这是一篇来自已证抗体库的有关大鼠 Ntrk2的综述,是根据51篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ntrk2 抗体。
Ntrk2 同义词: RATTRKB1; TRKB1; Tkrb; trk-B; trkB

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR22298-67)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司 Ntrk2抗体(Abcam, ab229908)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Ntrk2抗体(Abcam, ab187041)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Neural Regen Res (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Ntrk2抗体(Abcam, ab187041)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). Nutrients (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 1h
艾博抗(上海)贸易有限公司 Ntrk2抗体(Abcam, 18987)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1h). Transl Psychiatry (2021) ncbi
domestic rabbit 单克隆(EPR18413)
  • 免疫组化; 人类; 图 1
艾博抗(上海)贸易有限公司 Ntrk2抗体(Abcam, EPR18413)被用于被用于免疫组化在人类样本上 (图 1). Ann Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Ntrk2抗体(Abcam, ab18987)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2a). BMC Med Genomics (2019) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-1)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术 Ntrk2抗体(Santa Cruz, sc-377218)被用于被用于免疫印迹在小鼠样本上 (图 6a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(F-1)
  • 免疫印迹; 小鼠; 1:500; 图 8b
圣克鲁斯生物技术 Ntrk2抗体(Santa Cruz Biotechnology, SC-377218)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 8b). Brain Pathol (2021) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
圣克鲁斯生物技术 Ntrk2抗体(Santa Cruz, sc-8058)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Sci Rep (2020) ncbi
小鼠 单克隆(B-3)
  • 免疫组化-冰冻切片; 斑马鱼; 1:200; 图 s6c
圣克鲁斯生物技术 Ntrk2抗体(Santa Cruz, sc-7268)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:200 (图 s6c). PLoS Biol (2020) ncbi
小鼠 单克隆(B-3)
  • 免疫沉淀; 人类; 图 1B
  • proximity ligation assay; 大鼠; 图 5A
圣克鲁斯生物技术 Ntrk2抗体(Santa Cruz, sc-7268)被用于被用于免疫沉淀在人类样本上 (图 1B) 和 被用于proximity ligation assay在大鼠样本上 (图 5A). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(F-1)
  • 免疫组化-石蜡切片; 人类; 图 1e
圣克鲁斯生物技术 Ntrk2抗体(Santa Cruz Biotechnology, sc 377218)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Oncotarget (2016) ncbi
小鼠 单克隆(B-3)
  • 免疫沉淀; 小鼠; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 Ntrk2抗体(Santa Cruz, sc7268)被用于被用于免疫沉淀在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Aging Cell (2016) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
安迪生物R&D Ntrk2抗体(R&D, AF1494)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Int J Mol Sci (2021) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
安迪生物R&D Ntrk2抗体(R&D, AF397)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Front Mol Neurosci (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
安迪生物R&D Ntrk2抗体(R&D Systems, AF1494)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). Dis Model Mech (2022) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 0.5 ug/ml; 图 1c
安迪生物R&D Ntrk2抗体(R&D Systems, AF1494)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为0.5 ug/ml (图 1c). J Neurosci (2021) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 1:50; 图 9g
安迪生物R&D Ntrk2抗体(R&D Systems, AF1494)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 9g). Nat Commun (2020) ncbi
大鼠 单克隆(225105)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s8n
安迪生物R&D Ntrk2抗体(R&D Systems, MAB1494)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s8n). PLoS Biol (2020) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2b
安迪生物R&D Ntrk2抗体(R&D Systems, AF1494)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2b). Sci Rep (2018) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠; 图 7b
安迪生物R&D Ntrk2抗体(R&D Systems, AF1494)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫组化在小鼠样本上 (图 7b). Cell Stem Cell (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
安迪生物R&D Ntrk2抗体(R&D Systems, AF1494)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). J Biol Chem (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7c
赛默飞世尔 Ntrk2抗体(Thermo Fisher, PA5-36695)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7c). Nat Commun (2022) ncbi
domestic rabbit 单克隆(J.977.7)
  • 免疫组化; fruit fly ; 1:100
赛默飞世尔 Ntrk2抗体(Thermo Fisher, J9.777.7)被用于被用于免疫组化在fruit fly 样本上浓度为1:100. Sci Rep (2021) ncbi
domestic rabbit 单克隆(J.977.7)
  • 免疫组化; 人类
赛默飞世尔 Ntrk2抗体(Thermo Fisher, J.977.7)被用于被用于免疫组化在人类样本上. Mod Pathol (2021) ncbi
domestic rabbit 单克隆(J.977.7)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 Ntrk2抗体(Invitrogen, MA5-14903)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Sci Rep (2020) ncbi
domestic rabbit 单克隆(J.977.7)
  • 免疫印迹; 人类; 1:1000; 图 9b
赛默飞世尔 Ntrk2抗体(Thermo Fisher, MA5-14903)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9b). Mar Drugs (2017) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1e
Novus Biologicals Ntrk2抗体(Novus Biological, NBP1-03499)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 1e). J Neuroinflammation (2020) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
Alomone Labs Ntrk2抗体(Alomone Labs, ANT-019-AG)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Rep (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7c
  • 免疫印迹; 人类; 1:1000; 图 s17a
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell Signaling, 4603)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s17a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell signaling technology, 4603S)被用于被用于免疫印迹在小鼠样本上 (图 5f). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell signaling, 4603)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Transl Psychiatry (2021) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell Signaling, 4603)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(80G2)
  • 免疫印迹; 大鼠; 1:1000; 图 2m
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell Signaling, 4607)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2m). Aging Cell (2020) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell Signaling Technologies, 4603S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). FASEB J (2017) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠; 1:250; 图 2d
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell signaling, 4603s)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 2d). J Neurosci Res (2017) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell Signaling Technology, 80E3)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2016) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell Signaling Technology, 4603)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell signaling, 4603)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Exp Neurol (2016) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell Signaling, 4603S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(80G2)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 4
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell Signaling Technology, 4607)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(80E3)
  • 免疫印迹; 小鼠; 图 6.c,d
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell Signaling Technology, 4603)被用于被用于免疫印迹在小鼠样本上 (图 6.c,d). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(80G2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4e
赛信通(上海)生物试剂有限公司 Ntrk2抗体(Cell signaling, 4607)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4e). BMC Biol (2015) ncbi
碧迪BD
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 小鼠; 1:500; 图 8g
碧迪BD Ntrk2抗体(BD Biosciences, 610101)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 8g). Mol Biol Cell (2022) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 小鼠; 图 4g
碧迪BD Ntrk2抗体(BD Biosciences, 610102)被用于被用于免疫印迹在小鼠样本上 (图 4g). Cell Death Dis (2021) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 大鼠; 1:500; 图 2a
碧迪BD Ntrk2抗体(BD Biosciences, 610101)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2a). Sci Signal (2019) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 大鼠; 图 4i
碧迪BD Ntrk2抗体(BD Biosciences, 610101)被用于被用于免疫印迹在大鼠样本上 (图 4i). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫组化; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 7d
碧迪BD Ntrk2抗体(BD Bioscience, 610102)被用于被用于免疫组化在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 7d). Mol Neurobiol (2018) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 人类; 图 5
碧迪BD Ntrk2抗体(BD Biosciences, 610101)被用于被用于免疫印迹在人类样本上 (图 5). Neuroscience (2016) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 小鼠
碧迪BD Ntrk2抗体(Becton Dickinson, 610102)被用于被用于免疫印迹在小鼠样本上. Neurobiol Learn Mem (2015) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 大鼠; 1:1000; 图 7c
碧迪BD Ntrk2抗体(BD Biosciences, 610101)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). Nat Neurosci (2015) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 小鼠; 1:500
碧迪BD Ntrk2抗体(BD Transduction Laboratories, 610102)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
碧迪BD Ntrk2抗体(BD Transduction Laboratories, 610101)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(47/TrkB)
  • 抑制或激活实验; 大鼠
碧迪BD Ntrk2抗体(BD Transduction, 610102)被用于被用于抑制或激活实验在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 大鼠; 1:1000
碧迪BD Ntrk2抗体(BD Biosciences, 610102)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(47/TrkB)
  • 免疫印迹; 小鼠
碧迪BD Ntrk2抗体(BD Transduction Labs, 610102)被用于被用于免疫印迹在小鼠样本上. J Neuroinflammation (2014) ncbi
文章列表
  1. El Chehadeh S, Han K, Kim D, Jang G, Bakhtiari S, Lim D, et al. SLITRK2 variants associated with neurodevelopmental disorders impair excitatory synaptic function and cognition in mice. Nat Commun. 2022;13:4112 pubmed 出版商
  2. Powers R, Daza R, Koehler A, Courchet J, Calabrese B, Hevner R, et al. Growth cone macropinocytosis of neurotrophin receptor and neuritogenesis are regulated by neuron navigator 1. Mol Biol Cell. 2022;33:ar64 pubmed 出版商
  3. Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H, et al. Forsythoside A Mitigates Alzheimer's-like Pathology by Inhibiting Ferroptosis-mediated Neuroinflammation via Nrf2/GPX4 Axis Activation. Int J Biol Sci. 2022;18:2075-2090 pubmed 出版商
  4. Liu Y, Hu P, Zhai S, Feng W, Zhang R, Li Q, et al. Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer's disease. Neural Regen Res. 2022;17:2079-2088 pubmed 出版商
  5. Rajendran R, Rajendran V, Giraldo Velasquez M, Megalofonou F, Gurski F, Stadelmann C, et al. Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. Int J Mol Sci. 2021;22: pubmed 出版商
  6. Lim D, Kim M, Yoon M, Lee J, Lee C, Um M. 1,3-Dicaffeoylquinic Acid as an Active Compound of Arctium lappa Root Extract Ameliorates Depressive-Like Behavior by Regulating Hippocampal Nitric Oxide Synthesis in Ovariectomized Mice. Antioxidants (Basel). 2021;10: pubmed 出版商
  7. Annamneedi A, Del Angel M, Gundelfinger E, Stork O, Caliskan G. The Presynaptic Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates Hippocampal Circuit Maturation: Potential Involvement of TrkB Signalling. Int J Mol Sci. 2021;22: pubmed 出版商
  8. Abbate J, Macri F, Arfuso F, Iaria C, Capparucci F, Anfuso C, et al. Anti-Atherogenic Effect of 10% Supplementation of Anchovy (Engraulis encrasicolus) Waste Protein Hydrolysates in ApoE-Deficient Mice. Nutrients. 2021;13: pubmed 出版商
  9. Pérez Sisqués L, Sancho Balsells A, Solana Balaguer J, Campoy Campos G, Vives Isern M, Soler Palazón F, et al. RTP801/REDD1 contributes to neuroinflammation severity and memory impairments in Alzheimer's disease. Cell Death Dis. 2021;12:616 pubmed 出版商
  10. Strohmeier S, Brcic I, Popper H, Liegl Atzwanger B, Lindenmann J, Brcic L. Applicability of pan-TRK immunohistochemistry for identification of NTRK fusions in lung carcinoma. Sci Rep. 2021;11:9785 pubmed 出版商
  11. Sahu M, Pazos Boubeta Y, Steinzeig A, Kaurinkoski K, Palmisano M, Borowecki O, et al. Depletion of TrkB Receptors From Adult Serotonergic Neurons Increases Brain Serotonin Levels, Enhances Energy Metabolism and Impairs Learning and Memory. Front Mol Neurosci. 2021;14:616178 pubmed 出版商
  12. Karpinski B, Maynard T, Bryan C, Yitsege G, Horvath A, Lee N, et al. Selective disruption of trigeminal sensory neurogenesis and differentiation in a mouse model of 22q11.2 deletion syndrome. Dis Model Mech. 2022;15: pubmed 出版商
  13. Xiao L, Sharma V, Toulabi L, Yang X, Lee C, Abebe D, et al. Neurotrophic factor-α1, a novel tropin is critical for the prevention of stress-induced hippocampal CA3 cell death and cognitive dysfunction in mice: comparison to BDNF. Transl Psychiatry. 2021;11:24 pubmed 出版商
  14. Fiedler D, Sasi M, Blum R, Klinke C, Andreatta M, Pape H, et al. Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling Controls Excitability and Long-Term Depression in Oval Nucleus of the BNST. J Neurosci. 2021;41:435-445 pubmed 出版商
  15. Kamali S, Rajendran R, Stadelmann C, Karnati S, Rajendran V, Giraldo Velasquez M, et al. Oligodendrocyte-specific deletion of FGFR2 ameliorates MOG35-55 -induced EAE through ERK and Akt signalling. Brain Pathol. 2021;31:297-311 pubmed 出版商
  16. Demetri G, Antonescu C, Bjerkehagen B, Bovée J, Boye K, Chacon M, et al. Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: expert recommendations from the World Sarcoma Network. Ann Oncol. 2020;31:1506-1517 pubmed 出版商
  17. Brcic I, Godschachner T, Bergovec M, Igrec J, Till H, Lackner H, et al. Broadening the spectrum of NTRK rearranged mesenchymal tumors and usefulness of pan-TRK immunohistochemistry for identification of NTRK fusions. Mod Pathol. 2021;34:396-407 pubmed 出版商
  18. Fulgenzi G, Hong Z, Tomassoni Ardori F, Barella L, Becker J, Barrick C, et al. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat Commun. 2020;11:1950 pubmed 出版商
  19. Kucharava K, Brand Y, Albano G, Sekulic Jablanovic M, Glutz A, Xian X, et al. Sodium-hydrogen exchanger 6 (NHE6) deficiency leads to hearing loss, via reduced endosomal signalling through the BDNF/Trk pathway. Sci Rep. 2020;10:3609 pubmed 出版商
  20. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  21. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 2020;17:19 pubmed 出版商
  22. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  23. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  24. Wang H, Wei Y, Pu Y, Jiang D, Jiang X, Zhang Y, et al. Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal. 2019;12: pubmed 出版商
  25. Telegina D, Kolosova N, Kozhevnikova O. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12:48 pubmed 出版商
  26. Alshawaf A, Viventi S, Qiu W, D Abaco G, Nayagam B, Erlichster M, et al. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Sci Rep. 2018;8:603 pubmed 出版商
  27. Wang R, Cao X, Kulej K, Liu W, Ma T, MacDonald M, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E5352-E5361 pubmed 出版商
  28. Hossain M, Oomura Y, Katafuchi T. Glucose Can Epigenetically Alter the Gene Expression of Neurotrophic Factors in the Murine Brain Cells. Mol Neurobiol. 2018;55:3408-3425 pubmed 出版商
  29. Zhang Y, Jiao G, Song C, Gu S, Brown R, Zhang J, et al. An Extract from Shrimp Processing By-Products Protects SH-SY5Y Cells from Neurotoxicity Induced by A?25-35. Mar Drugs. 2017;15: pubmed 出版商
  30. Canu N, Pagano I, La Rosa L, Pellegrino M, Ciotti M, Mercanti D, et al. Association of TrkA and APP Is Promoted by NGF and Reduced by Cell Death-Promoting Agents. Front Mol Neurosci. 2017;10:15 pubmed 出版商
  31. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  32. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  33. Shapiro L, Parsons R, Koleske A, Gourley S. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res. 2017;95:1123-1143 pubmed 出版商
  34. Hong Y, Zhao T, Li X, Li S. Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDP. J Neurosci. 2016;36:8790-801 pubmed 出版商
  35. Huang Y, Lin C, Liao H, Liu C, Chen Y, Chiu W, et al. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience. 2016;328:201-9 pubmed 出版商
  36. Heinen T, dos Santos R, da Rocha A, Dos Santos M, Lopez P, Silva Filho M, et al. Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma. Oncotarget. 2016;7:34860-80 pubmed 出版商
  37. Triaca V, Sposato V, Bolasco G, Ciotti M, Pelicci P, Bruni A, et al. NGF controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for Alzheimer's disease. Aging Cell. 2016;15:661-72 pubmed 出版商
  38. Ren Q, Ma M, Ishima T, Morisseau C, Yang J, Wagner K, et al. Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A. 2016;113:E1944-52 pubmed 出版商
  39. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  40. Lin R, Chen J, Li X, Mao J, Wu Y, Zhuo P, et al. Electroacupuncture at the Baihui acupoint alleviates cognitive impairment and exerts neuroprotective effects by modulating the expression and processing of brain-derived neurotrophic factor in APP/PS1 transgenic mice. Mol Med Rep. 2016;13:1611-7 pubmed 出版商
  41. Schütze S, Orozco I, Jentsch T. KCNQ Potassium Channels Modulate Sensitivity of Skin Down-hair (D-hair) Mechanoreceptors. J Biol Chem. 2016;291:5566-75 pubmed 出版商
  42. Faltermeier C, Drake J, Clark P, Smith B, Zong Y, Volpe C, et al. Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci U S A. 2016;113:E172-81 pubmed 出版商
  43. Krishnan N, Krishnan K, Connors C, Choy M, Page R, Peti W, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125:3163-77 pubmed 出版商
  44. Gay M, Valenta T, Herr P, Paratore Hari L, Basler K, Sommer L. Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation. BMC Biol. 2015;13:24 pubmed 出版商
  45. Lin T, Shih Y, Chen S, Lien C, Chang C, Huang T, et al. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice. Neurobiol Learn Mem. 2015;118:189-97 pubmed 出版商
  46. Deidda G, Allegra M, Cerri C, Naskar S, Bony G, Zunino G, et al. Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat Neurosci. 2015;18:87-96 pubmed 出版商
  47. Alldred M, Lee S, Petkova E, Ginsberg S. Expression profile analysis of vulnerable CA1 pyramidal neurons in young-Middle-Aged Ts65Dn mice. J Comp Neurol. 2015;523:61-74 pubmed 出版商
  48. Leitch C, Zaghloul N. BBS4 is necessary for ciliary localization of TrkB receptor and activation by BDNF. PLoS ONE. 2014;9:e98687 pubmed 出版商
  49. Vermehren Schmaedick A, KRUEGER W, Jacob T, Ramunno Johnson D, Balkowiec A, Lidke K, et al. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking. PLoS ONE. 2014;9:e95113 pubmed 出版商
  50. Rodier M, Prigent Tessier A, B jot Y, Jacquin A, Mossiat C, Marie C, et al. Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDA-dependent mechanism?. PLoS ONE. 2014;9:e92416 pubmed 出版商
  51. Niesman I, Schilling J, Shapiro L, Kellerhals S, Bonds J, Kleschevnikov A, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39 pubmed 出版商