al. Resveratrol Attenuates Formaldehyde Induced Hyperphosphorylation of Tau Protein and Cytotoxicity in N2a Cells. Front Neurosci. 2016;10:598 pubmed 出版商
  150. Bodea L, Evans H, Van der Jeugd A, Ittner L, Delerue F, Kril J, et al. Accelerated aging exacerbates a pre-existing pathology in a tau transgenic mouse model. Aging Cell. 2017;16:377-386 pubmed 出版商
  151. Fu H, Rodriguez G, Herman M, Emrani S, Nahmani E, Barrett G, et al. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease. Neuron. 2017;93:533-541.e5 pubmed 出版商
  152. Shin S, Kim J, Lee J, Son Y, Lee M, Kim H, et al. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med. 2017;49:e287 pubmed 出版商
  153. Wang P, Joberty G, Buist A, Vanoosthuyse A, Stancu I, Vasconcelos B, et al. Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol. 2017;133:731-749 pubmed 出版商
  154. Takahashi H, Klein Z, Bhagat S, Kaufman A, Kostylev M, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133:785-807 pubmed 出版商
  155. Rodriguez Callejas J, Fuchs E, Perez Cruz C. Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset. Front Aging Neurosci. 2016;8:315 pubmed 出版商
  156. Yoshida K, Hata Y, Kinoshita K, Takashima S, Tanaka K, Nishida N. Incipient progressive supranuclear palsy is more common than expected and may comprise clinicopathological subtypes: a forensic autopsy series. Acta Neuropathol. 2017;133:809-823 pubmed 出版商
  157. Stepanov V, Svedberg M, Jia Z, Krasikova R, Lemoine L, Okamura N, et al. Development of [11C]/[3H]THK-5351 - A potential novel carbon-11 tau imaging PET radioligand. Nucl Med Biol. 2017;46:50-53 pubmed 出版商
  158. van der Zee J, Gijselinck I, Van Mossevelde S, Perrone F, Dillen L, Heeman B, et al. TBK1 Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Hum Mutat. 2017;38:297-309 pubmed 出版商
  159. Hwang A, Trzeciakiewicz H, Friedmann D, Yuan C, Marmorstein R, Lee V, et al. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members. PLoS ONE. 2016;11:e0168913 pubmed 出版商
  160. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  161. Atasoy İ, Dursun E, Gezen Ak D, Metin Armağan D, Ozturk M, Yilmazer S. Both secreted and the cellular levels of BDNF attenuated due to tau hyperphosphorylation in primary cultures of cortical neurons. J Chem Neuroanat. 2017;80:19-26 pubmed 出版商
  162. Lipton S, Rezaie T, Nutter A, Lopez K, Parker J, Kosaka K, et al. Therapeutic advantage of pro-electrophilic drugs to activate the Nrf2/ARE pathway in Alzheimer's disease models. Cell Death Dis. 2016;7:e2499 pubmed 出版商
  163. Shively S, Edgerton S, Iacono D, Purohit D, Qu B, Haroutunian V, et al. Localized cortical chronic traumatic encephalopathy pathology after single, severe axonal injury in human brain. Acta Neuropathol. 2017;133:353-366 pubmed 出版商
  164. López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, et al. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation. 2016;13:295 pubmed
  165. Yang S, Lee D, Shin J, Lee S, Baek S, Kim J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med. 2017;9:61-77 pubmed 出版商
  166. Noy S, Krawitz S, Del Bigio M. Chronic Traumatic Encephalopathy-Like Abnormalities in a Routine Neuropathology Service. J Neuropathol Exp Neurol. 2016;75:1145-1154 pubmed 出版商
  167. Dengler Crish C, Smith M, Wilson G. Early Evidence of Low Bone Density and Decreased Serotonergic Synthesis in the Dorsal Raphe of a Tauopathy Model of Alzheimer's Disease. J Alzheimers Dis. 2017;55:1605-1619 pubmed 出版商
  168. Rueli R, Torres D, Dewing A, Kiyohara A, Barayuga S, Bellinger M, et al. Selenoprotein S Reduces Endoplasmic Reticulum Stress-Induced Phosphorylation of Tau: Potential Role in Selenate Mitigation of Tau Pathology. J Alzheimers Dis. 2017;55:749-762 pubmed
  169. Ling H, Kovacs G, Vonsattel J, DAVEY K, Mok K, Hardy J, et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain. 2016;139:3237-3252 pubmed
  170. Jan A, Jansonius B, Delaidelli A, Somasekharan S, Bhanshali F, Vandal M, et al. eEF2K inhibition blocks Aβ42 neurotoxicity by promoting an NRF2 antioxidant response. Acta Neuropathol. 2017;133:101-119 pubmed 出版商
  171. Van Hummel A, Bi M, Ippati S, van der Hoven J, Volkerling A, Lee W, et al. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS ONE. 2016;11:e0163236 pubmed 出版商
  172. Sun W, Lee S, Huang X, Liu S, Inayathullah M, Kim K, et al. Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer's disease treatment. Sci Rep. 2016;6:34784 pubmed 出版商
  173. Sadick J, Boutin M, Hoffman Kim D, Darling E. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep. 2016;6:33999 pubmed 出版商
  174. Soo Hoo L, Banna C, Radeke C, Sharma N, Albertolle M, Low S, et al. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons. PLoS ONE. 2016;11:e0163671 pubmed 出版商
  175. Mansuroglu Z, Benhelli Mokrani H, Marcato V, Sultan A, Violet M, Chauderlier A, et al. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci Rep. 2016;6:33047 pubmed 出版商
  176. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger M, et al. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. J Immunol. 2016;197:3281-3292 pubmed
  177. Yoshitake J, Soeda Y, Ida T, Sumioka A, Yoshikawa M, Matsushita K, et al. Modification of Tau by 8-Nitroguanosine 3',5'-Cyclic Monophosphate (8-Nitro-cGMP): EFFECTS OF NITRIC OXIDE-LINKED CHEMICAL MODIFICATION ON TAU AGGREGATION. J Biol Chem. 2016;291:22714-22720 pubmed
  178. Schmidt A, Kannan P, Chougnet C, Danzer S, Miller L, Jobe A, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13:238 pubmed 出版商
  179. Begum A, Aguilar J, Elias L, Hong Y. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology. 2016;57:45-53 pubmed 出版商
  180. Zimova I, Brezovakova V, Hromádka T, Weisová P, Cubinkova V, Valachova B, et al. Human Truncated Tau Induces Mature Neurofibrillary Pathology in a Mouse Model of Human Tauopathy. J Alzheimers Dis. 2016;54:831-43 pubmed 出版商
  181. Steffen J, Krohn M, Paarmann K, Schwitlick C, Brüning T, Marreiros R, et al. Revisiting rodent models: Octodon degus as Alzheimer's disease model?. Acta Neuropathol Commun. 2016;4:91 pubmed 出版商
  182. Fujita K, Motoki K, Tagawa K, Chen X, Hama H, Nakajima K, et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep. 2016;6:31895 pubmed 出版商
  183. Dinkins M, Enasko J, Hernandez C, Wang G, Kong J, Helwa I, et al. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse. J Neurosci. 2016;36:8653-67 pubmed 出版商
  184. McAteer K, Corrigan F, Thornton E, Turner R, Vink R. Short and Long Term Behavioral and Pathological Changes in a Novel Rodent Model of Repetitive Mild Traumatic Brain Injury. PLoS ONE. 2016;11:e0160220 pubmed 出版商
  185. di Meco A, Li J, Blass B, Abou Gharbia M, Lauretti E, Praticò D. 12/15-Lipoxygenase Inhibition Reverses Cognitive Impairment, Brain Amyloidosis, and Tau Pathology by Stimulating Autophagy in Aged Triple Transgenic Mice. Biol Psychiatry. 2017;81:92-100 pubmed 出版商
  186. Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Mol Med. 2016;8:1005-18 pubmed 出版商
  187. Kim H, Lee K, Kim A, Choi M, Choi K, Kang M, et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 2016;9:839-48 pubmed 出版商
  188. Zhao Y, Song J, Ma X, Zhang B, Li D, Pang H. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res. 2016;11:944-50 pubmed 出版商
  189. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  190. Ayyadevara S, Balasubramaniam M, Parcon P, Barger S, Griffin W, Alla R, et al. Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer's hippocampus from normal controls. Aging Cell. 2016;15:924-39 pubmed 出版商
  191. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  192. CARTAGENA C, Mountney A, Hwang H, Swiercz A, Rammelkamp Z, Boutte A, et al. Subacute Changes in Cleavage Processing of Amyloid Precursor Protein and Tau following Penetrating Traumatic Brain Injury. PLoS ONE. 2016;11:e0158576 pubmed 出版商
  193. Pajares M, Jiménez Moreno N, García Yagüe A, Escoll M, De Ceballos M, Van Leuven F, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12:1902-1916 pubmed
  194. Manassero G, Guglielmotto M, Zamfir R, Borghi R, Colombo L, Salmona M, et al. Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein. Aging Cell. 2016;15:914-23 pubmed 出版商
  195. Chen X, Wagener J, Ghribi O, Geiger J. Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Front Aging Neurosci. 2016;8:129 pubmed 出版商
  196. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  197. Gelpi E, Hoftberger R, Graus F, Ling H, Holton J, Dawson T, et al. Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol. 2016;132:531-43 pubmed 出版商
  198. Sohn P, Tracy T, Son H, Zhou Y, Leite R, Miller B, et al. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol Neurodegener. 2016;11:47 pubmed 出版商
  199. Takeda S, Commins C, DeVos S, Nobuhara C, Wegmann S, Roe A, et al. Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients. Ann Neurol. 2016;80:355-67 pubmed 出版商
  200. Adams S, Tilton K, Kozubek J, Seshadri S, Delalle I. Subcellular Changes in Bridging Integrator 1 Protein Expression in the Cerebral Cortex During the Progression of Alzheimer Disease Pathology. J Neuropathol Exp Neurol. 2016;75:779-790 pubmed
  201. Fernández Nogales M, Santos Galindo M, Merchán Rubira J, Hoozemans J, Rábano A, Ferrer I, et al. Tau-positive nuclear indentations in P301S tauopathy mice. Brain Pathol. 2017;27:314-322 pubmed 出版商
  202. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  203. Kolisnyk B, Al Onaizi M, Soreq L, Barbash S, Bekenstein U, Haberman N, et al. Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology. Cereb Cortex. 2017;27:3553-3567 pubmed 出版商
  204. Herring A, Münster Y, Metzdorf J, Bolczek B, Krüssel S, Krieter D, et al. Late running is not too late against Alzheimer's pathology. Neurobiol Dis. 2016;94:44-54 pubmed 出版商
  205. Shively S, Horkayne Szakaly I, Jones R, Kelly J, Armstrong R, Perl D. Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol. 2016;15:944-953 pubmed 出版商
  206. Ando K, Tomimura K, Sazdovitch V, Suain V, Yilmaz Z, Authelet M, et al. Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease. Neurobiol Dis. 2016;94:32-43 pubmed 出版商
  207. Wang H, Wang R, Carrera I, Xu S, Lakshmana M. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. Eneuro. 2016;3: pubmed 出版商
  208. Makioka K, Yamazaki T, Takatama M, Ikeda M, Murayama S, Okamoto K, et al. Immunolocalization of Tom1 in relation to protein degradation systems in Alzheimer's disease. J Neurol Sci. 2016;365:101-7 pubmed 出版商
  209. Geiszler P, Barron M, Pardon M. Impaired burrowing is the most prominent behavioral deficit of aging htau mice. Neuroscience. 2016;329:98-111 pubmed 出版商
  210. Dourlen P, Fernandez Gomez F, Dupont C, Grenier Boley B, Bellenguez C, Obriot H, et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry. 2017;22:874-883 pubmed 出版商
  211. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  212. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  213. Yetman M, Fowler S, Jankowsky J. Humanized Tau Mice with Regionalized Amyloid Exhibit Behavioral Deficits but No Pathological Interaction. PLoS ONE. 2016;11:e0153724 pubmed 出版商
  214. Yan X, Nykänen N, Brunello C, Haapasalo A, Hiltunen M, Uronen R, et al. FRMD4A-cytohesin signaling modulates the cellular release of tau. J Cell Sci. 2016;129:2003-15 pubmed 出版商
  215. Kawakami I, Kobayashi Z, Arai T, Yokota O, Nonaka T, Aoki N, et al. Chorea as a clinical feature of the basophilic inclusion body disease subtype of fused-in-sarcoma-associated frontotemporal lobar degeneration. Acta Neuropathol Commun. 2016;4:36 pubmed 出版商
  216. Baker S, Götz J. A local insult of okadaic acid in wild-type mice induces tau phosphorylation and protein aggregation in anatomically distinct brain regions. Acta Neuropathol Commun. 2016;4:32 pubmed 出版商
  217. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  218. Polanco J, Scicluna B, Hill A, Götz J. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner. J Biol Chem. 2016;291:12445-66 pubmed 出版商
  219. Ando K, Maruko Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima K. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity. PLoS Genet. 2016;12:e1005917 pubmed 出版商
  220. Yadav P, Selvaraj B, Bender F, Behringer M, Moradi M, Sivadasan R, et al. Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling. Acta Neuropathol. 2016;132:93-110 pubmed 出版商
  221. Connell J, Allison R, Reid E. Quantitative Gait Analysis Using a Motorized Treadmill System Sensitively Detects Motor Abnormalities in Mice Expressing ATPase Defective Spastin. PLoS ONE. 2016;11:e0152413 pubmed 出版商
  222. Griñan Ferré C, Sarroca S, Ivanova A, Puigoriol Illamola D, Aguado F, Camins A, et al. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging (Albany NY). 2016;8:664-84 pubmed 出版商
  223. Chanu S, Sarkar S. Targeted Downregulation of dMyc Suppresses Pathogenesis of Human Neuronal Tauopathies in Drosophila by Limiting Heterochromatin Relaxation and Tau Hyperphosphorylation. Mol Neurobiol. 2017;54:2706-2719 pubmed 出版商
  224. Ortuno D, Carlisle H, Miller S. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?. F1000Res. 2016;5:137 pubmed 出版商
  225. Merlini M, Wanner D, Nitsch R. Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer's disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol. 2016;131:737-52 pubmed 出版商
  226. Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed 出版商
  227. Gorsky M, Burnouf S, Dols J, Mandelkow E, Partridge L. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo. Sci Rep. 2016;6:22685 pubmed 出版商
  228. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  229. Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016;4:22 pubmed 出版商
  230. Maeda S, Djukic B, Taneja P, Yu G, Lo I, Davis A, et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 2016;17:530-51 pubmed 出版商
  231. Perez S, Sherwood C, Cranfield M, Erwin J, Mudakikwa A, Hof P, et al. Early Alzheimer's disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei). Neurobiol Aging. 2016;39:195-201 pubmed 出版商
  232. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  233. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  234. Mariano M, Hartmann R, Engel M. Systematic diversification of benzylidene heterocycles yields novel inhibitor scaffolds selective for Dyrk1A, Clk1 and CK2. Eur J Med Chem. 2016;112:209-216 pubmed 出版商
  235. Stern R, Tripodis Y, Baugh C, Fritts N, Martin B, Chaisson C, et al. Preliminary Study of Plasma Exosomal Tau as a Potential Biomarker for Chronic Traumatic Encephalopathy. J Alzheimers Dis. 2016;51:1099-109 pubmed 出版商
  236. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  237. Garcia Ratés S, Morrill P, Tu H, Pottiez G, Badin A, Tormo Garcia C, et al. (I) Pharmacological profiling of a novel modulator of the α7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains. Neuropharmacology. 2016;105:487-499 pubmed 出版商
  238. Winston C, Noël A, Neustadtl A, Parsadanian M, Barton D, Chellappa D, et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. Am J Pathol. 2016;186:552-67 pubmed 出版商
  239. Ahn M, Kalume F, Pitstick R, Oehler A, Carlson G, Dearmond S. Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases. J Neuropathol Exp Neurol. 2016;75:256-62 pubmed 出版商
  240. Van der Jeugd A, Vermaercke B, Halliday G, Staufenbiel M, Götz J. Impulsivity, decreased social exploration, and executive dysfunction in a mouse model of frontotemporal dementia. Neurobiol Learn Mem. 2016;130:34-43 pubmed 出版商
  241. Gentry E, Henderson B, Arrant A, Gearing M, Feng Y, Riddle N, et al. Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration. J Neurosci. 2016;36:1316-23 pubmed 出版商
  242. Jiang T, Zhang Y, Chen Q, Gao Q, Zhu X, Zhou J, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196-206 pubmed 出版商
  243. Peng Y, Kim M, Hullinger R, O Riordan K, Burger C, Pehar M, et al. Improved proteostasis in the secretory pathway rescues Alzheimer's disease in the mouse. Brain. 2016;139:937-52 pubmed 出版商
  244. Piedrahita D, Castro Álvarez J, Boudreau R, Villegas Lanau A, Kosik K, Gallego Gómez J, et al. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci. 2015;9:498 pubmed 出版商
  245. El Khoury N, Gratuze M, Petry F, Papon M, Julien C, Marcouiller F, et al. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice. Neurobiol Dis. 2016;88:55-65 pubmed 出版商
  246. Liu H, Shi H, Huang F, Peterson K, Wu H, Lan Y, et al. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway. Sci Rep. 2016;6:19137 pubmed 出版商
  247. Rosenberger A, Morrema T, Gerritsen W, van Haastert E, Snkhchyan H, Hilhorst R, et al. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer's disease pathology. J Neuroinflammation. 2016;13:4 pubmed 出版商
  248. Sandoval Hernández A, Buitrago L, Moreno H, Cardona Gómez G, Arboleda G. Role of Liver X Receptor in AD Pathophysiology. PLoS ONE. 2015;10:e0145467 pubmed 出版商
  249. Platt T, Beckett T, Kohler K, Niedowicz D, Murphy M. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162-74 pubmed 出版商
  250. Myeku N, CLELLAND C, Emrani S, Kukushkin N, Yu W, Goldberg A, et al. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med. 2016;22:46-53 pubmed 出版商
  251. Kailainathan S, Piers T, Yi J, Choi S, Fahey M, Borger E, et al. Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF). Pharmacol Res. 2016;104:97-107 pubmed 出版商
  252. Nagamine S, Yamazaki T, Makioka K, Fujita Y, Ikeda M, Takatama M, et al. Hypersialylation is a common feature of neurofibrillary tangles and granulovacuolar degenerations in Alzheimer's disease and tauopathy brains. Neuropathology. 2016;36:333-45 pubmed 出版商
  253. Müller Schiffmann A, Herring A, Abdel Hafiz L, Chepkova A, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509-25 pubmed 出版商
  254. Chambers J, Tokuda T, Uchida K, Ishii R, Tatebe H, Takahashi E, et al. The domestic cat as a natural animal model of Alzheimer's disease. Acta Neuropathol Commun. 2015;3:78 pubmed 出版商
  255. Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed 出版商
  256. Watanabe K, Uemura K, Asada M, Maesako M, Akiyama H, Shimohama S, et al. The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease. Mol Brain. 2015;8:82 pubmed 出版商
  257. Gyoneva S, Kim D, Katsumoto A, Kokiko Cochran O, Lamb B, Ransohoff R. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J Neuroinflammation. 2015;12:228 pubmed 出版商
  258. Hromadkova L, Kolarova M, Jankovicova B, Bartos A, Ricny J, Bilkova Z, et al. Identification and characterization of natural antibodies against tau protein in an intravenous immunoglobulin product. J Neuroimmunol. 2015;289:121-9 pubmed 出版商
  259. Pamphlett R, Kum Jew S. Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury. Biometals. 2016;29:171-5 pubmed 出版商
  260. Elahi M, Motoi Y, Matsumoto S, Hasan Z, Ishiguro K, Hattori N. Short-term treadmill exercise increased tau insolubility and neuroinflammation in tauopathy model mice. Neurosci Lett. 2016;610:207-12 pubmed 出版商
  261. Puvenna V, Engeler M, Banjara M, Brennan C, Schreiber P, Dadas A, et al. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res. 2016;1630:225-40 pubmed 出版商
  262. Grant N, Coates P, Woods Y, Bray S, Morrice N, Hastie C, et al. Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis. BMC Cancer. 2015;15:885 pubmed 出版商
  263. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  264. Taniguchi Watanabe S, Arai T, Kametani F, Nonaka T, Masuda Suzukake M, Tarutani A, et al. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 2016;131:267-280 pubmed 出版商
  265. Wang Y, Zhang Y, Hu W, Xie S, Gong C, Iqbal K, et al. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation. Sci Rep. 2015;5:15709 pubmed 出版商
  266. Chauhan S, Ahmed Z, Bradfute S, Arko Mensah J, Mandell M, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun. 2015;6:8620 pubmed 出版商
  267. Yamada K, Patel T, Hochgräfe K, Mahan T, Jiang H, Stewart F, et al. Analysis of in vivo turnover of tau in a mouse model of tauopathy. Mol Neurodegener. 2015;10:55 pubmed 出版商
  268. Nishikawa T, Takahashi T, Nakamori M, Hosomi N, Maruyama H, Miyazaki Y, et al. The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments. Neuropathol Appl Neurobiol. 2016;42:639-653 pubmed 出版商
  269. Takeda S, Wegmann S, Cho H, DeVos S, Commins C, Roe A, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun. 2015;6:8490 pubmed 出版商
  270. Radford H, Moreno J, Verity N, Halliday M, Mallucci G. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 2015;130:633-42 pubmed 出版商
  271. Wagner J, Krauss S, Shi S, Ryazanov S, Steffen J, Miklitz C, et al. Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies. Acta Neuropathol. 2015;130:619-31 pubmed 出版商
  272. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci. 2015;18:1584-93 pubmed 出版商
  273. Watamura N, Toba J, Yoshii A, Nikkuni M, Ohshima T. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res. 2016;94:15-26 pubmed 出版商
  274. Min S, Chen X, Tracy T, Li Y, Zhou Y, Wang C, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med. 2015;21:1154-62 pubmed 出版商
  275. Violet M, Chauderlier A, Delattre L, Tardivel M, Chouala M, Sultan A, et al. Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo. Neurobiol Dis. 2015;82:540-551 pubmed 出版商
  276. Smith P, Hernandez Rapp J, Jolivette F, Lecours C, Bisht K, Goupil C, et al. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet. 2015;24:6721-35 pubmed 出版商
  277. Richter M, Mewes A, Fritsch M, Krügel U, Hoffmann R, Singer D. Doubly Phosphorylated Peptide Vaccines to Protect Transgenic P301S Mice against Alzheimer's Disease Like Tau Aggregation. Vaccines (Basel). 2014;2:601-23 pubmed 出版商
  278. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  279. Bullmann T, Seeger G, Stieler J, Hanics J, Reimann K, Kretzschmann T, et al. Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters. Hippocampus. 2016;26:301-18 pubmed 出版商
  280. Montine T, Monsell S, Beach T, Bigio E, Bu Y, Cairns N, et al. Multisite assessment of NIA-AA guidelines for the neuropathologic evaluation of Alzheimer's disease. Alzheimers Dement. 2016;12:164-169 pubmed 出版商
  281. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  282. Du L, Chang L, Ardiles A, Tapia Rojas C, Araya J, Inestrosa N, et al. Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus. PLoS ONE. 2015;10:e0135499 pubmed 出版商
  283. Smolek T, Madari A, Farbáková J, Kandrac O, Jadhav S, Cente M, et al. Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol. 2016;524:874-95 pubmed 出版商
  284. Rábano A, Cuadros R, Merino Serráis P, Rodal I, Benavides Piccione R, Gómez E, et al. Protocols for Monitoring the Development of Tau Pathology in Alzheimer's Disease. Methods Mol Biol. 2016;1303:143-60 pubmed 出版商
  285. Ohnishi T, Yanazawa M, Sasahara T, Kitamura Y, Hiroaki H, Fukazawa Y, et al. Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly. Proc Natl Acad Sci U S A. 2015;112:E4465-74 pubmed 出版商
  286. Lauretti E, Praticò D. Glucose deprivation increases tau phosphorylation via P38 mitogen-activated protein kinase. Aging Cell. 2015;14:1067-74 pubmed 出版商
  287. de Paula C, Santiago F, de Oliveira A, Oliveira F, Almeida M, Carrettiero D. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells. Cell Mol Neurobiol. 2016;36:593-602 pubmed 出版商
  288. Chesser A, Ganeshan V, Yang J, Johnson G. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci. 2016;19:21-31 pubmed 出版商
  289. Rüben K, Wurzlbauer A, Walte A, Sippl W, Bracher F, Becker W. Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors. PLoS ONE. 2015;10:e0132453 pubmed 出版商
  290. Zeineh M, Chen Y, Kitzler H, Hammond R, Vogel H, Rutt B. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging. 2015;36:2483-500 pubmed 出版商
  291. Kim J, Kim S, Lee Y. Fas-associated factor 1 promotes in neurofibrillary tangle-mediated cell death of basal forebrain cholinergic neurons in P301L transgenic mice. Neuroreport. 2015;26:767-72 pubmed 出版商
  292. Ziskin J, Greicius M, Zhu W, Okumu A, Adams C, Plowey E. Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia. Acta Neuropathol Commun. 2015;3:43 pubmed 出版商
  293. Hamm M, Bailey R, Shaw G, Yen S, Lewis J, Giasson B. Physiologically relevant factors influence tau phosphorylation by leucine-rich repeat kinase 2. J Neurosci Res. 2015;93:1567-80 pubmed 出版商
  294. Sun L, Ban T, Liu C, Chen Q, Wang X, Yan M, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation. J Neurochem. 2015;134:1139-51 pubmed 出版商
  295. Di Meco A, Joshi Y, Lauretti E, Praticò D. Maternal dexamethasone exposure ameliorates cognition and tau pathology in the offspring of triple transgenic AD mice. Mol Psychiatry. 2016;21:403-10 pubmed 出版商
  296. Iacono D, Geraci Erck M, Peng H, Rabin M, Kurlan R. Reduced Number of Pigmented Neurons in the Substantia Nigra of Dystonia Patients? Findings from Extensive Neuropathologic, Immunohistochemistry, and Quantitative Analyses. Tremor Other Hyperkinet Mov (N Y). 2015;5: pubmed 出版商
  297. Sheik Mohideen S, Yamasaki Y, Omata Y, Tsuda L, Yoshiike Y. Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies. Sci Rep. 2015;5:10821 pubmed 出版商
  298. Petrov D, Pedrós I, Artiach G, Sureda F, Barroso E, Pallas M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta. 2015;1852:1687-99 pubmed 出版商
  299. Wang D, Kinoshita Y, Kinoshita C, Uo T, Sopher B, Cudaback E, et al. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 2015;138:2005-19 pubmed 出版商
  300. De Zio D, Molinari F, Rizza S, Gatta L, Ciotti M, Salvatore A, et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci. 2015;72:4173-91 pubmed 出版商
  301. Sankaranarayanan S, Barten D, Vana L, Devidze N, Yang L, Cadelina G, et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE. 2015;10:e0125614 pubmed 出版商
  302. Loeffler D, Smith L, Klaver A, Martić S. Effects of antibodies to phosphorylated and non-phosphorylated tau on in vitro tau phosphorylation at Serine-199: Preliminary report. Exp Gerontol. 2015;67:15-8 pubmed 出版商
  303. Song L, Lu S, Ouyang X, Melchor J, Lee J, Terracina G, et al. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology. Mol Neurodegener. 2015;10:14 pubmed 出版商
  304. Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719 pubmed 出版商
  305. Kan M, Lee J, Wilson J, Everhart A, Brown C, Hoofnagle A, et al. Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease. J Neurosci. 2015;35:5969-82 pubmed 出版商
  306. Corbel C, Zhang B, Le Parc A, Baratte B, Colas P, Couturier C, et al. Tamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation. Chem Biol. 2015;22:472-482 pubmed 出版商
  307. Gassen N, Hartmann J, Zannas A, Kretzschmar A, Zschocke J, Maccarrone G, et al. FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications. Mol Psychiatry. 2016;21:277-89 pubmed 出版商
  308. Sepúlveda Díaz J, Alavi Naini S, Huynh M, Ouidja M, Yanicostas C, Chantepie S, et al. HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tau pathology. Brain. 2015;138:1339-54 pubmed 出版商
  309. Maphis N, Xu G, Kokiko Cochran O, Jiang S, Cardona A, Ransohoff R, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain. 2015;138:1738-55 pubmed 出版商
  310. Erro Aguirre M, Zelaya M, Sánchez Ruiz de Gordoa J, Tuñón M, Lanciego J. Midbrain catecholaminergic neurons co-express α-synuclein and tau in progressive supranuclear palsy. Front Neuroanat. 2015;9:25 pubmed 出版商
  311. Takeuchi R, Toyoshima Y, Tada M, Tanaka H, Shimizu H, Shiga A, et al. Globular Glial Mixed Four Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia. Brain Pathol. 2016;26:82-94 pubmed 出版商
  312. Aubry S, Shin W, Crary J, Lefort R, Qureshi Y, Lefebvre C, et al. Assembly and interrogation of Alzheimer's disease genetic networks reveal novel regulators of progression. PLoS ONE. 2015;10:e0120352 pubmed 出版商
  313. Filipcik P, Cente M, Zilka N, Smolek T, Hanes J, Kučerák J, et al. Intraneuronal accumulation of misfolded tau protein induces overexpression of Hsp27 in activated astrocytes. Biochim Biophys Acta. 2015;1852:1219-29 pubmed 出版商
  314. Li R, Xu D, Ma T. Lovastatin suppresses the aberrant tau phosphorylation from FTDP-17 mutation and okadaic acid-induction in rat primary neurons. Neuroscience. 2015;294:14-20 pubmed 出版商
  315. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  316. Tapia Rojas C, Aranguiz F, Varela Nallar L, Inestrosa N. Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer's Disease. Brain Pathol. 2016;26:62-74 pubmed 出版商
  317. Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model. Sci Transl Med. 2015;7:278ra33 pubmed 出版商
  318. Collins J, King A, Woodhouse A, Kirkcaldie M, Vickers J. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease. Exp Neurol. 2015;267:219-29 pubmed 出版商
  319. Garza Manero S, Arias C, Bermúdez Rattoni F, Vaca L, Zepeda A. Identification of age- and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease. Front Cell Neurosci. 2015;9:53 pubmed 出版商
  320. Jay T, Miller C, Cheng P, Graham L, Bemiller S, Broihier M, et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J Exp Med. 2015;212:287-95 pubmed 出版商
  321. Falke H, Chaikuad A, Becker A, Loaëc N, Lozach O, Abu Jhaisha S, et al. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. J Med Chem. 2015;58:3131-43 pubmed 出版商
  322. Reis R, Hennessy E, Murray C, Griffin Ã, Cunningham C. At the centre of neuronal, synaptic and axonal pathology in murine prion disease: degeneration of neuroanatomically linked thalamic and brainstem nuclei. Neuropathol Appl Neurobiol. 2015;41:780-97 pubmed 出版商
  323. Kaufman A, Salazar S, Haas L, Yang J, Kostylev M, Jeng A, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953-71 pubmed 出版商
  324. Carret Rebillat A, Pace C, Gourmaud S, Ravasi L, Montagne Stora S, Longueville S, et al. Neuroinflammation and Aβ accumulation linked to systemic inflammation are decreased by genetic PKR down-regulation. Sci Rep. 2015;5:8489 pubmed 出版商
  325. Bennett R, Brody D. Array tomography for the detection of non-dilated, injured axons in traumatic brain injury. J Neurosci Methods. 2015;245:25-36 pubmed 出版商
  326. Xu H, Rösler T, Carlsson T, de Andrade A, Fiala O, Höllerhage M, et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther. 2014;14:343-51 pubmed
  327. Sabogal Guáqueta A, Muñoz Manco J, Ramírez Pineda J, Lamprea Rodriguez M, Osorio E, Cardona Gómez G. The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice. Neuropharmacology. 2015;93:134-45 pubmed 出版商
  328. Porquet D, Andrés Benito P, Griñán Ferré C, Camins A, Ferrer I, Canudas A, et al. Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordr). 2015;37:9747 pubmed 出版商
  329. Wu Z, Yang B, Liu C, Liang G, Eckenhoff M, Liu W, et al. Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer Dis Assoc Disord. 2015;29:184-191 pubmed 出版商
  330. Zhang J, Tan H, Jiang W, Zuo Z. The choice of general anesthetics may not affect neuroinflammation and impairment of learning and memory after surgery in elderly rats. J Neuroimmune Pharmacol. 2015;10:179-89 pubmed 出版商
  331. Spilsbury A, Miwa S, Attems J, Saretzki G. The role of telomerase protein TERT in Alzheimer's disease and in tau-related pathology in vitro. J Neurosci. 2015;35:1659-74 pubmed 出版商
  332. Apostolova L, Zarow C, Biado K, Hurtz S, Boccardi M, Somme J, et al. Relationship between hippocampal atrophy and neuropathology markers: a 7T MRI validation study of the EADC-ADNI Harmonized Hippocampal Segmentation Protocol. Alzheimers Dement. 2015;11:139-50 pubmed 出版商
  333. Tian H, Davidowitz E, Lopez P, He P, Schulz P, Moe J, et al. Isolation and characterization of antibody fragments selective for toxic oligomeric tau. Neurobiol Aging. 2015;36:1342-55 pubmed 出版商
  334. Yang Y, Shepherd C, Halliday G. Aneuploidy in Lewy body diseases. Neurobiol Aging. 2015;36:1253-60 pubmed 出版商
  335. Petraglia A, Plog B, Dayawansa S, Dashnaw M, Czerniecka K, Walker C, et al. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int. 2014;5:184 pubmed 出版商
  336. Mouton Liger F, Rebillat A, Gourmaud S, Paquet C, Leguen A, Dumurgier J, et al. PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model. Cell Death Dis. 2015;6:e1594 pubmed 出版商
  337. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  338. Postupna N, Keene C, Crane P, Gonzalez Cuyar L, Sonnen J, Hewitt J, et al. Cerebral cortical Aβ42 and PHF-Ï„ in 325 consecutive brain autopsies stratified by diagnosis, location, and APOE. J Neuropathol Exp Neurol. 2015;74:100-9 pubmed 出版商
  339. Sykora P, Misiak M, Wang Y, Ghosh S, Leandro G, Liu D, et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 2015;43:943-59 pubmed 出版商
  340. Serrano F, Tapia Rojas C, Carvajal F, Hancke J, Cerpa W, Inestrosa N. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener. 2014;9:61 pubmed 出版商
  341. Melis V, Zabke C, Stamer K, Magbagbeolu M, Schwab K, Marschall P, et al. Different pathways of molecular pathophysiology underlie cognitive and motor tauopathy phenotypes in transgenic models for Alzheimer's disease and frontotemporal lobar degeneration. Cell Mol Life Sci. 2015;72:2199-222 pubmed 出版商
  342. Denton K, Xu C, Li X. Modeling Axonal Phenotypes with Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1353:309-21 pubmed 出版商
  343. Iliff J, Chen M, Plog B, Zeppenfeld D, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34:16180-93 pubmed 出版商
  344. Lauretti E, di Meco A, Chu J, Praticò D. Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor. Neurobiol Aging. 2015;36:812-20 pubmed 出版商
  345. Hohsfield L, Daschil N, Orädd G, Strömberg I, Humpel C. Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models. Mol Cell Neurosci. 2014;63:83-95 pubmed
  346. Höllerhage M, Deck R, de Andrade A, Respondek G, Xu H, Rösler T, et al. Piericidin A aggravates Tau pathology in P301S transgenic mice. PLoS ONE. 2014;9:e113557 pubmed 出版商
  347. Ohia Nwoko O, Montazari S, Lau Y, Eriksen J. Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener. 2014;9:54 pubmed 出版商
  348. Ryu J, Horkayne Szakaly I, Xu L, Pletnikova O, Leri F, Eberhart C, et al. The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathol Commun. 2014;2:153 pubmed 出版商
  349. Hu X, Li X, Zhao M, Gottesdiener A, Luo W, Paul S. Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. Mol Neurodegener. 2014;9:52 pubmed 出版商
  350. Falcon B, Cavallini A, Angers R, Glover S, Murray T, Barnham L, et al. Conformation determines the seeding potencies of native and recombinant Tau aggregates. J Biol Chem. 2015;290:1049-65 pubmed 出版商
  351. Huang C, Ho Y, Ng O, Irwin M, Chang R, Wong G. Dexmedetomidine directly increases tau phosphorylation. J Alzheimers Dis. 2015;44:839-50 pubmed 出版商
  352. Saidi L, Polydoro M, Kay K, Sanchez L, Mandelkow E, Hyman B, et al. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes. J Alzheimers Dis. 2015;44:937-47 pubmed 出版商
  353. Thomzig A, Wagenführ K, Daus M, Joncic M, Schulz Schaeffer W, Thanheiser M, et al. Decontamination of medical devices from pathological amyloid-?-, tau- and ?-synuclein aggregates. Acta Neuropathol Commun. 2014;2:151 pubmed 出版商
  354. Dammer E, Lee A, Duong D, Gearing M, Lah J, Levey A, et al. Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins. Proteomics. 2015;15:508-519 pubmed 出版商
  355. Castro Alvarez J, Uribe Arias S, Kosik K, Cardona Gómez G. Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer's mice. Front Aging Neurosci. 2014;6:243 pubmed 出版商
  356. Forny Germano L, Lyra e Silva N, Batista A, Brito Moreira J, Gralle M, Boehnke S, et al. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci. 2014;34:13629-43 pubmed 出版商
  357. Å polcová A, Mikulášková B, KrÅ¡ková K, GajdoÅ¡echová L, Zórad Å, Olszanecki R, et al. Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: a study in Zucker rats. BMC Neurosci. 2014;15:111 pubmed 出版商
  358. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer J, Jimenez Sanchez M, et al. PICALM modulates autophagy activity and tau accumulation. Nat Commun. 2014;5:4998 pubmed 出版商
  359. Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188-200 pubmed 出版商
  360. Lee S, Xu G, Jay T, Bhatta S, Kim K, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538-46 pubmed 出版商
  361. Lue L, Schmitz C, Serrano G, Sue L, Beach T, Walker D. TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain Pathol. 2015;25:469-80 pubmed 出版商
  362. Dunn H, Ager R, Baglietto Vargas D, Cheng D, Kitazawa M, Cribbs D, et al. Restoration of lipoxin A4 signaling reduces Alzheimer's disease-like pathology in the 3xTg-AD mouse model. J Alzheimers Dis. 2015;43:893-903 pubmed 出版商
  363. Yarchoan M, Toledo J, Lee E, Arvanitakis Z, Kazi H, Han L, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol. 2014;128:679-89 pubmed 出版商
  364. Collin L, Bohrmann B, Göpfert U, Oroszlan Szovik K, Ozmen L, Grüninger F. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer's disease. Brain. 2014;137:2834-46 pubmed 出版商
  365. Kohler C, Dinekov M, Götz J. Granulovacuolar degeneration and unfolded protein response in mouse models of tauopathy and A? amyloidosis. Neurobiol Dis. 2014;71:169-79 pubmed 出版商
  366. Polito V, Li H, Martini Stoica H, Wang B, Yang L, Xu Y, et al. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med. 2014;6:1142-60 pubmed 出版商
  367. Zhou Y, Hayashi I, Wong J, Tugusheva K, Renger J, Zerbinatti C. Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer's disease. PLoS ONE. 2014;9:e103187 pubmed 出版商
  368. Gheyara A, Ponnusamy R, Djukic B, Craft R, Ho K, Guo W, et al. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann Neurol. 2014;76:443-56 pubmed 出版商
  369. Ittner A, Bertz J, Suh L, Stevens C, Götz J, Ittner L. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem. 2015;132:135-45 pubmed 出版商
  370. Fernández Nogales M, Cabrera J, Santos Galindo M, Hoozemans J, Ferrer I, Rozemuller A, et al. Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nat Med. 2014;20:881-5 pubmed 出版商
  371. Rao M, McBrayer M, Campbell J, Kumar A, Hashim A, Sershen H, et al. Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice. J Neurosci. 2014;34:9222-34 pubmed 出版商
  372. Aldrin Kirk P, Davidsson M, Holmqvist S, Li J, Bjorklund T. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons. PLoS ONE. 2014;9:e100869 pubmed 出版商
  373. Richens J, Vere K, Light R, Soria D, Garibaldi J, Smith A, et al. Practical detection of a definitive biomarker panel for Alzheimer's disease; comparisons between matched plasma and cerebrospinal fluid. Int J Mol Epidemiol Genet. 2014;5:53-70 pubmed
  374. Pedr s I, Petrov D, Allgaier M, Sureda F, Barroso E, Beas Zarate C, et al. Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochim Biophys Acta. 2014;1842:1556-66 pubmed 出版商
  375. Shilling D, Müller M, Takano H, Mak D, Abel T, Coulter D, et al. Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis. J Neurosci. 2014;34:6910-23 pubmed 出版商
  376. Petry F, Pelletier J, Bretteville A, Morin F, Calon F, Hébert S, et al. Specificity of anti-tau antibodies when analyzing mice models of Alzheimer's disease: problems and solutions. PLoS ONE. 2014;9:e94251 pubmed 出版商
  377. Hales C, Seyfried N, Dammer E, Duong D, Yi H, Gearing M, et al. U1 small nuclear ribonucleoproteins (snRNPs) aggregate in Alzheimer's disease due to autosomal dominant genetic mutations and trisomy 21. Mol Neurodegener. 2014;9:15 pubmed 出版商
  378. Maurin H, Lechat B, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3?/?. Eur J Neurosci. 2014;40:2442-53 pubmed 出版商
  379. Liu X, Zhou J, Abid M, Yan H, Huang H, Wan L, et al. Berberine attenuates axonal transport impairment and axonopathy induced by Calyculin A in N2a cells. PLoS ONE. 2014;9:e93974 pubmed 出版商
  380. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  381. Stancu I, Ris L, Vasconcelos B, Marinangeli C, Goeminne L, Laporte V, et al. Tauopathy contributes to synaptic and cognitive deficits in a murine model for Alzheimer's disease. FASEB J. 2014;28:2620-31 pubmed 出版商
  382. Zhang Y, Chen L, Shen G, Zhao Q, Shangguan L, He M. GRK5 dysfunction accelerates tau hyperphosphorylation in APP (swe) mice through impaired cholinergic activity. Neuroreport. 2014;25:542-7 pubmed 出版商
  383. Kim H, Chang K, Ha T, Kim J, Ha S, Shin K, et al. S100A9 knockout decreases the memory impairment and neuropathology in crossbreed mice of Tg2576 and S100A9 knockout mice model. PLoS ONE. 2014;9:e88924 pubmed 出版商
  384. Dujardin S, Lécolle K, Caillierez R, Bégard S, Zommer N, Lachaud C, et al. Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol Commun. 2014;2:14 pubmed 出版商
  385. Bodi I, Curran O, Selway R, Elwes R, Burrone J, Laxton R, et al. Two cases of multinodular and vacuolating neuronal tumour. Acta Neuropathol Commun. 2014;2:7 pubmed 出版商
  386. Xiong Z, Thangavel R, Kempuraj D, Yang E, Zaheer S, Zaheer A. Alzheimer's disease: evidence for the expression of interleukin-33 and its receptor ST2 in the brain. J Alzheimers Dis. 2014;40:297-308 pubmed 出版商
  387. Ridwan S, Bauer H, Frauenknecht K, Hefti K, von Pein H, Sommer C. Distribution of the hematopoietic growth factor G-CSF and its receptor in the adult human brain with specific reference to Alzheimer's disease. J Anat. 2014;224:377-91 pubmed 出版商
  388. Liu C, Götz J. Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS ONE. 2013;8:e84849 pubmed 出版商
  389. Borghgraef P, Menuet C, Theunis C, Louis J, Devijver H, Maurin H, et al. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS ONE. 2013;8:e84442 pubmed 出版商
  390. Notter T, Panzanelli P, PFISTER S, Mircsof D, Fritschy J. A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur J Neurosci. 2014;39:165-75 pubmed 出版商
  391. Medeiros R, Castello N, Cheng D, Kitazawa M, Baglietto Vargas D, Green K, et al. ?7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol. 2014;184:520-9 pubmed 出版商
  392. Wang C, Klechikov A, Gharibyan A, Wärmländer S, Jarvet J, Zhao L, et al. The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade. Acta Neuropathol. 2014;127:507-22 pubmed 出版商
  393. Marchese M, Cowan D, Head E, Ma D, Karimi K, Ashthorpe V, et al. Autoimmune manifestations in the 3xTg-AD model of Alzheimer's disease. J Alzheimers Dis. 2014;39:191-210 pubmed 出版商
  394. Wilson R, Nag S, Boyle P, Hizel L, Yu L, Buchman A, et al. Brainstem aminergic nuclei and late-life depressive symptoms. JAMA Psychiatry. 2013;70:1320-8 pubmed 出版商
  395. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  396. Perez S, Raghanti M, Hof P, Kramer L, Ikonomovic M, Lacor P, et al. Alzheimer's disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol. 2013;521:4318-38 pubmed 出版商
  397. Manich G, del Valle J, Cabezón I, Camins A, Pallas M, Pelegri C, et al. Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice. Age (Dordr). 2014;36:151-65 pubmed 出版商
  398. Ordóñez Gutiérrez L, Torres J, Gavin R, Anton M, Arroba Espinosa A, Espinosa J, et al. Cellular prion protein modulates ?-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging. 2013;34:2793-804 pubmed 出版商
  399. Zhang X, Hernandez I, Rei D, Mair W, Laha J, Cornwell M, et al. Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models. J Biol Chem. 2013;288:22042-56 pubmed 出版商
  400. Maurin H, Seymour C, Lechat B, Borghgraef P, Devijver H, Jaworski T, et al. Tauopathy differentially affects cell adhesion molecules in mouse brain: early down-regulation of nectin-3 in stratum lacunosum moleculare. PLoS ONE. 2013;8:e63589 pubmed 出版商
  401. Clippinger A, D Alton S, Lin W, Gendron T, Howard J, Borchelt D, et al. Robust cytoplasmic accumulation of phosphorylated TDP-43 in transgenic models of tauopathy. Acta Neuropathol. 2013;126:39-50 pubmed 出版商
  402. Park Y, Ko J, Jang Y, Kwon Y. Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res. 2013;38:1561-71 pubmed 出版商
  403. Wu T, Lu Y, Chuang C, Wu C, Chiang A, Krantz D, et al. Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathol. 2013;125:711-25 pubmed 出版商
  404. Barros Miñones L, Martín de Saavedra D, Perez Alvarez S, Orejana L, Suquía V, Goni Allo B, et al. Inhibition of calpain-regulated p35/cdk5 plays a central role in sildenafil-induced protection against chemical hypoxia produced by malonate. Biochim Biophys Acta. 2013;1832:705-17 pubmed 出版商
  405. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen K, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18:1225-34 pubmed 出版商
  406. Hebron M, Algarzae N, Lonskaya I, Moussa C. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and A?1-42 gene transfer models. Exp Neurol. 2014;251:127-38 pubmed 出版商
  407. Kohler C, Dinekov M, Götz J. Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging. 2013;34:1369-79 pubmed 出版商
  408. Leboucher A, Laurent C, Fernandez Gomez F, Burnouf S, Troquier L, Eddarkaoui S, et al. Detrimental effects of diet-induced obesity on ? pathology are independent of insulin resistance in ? transgenic mice. Diabetes. 2013;62:1681-8 pubmed 出版商
  409. Porquet D, Casadesus G, Bayod S, Vicente A, Canudas A, Vilaplana J, et al. Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age (Dordr). 2013;35:1851-65 pubmed 出版商
  410. Chambers J, Uchida K, Harada T, Tsuboi M, Sato M, Kubo M, et al. Neurofibrillary tangles and the deposition of a beta amyloid peptide with a novel N-terminal epitope in the brains of wild Tsushima leopard cats. PLoS ONE. 2012;7:e46452 pubmed 出版商
  411. Tian M, Zhu D, Xie W, Shi J. Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett. 2012;586:3737-45 pubmed 出版商
  412. Iijima Ando K, Sekiya M, Maruko Otake A, Ohtake Y, Suzuki E, Lu B, et al. Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1. PLoS Genet. 2012;8:e1002918 pubmed 出版商
  413. Satoh J, Tabunoki H, Ishida T, Saito Y, Arima K. Dystrophic neurites express C9orf72 in Alzheimer's disease brains. Alzheimers Res Ther. 2012;4:33 pubmed 出版商
  414. Magnaudeix A, Wilson C, Page G, Bauvy C, Codogno P, Leveque P, et al. PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins. Neurobiol Aging. 2013;34:770-90 pubmed 出版商
  415. Karlsson O, Berg A, Lindström A, Hanrieder J, Arnerup G, Roman E, et al. Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicol Sci. 2012;130:391-404 pubmed 出版商
  416. Bretteville A, Marcouiller F, Julien C, El Khoury N, Petry F, Poitras I, et al. Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors. Sci Rep. 2012;2:480 pubmed 出版商
  417. Sontag J, Nunbhakdi Craig V, White C, Halpain S, Sontag E. The protein phosphatase PP2A/B? binds to the microtubule-associated proteins Tau and MAP2 at a motif also recognized by the kinase Fyn: implications for tauopathies. J Biol Chem. 2012;287:14984-93 pubmed 出版商
  418. Elobeid A, Soininen H, Alafuzoff I. Hyperphosphorylated tau in young and middle-aged subjects. Acta Neuropathol. 2012;123:97-104 pubmed 出版商
  419. Maarouf C, Daugs I, Kokjohn T, Walker D, Hunter J, Kruchowsky J, et al. Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS ONE. 2011;6:e27291 pubmed 出版商
  420. Kaul T, Credle J, Haggerty T, Oaks A, Masliah E, Sidhu A. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease. BMC Neurosci. 2011;12:79 pubmed 出版商
  421. Maldonado H, Ramírez E, Utreras E, Pando M, Kettlun A, Chiong M, et al. Inhibition of cyclin-dependent kinase 5 but not of glycogen synthase kinase 3-β prevents neurite retraction and tau hyperphosphorylation caused by secretable products of human T-cell leukemia virus type I-infected lymphocytes. J Neurosci Res. 2011;89:1489-98 pubmed 出版商
  422. Ploia C, Antoniou X, Sclip A, Grande V, Cardinetti D, Colombo A, et al. JNK plays a key role in tau hyperphosphorylation in Alzheimer's disease models. J Alzheimers Dis. 2011;26:315-29 pubmed 出版商
  423. Haggerty T, Credle J, Rodriguez O, Wills J, Oaks A, Masliah E, et al. Hyperphosphorylated Tau in an ?-synuclein-overexpressing transgenic model of Parkinson's disease. Eur J Neurosci. 2011;33:1598-610 pubmed 出版商
  424. Wills J, Credle J, Haggerty T, Lee J, Oaks A, Sidhu A. Tauopathic changes in the striatum of A53T ?-synuclein mutant mouse model of Parkinson's disease. PLoS ONE. 2011;6:e17953 pubmed 出版商
  425. To A, Ribe E, Chuang T, Schroeder J, Lovestone S. The ?3 and ?4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone treated mice. PLoS ONE. 2011;6:e16991 pubmed 出版商
  426. Dusonchet J, Kochubey O, Stafa K, Young S, Zufferey R, Moore D, et al. A rat model of progressive nigral neurodegeneration induced by the Parkinson's disease-associated G2019S mutation in LRRK2. J Neurosci. 2011;31:907-12 pubmed 出版商
  427. Roltsch E, Holcomb L, Young K, Marks A, Zimmer D. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation. 2010;7:78 pubmed 出版商
  428. Nakajima T, Ochi S, Oda C, Ishii M, Ogawa K. Ischemic preconditioning attenuates of ischemia-induced degradation of spectrin and tau: implications for ischemic tolerance. Neurol Sci. 2011;32:229-39 pubmed 出版商
  429. Liang B, Duan B, Zhou X, Gong J, Luo Z. Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Biol Chem. 2010;285:27737-44 pubmed 出版商
  430. Shiryaev N, Jouroukhin Y, Gozes I. 3R tau expression modifies behavior in transgenic mice. J Neurosci Res. 2010;88:2727-35 pubmed 出版商
  431. Berg I, Nilsson K, Thor S, Hammarstrom P. Efficient imaging of amyloid deposits in Drosophila models of human amyloidoses. Nat Protoc. 2010;5:935-44 pubmed 出版商
  432. Spatara M, Robinson A. Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction. J Neurosci Res. 2010;88:1951-61 pubmed 出版商
  433. Hall E, Lee S, Mairuae N, Simmons Z, Connor J. Expression of the HFE allelic variant H63D in SH-SY5Y cells affects tau phosphorylation at serine residues. Neurobiol Aging. 2011;32:1409-19 pubmed 出版商
  434. Kim H, Sul D, Lim J, Lee D, Joo S, Hwang K, et al. Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation. Biosci Biotechnol Biochem. 2009;73:1685-9 pubmed
  435. Sul D, Kim H, Lee D, Joo S, Hwang K, Park S. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009;84:257-62 pubmed 出版商
  436. Sul D, Kim H, Cho E, Lee M, Kim H, Jung W, et al. 2,3,7,8-TCDD neurotoxicity in neuroblastoma cells is caused by increased oxidative stress, intracellular calcium levels, and tau phosphorylation. Toxicology. 2009;255:65-71 pubmed 出版商
  437. Ojala J, Sutinen E, Salminen A, Pirttila T. Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells. J Neuroimmunol. 2008;205:86-93 pubmed 出版商
  438. Irons H, Cullen D, Shapiro N, Lambert N, Lee R, LaPlaca M. Three-dimensional neural constructs: a novel platform for neurophysiological investigation. J Neural Eng. 2008;5:333-41 pubmed 出版商
  439. Kanungo J, Zheng Y, Amin N, Pant H. The Notch signaling inhibitor DAPT down-regulates cdk5 activity and modulates the distribution of neuronal cytoskeletal proteins. J Neurochem. 2008;106:2236-48 pubmed 出版商
  440. Park S, Kim H, Cho E, Kwon B, Phark S, Hwang K, et al. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol. 2008;46:2881-7 pubmed 出版商
  441. Fukuzaki E, Takuma K, Himeno Y, Yoshida S, Funatsu Y, Kitahara Y, et al. Enhanced activity of hippocampal BACE1 in a mouse model of postmenopausal memory deficits. Neurosci Lett. 2008;433:141-5 pubmed 出版商
  442. Liu R, Zhou X, Tanila H, Bjorkdahl C, Wang J, Guan Z, et al. Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J Cell Mol Med. 2008;12:241-57 pubmed 出版商
  443. Carroll J, Rosario E, Chang L, Stanczyk F, Oddo S, LaFerla F, et al. Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice. J Neurosci. 2007;27:13357-65 pubmed
  444. Selenica M, Jensen H, Larsen A, Pedersen M, Helboe L, Leist M, et al. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol. 2007;152:959-79 pubmed
  445. Bai Q, Garver J, Hukriede N, Burton E. Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Res. 2007;35:6501-16 pubmed
  446. Jossin Y, Goffinet A. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol. 2007;27:7113-24 pubmed
  447. Wiedau Pazos M, Wong E, Solomon E, Alarcon M, Geschwind D. Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice. Neurobiol Aging. 2009;30:14-21 pubmed
  448. Park S, Tournell C, Sinjoanu R, Ferreira A. Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience. 2007;144:119-27 pubmed
  449. Schindowski K, Bretteville A, Leroy K, Bégard S, Brion J, Hamdane M, et al. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol. 2006;169:599-616 pubmed
  450. Yoshida S, Maeda M, Kaku S, Ikeya H, Yamada K, Nakaike S. Lithium inhibits stress-induced changes in tau phosphorylation in the mouse hippocampus. J Neural Transm (Vienna). 2006;113:1803-14 pubmed
  451. Lobsiger C, Garcia M, Ward C, Cleveland D. Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. Proc Natl Acad Sci U S A. 2005;102:10351-6 pubmed
  452. Takahashi S, Kulkarni A. Mutant superoxide dismutase 1 causes motor neuron degeneration independent of cyclin-dependent kinase 5 activation by p35 or p25. J Neurochem. 2004;88:1295-304 pubmed
  453. Takahashi S, Saito T, Hisanaga S, Pant H, Kulkarni A. Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules. J Biol Chem. 2003;278:10506-15 pubmed
  454. Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T. Cleavage of the cyclin-dependent kinase 5 activator p35 to p25 does not induce tau hyperphosphorylation. Biochem Biophys Res Commun. 2002;298:693-8 pubmed
  455. Forno L, Langston J, Herrick M, Wilson J, Murayama S. Ubiquitin-positive neuronal and tau 2-positive glial inclusions in frontotemporal dementia of motor neuron type. Acta Neuropathol. 2002;103:599-606 pubmed
  456. Rapoport M, Ferreira A. PD98059 prevents neurite degeneration induced by fibrillar beta-amyloid in mature hippocampal neurons. J Neurochem. 2000;74:125-33 pubmed