这是一篇来自已证抗体库的有关大鼠 Pdha1的综述,是根据46篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Pdha1 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR12200)
  • 免疫组化基因敲除验证; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab177461)被用于被用于免疫组化基因敲除验证在人类样本上浓度为1:100 (图 1c). Onco Targets Ther (2019) ncbi
小鼠 单克隆(8D10E6)
  • 免疫组化; fruit fly ; 图 4f
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab110334)被用于被用于免疫组化在fruit fly 样本上 (图 4f). Nature (2019) ncbi
domestic rabbit 单克隆(EPR12200)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab177461)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Nat Cell Biol (2018) ncbi
domestic rabbit 单克隆(EPR11098)
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 图 7c
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab168379)被用于被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 7c). J Biol Chem (2017) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 小鼠; 1:1000; 图 s2n
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab110330)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2n). Nature (2017) ncbi
小鼠 单克隆(8D10E6)
  • 其他; fruit fly ; 1:500; 图 4c
  • 免疫印迹; fruit fly ; 1:1000; 图 s2
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab110334)被用于被用于其他在fruit fly 样本上浓度为1:500 (图 4c) 和 被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 s2). Sci Rep (2017) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 小鼠; 图 7f
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab110330)被用于被用于免疫印迹在小鼠样本上 (图 7f). J Cell Biol (2017) ncbi
小鼠 单克隆(8D10E6)
  • 免疫组化; 小鼠; 1:100; 图 3k
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab110334)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3k). Cell (2017) ncbi
小鼠 单克隆(8D10E6)
  • 免疫印迹基因敲除验证; 人类; 图 3a
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab110334)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(8D10E6)
  • 免疫印迹; 人类; 图 3k
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, Ab110334)被用于被用于免疫印迹在人类样本上 (图 3k). Mol Metab (2016) ncbi
domestic rabbit 单克隆(EPR12200)
  • 免疫印迹; 人类; 图 3k
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, Ab177461)被用于被用于免疫印迹在人类样本上 (图 3k). Mol Metab (2016) ncbi
domestic rabbit 单克隆(EPR12200)
  • 免疫印迹; 小鼠; 1:10,000; 图 1b
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab177461)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab110330)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR12200)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab177461)被用于被用于免疫印迹在人类样本上 (图 5b). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(8D10E6)
  • 免疫组化; fruit fly
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab110334)被用于被用于免疫组化在fruit fly 样本上. Nat Cell Biol (2015) ncbi
小鼠 单克隆(8D10E6)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Pdha1抗体(Abcam, ab110334)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-6)
  • 免疫细胞化学; 小鼠; 图 6b
圣克鲁斯生物技术 Pdha1抗体(Santa Cruz, sc-377092)被用于被用于免疫细胞化学在小鼠样本上 (图 6b). Theranostics (2020) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 小鼠; 1:1000; 图 4s2c
圣克鲁斯生物技术 Pdha1抗体(Santa Cruz Biotechnology, SC-377092)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4s2c). elife (2019) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Pdha1抗体(Santa, sc-377092)被用于被用于免疫印迹在人类样本上 (图 2b). Autophagy (2019) ncbi
小鼠 单克隆(D-6)
  • 免疫组化; 小鼠; 1:50; 图 3h
圣克鲁斯生物技术 Pdha1抗体(Santa Cruz, sc-377092)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3h). Cell (2017) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Pdha1抗体(Santa Cruz, sc-377092)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(D-6)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Pdha1抗体(Santa Cruz Biotechnology, sc-377092)被用于被用于免疫印迹在人类样本上 (图 4b). J Appl Physiol (1985) (2015) ncbi
赛默飞世尔
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 Pdha1抗体(Thermo Fisher Scientific, 459400)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Rep (2019) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 人类; 1:500; 图 6c
赛默飞世尔 Pdha1抗体(Invitrogen, 459400)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6c). J Transl Med (2017) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 Pdha1抗体(Invitrogen, 459400)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Nutr Sci Vitaminol (Tokyo) (2016) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 小鼠
赛默飞世尔 Pdha1抗体(生活技术, 459400)被用于被用于免疫印迹在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 人类; 图 3e
赛默飞世尔 Pdha1抗体(Invitrogen, 459400)被用于被用于免疫印迹在人类样本上 (图 3e). Science (2016) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 人类; 图 s2
赛默飞世尔 Pdha1抗体(Thermo Scientific, 459400)被用于被用于免疫印迹在人类样本上 (图 s2). Nature (2016) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 小鼠
赛默飞世尔 Pdha1抗体(生活技术, 459400)被用于被用于免疫印迹在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 人类
赛默飞世尔 Pdha1抗体(Invitrogen, 459400)被用于被用于免疫印迹在人类样本上. Neuro Oncol (2015) ncbi
小鼠 单克隆(8D10E6)
  • 免疫印迹; 小鼠; 1:750; 图 2
赛默飞世尔 Pdha1抗体(Invitrogen, 456600)被用于被用于免疫印迹在小鼠样本上浓度为1:750 (图 2). PLoS ONE (2012) ncbi
小鼠 单克隆(9H9AF5)
  • 免疫印迹; 人类; 1:500; 图 6
赛默飞世尔 Pdha1抗体(Invitrogen, 459400)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Br J Cancer (2010) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a, 3b
Novus Biologicals Pdha1抗体(Novus, NB110-93479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 3b). Oncogenesis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4e
Novus Biologicals Pdha1抗体(Novus Biological, NB110-93479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4e). Nat Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
Novus Biologicals Pdha1抗体(Novus Biologicals, NB110?C93479)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 人类; 1:1000; 图 2a, 3b
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, 3205)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 3b). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, 3205)被用于被用于免疫印迹在人类样本上 (图 3f). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f, e2e
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, 2784)被用于被用于免疫印迹在人类样本上 (图 2f, e2e). Nature (2019) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, 3205)被用于被用于免疫印迹在人类样本上 (图 5f). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, 3205)被用于被用于免疫印迹在人类样本上 (图 5e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹基因敲除验证; 人类; 图 2c
  • 免疫组化-石蜡切片; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell signaling, C54G1)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 2c) 和 被用于免疫组化-石蜡切片在人类样本上 (图 6a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell signaling, 3205)被用于被用于免疫印迹在人类样本上 (图 7). Lipids Health Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Pdha1抗体(cell signalling, 2784)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell signaling, 3205)被用于被用于免疫印迹在小鼠样本上 (图 3g). Oncogene (2017) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹基因敲除验证; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling Technology, C54G1)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, C54G1)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, 3205)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, 3205S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling Technology, 3205)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Endocrinology (2016) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, 3205)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 大鼠; 1:10000
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling, 3205)被用于被用于免疫印迹在大鼠样本上浓度为1:10000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(C54G1)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Pdha1抗体(Cell Signaling Tech, 3205)被用于被用于免疫印迹在小鼠样本上 (图 2). Autophagy (2014) ncbi
文章列表
  1. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  2. Siu M, Jiang Y, Wang J, Leung T, Ngu S, Cheung A, et al. PDK1 promotes ovarian cancer metastasis by modulating tumor-mesothelial adhesion, invasion, and angiogenesis via α5β1 integrin and JNK/IL-8 signaling. Oncogenesis. 2020;9:24 pubmed 出版商
  3. Liu L, Cao J, Zhao J, Li X, Suo Z, Li H. PDHA1 Gene Knockout In Human Esophageal Squamous Cancer Cells Resulted In Greater Warburg Effect And Aggressive Features In Vitro And In Vivo. Onco Targets Ther. 2019;12:9899-9913 pubmed 出版商
  4. Sharma A, Oonthonpan L, Sheldon R, Rauckhorst A, Zhu Z, Tompkins S, et al. Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. elife. 2019;8: pubmed 出版商
  5. Park S, Safi R, Liu X, Baldi R, Liu W, Liu J, et al. Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Rep. 2019;27:3587-3601.e4 pubmed 出版商
  6. Zhang W, Wang G, Xu Z, Tu H, Hu F, Dai J, et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell. 2019;: pubmed 出版商
  7. Lieber T, Jeedigunta S, Palozzi J, Lehmann R, Hurd T. Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature. 2019;: pubmed 出版商
  8. Lee J, Yesilkanal A, Wynne J, Frankenberger C, Liu J, Yan J, et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature. 2019;568:254-258 pubmed 出版商
  9. Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258-1279 pubmed 出版商
  10. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  11. Yang Z, Wang Y, Zhang Y, He X, Zhong C, Ni H, et al. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol. 2018;20:186-197 pubmed 出版商
  12. Kumazoe M, Takai M, Hiroi S, Takeuchi C, Kadomatsu M, Nojiri T, et al. The FOXO3/PGC-1? signaling axis is essential for cancer stem cell properties of pancreatic ductal adenocarcinoma. J Biol Chem. 2017;292:10813-10823 pubmed 出版商
  13. Luongo T, Lambert J, Gross P, Nwokedi M, Lombardi A, Shanmughapriya S, et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature. 2017;545:93-97 pubmed 出版商
  14. Zhao X, Sun K, Lan Z, Song W, Cheng L, Chi W, et al. Tenofovir and adefovir down-regulate mitochondrial chaperone TRAP1 and succinate dehydrogenase subunit B to metabolically reprogram glucose metabolism and induce nephrotoxicity. Sci Rep. 2017;7:46344 pubmed 出版商
  15. Jiang Y, Lin S, Chen J, Tsai H, Hsieh T, Fu C. Electron tomographic analysis reveals ultrastructural features of mitochondrial cristae architecture which reflect energetic state and aging. Sci Rep. 2017;7:45474 pubmed 出版商
  16. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  17. Schatton D, Pla Martín D, Marx M, Hansen H, Mourier A, Nemazanyy I, et al. CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs. J Cell Biol. 2017;216:675-693 pubmed 出版商
  18. Santacatterina F, Sánchez Aragó M, Catalán García M, Garrabou G, de Arenas C, Grau J, et al. Pyruvate kinase M2 and the mitochondrial ATPase Inhibitory Factor 1 provide novel biomarkers of dermatomyositis: a metabolic link to oncogenesis. J Transl Med. 2017;15:29 pubmed 出版商
  19. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  20. Zhong Y, Li X, Ji Y, Li X, Li Y, Yu D, et al. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers. Oncotarget. 2017;8:13344-13356 pubmed 出版商
  21. Takahashi Y, Tamura Y, Matsunaga Y, Kitaoka Y, Terada S, Hatta H. Effects of Taurine Administration on Carbohydrate Metabolism in Skeletal Muscle during the Post-Exercise Phase. J Nutr Sci Vitaminol (Tokyo). 2016;62:257-264 pubmed
  22. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  23. Goguet Rubio P, Seyran B, Gayte L, Bernex F, Sutter A, Delpech H, et al. E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proc Natl Acad Sci U S A. 2016;113:11004-9 pubmed 出版商
  24. Zhong W, Yi Q, Xu B, Li S, Wang T, Liu F, et al. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival. Nat Commun. 2016;7:12702 pubmed 出版商
  25. Zeng Q, Chen J, Li Y, Werle K, Zhao R, Quan C, et al. LKB1 inhibits HPV-associated cancer progression by targeting cellular metabolism. Oncogene. 2017;36:1245-1255 pubmed 出版商
  26. Li Y, Li X, Li X, Zhong Y, Ji Y, Yu D, et al. PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence. Oncotarget. 2016;7:53837-53852 pubmed 出版商
  27. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  28. Martins A, Sá R, Monteiro M, Barros A, Sousa M, Carvalho R, et al. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics. Mol Cell Endocrinol. 2016;434:199-209 pubmed 出版商
  29. Yin C, He D, Chen S, Tan X, Sang N. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget. 2016;7:47494-47510 pubmed 出版商
  30. Titov D, Cracan V, Goodman R, Peng J, Grabarek Z, Mootha V. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science. 2016;352:231-5 pubmed 出版商
  31. Barquissau V, Beuzelin D, Pisani D, Beranger G, Mairal A, Montagner A, et al. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab. 2016;5:352-365 pubmed 出版商
  32. Jiang L, Shestov A, Swain P, Yang C, Parker S, Wang Q, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016;532:255-8 pubmed 出版商
  33. Zhang Y, Zhao Z, Ke B, Wan L, Wang H, Ye J. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function. PLoS ONE. 2016;11:e0150454 pubmed 出版商
  34. Kerr E, Gaude E, Turrell F, Frezza C, Martins C. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature. 2016;531:110-3 pubmed 出版商
  35. Gray L, Rauckhorst A, Taylor E. A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity. J Biol Chem. 2016;291:7409-17 pubmed 出版商
  36. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  37. Cabanillas Stanchi K, Bruchelt G, Handgretinger R, Holzer U. Nifurtimox reduces N-Myc expression and aerobic glycolysis in neuroblastoma. Cancer Biol Ther. 2015;16:1353-63 pubmed 出版商
  38. Hostrup M, Kalsen A, Onslev J, Jessen S, Haase C, Habib S, et al. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. J Appl Physiol (1985). 2015;119:475-86 pubmed 出版商
  39. Loureiro R, Magalhães Novais S, Mesquita K, Baldeiras I, Sousa I, Tavares L, et al. Melatonin antiproliferative effects require active mitochondrial function in embryonal carcinoma cells. Oncotarget. 2015;6:17081-96 pubmed
  40. Teixeira F, Sanchez C, Hurd T, Seifert J, Czech B, Preall J, et al. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat Cell Biol. 2015;17:689-96 pubmed 出版商
  41. Prabhu A, Sarcar B, Miller C, Kim S, Nakano I, Forsyth P, et al. Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis. Neuro Oncol. 2015;17:1220-30 pubmed 出版商
  42. Wang W, Visavadiya N, Pandya J, Nelson P, Sullivan P, Springer J. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol. 2015;265:84-93 pubmed 出版商
  43. Caro Maldonado A, Wang R, Nichols A, Kuraoka M, Milasta S, Sun L, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192:3626-36 pubmed 出版商
  44. Furuya N, Ikeda S, Sato S, Soma S, Ezaki J, Oliva Trejo J, et al. PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy. 2014;10:631-41 pubmed 出版商
  45. Miquel E, Cassina A, Martinez Palma L, Bolatto C, Trias E, Gandelman M, et al. Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS ONE. 2012;7:e34776 pubmed 出版商
  46. Madhok B, Yeluri S, Perry S, Hughes T, Jayne D. Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br J Cancer. 2010;102:1746-52 pubmed 出版商