这是一篇来自已证抗体库的有关大鼠 Ptk2的综述,是根据174篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ptk2 抗体。
Ptk2 同义词: FAK; FRNK; p125FAK

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP2160Y)
  • 免疫细胞化学; 人类; 1:1000; 图 7e
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab81298)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7e). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, Ab40794)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, Ab81298)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Cell Prolif (2021) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫组化; 大鼠; 1:250; 图 6b
  • 免疫印迹; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab81298)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 6b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Cell Prolif (2021) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹基因敲除验证; 人类; 1:2000; 图 5a
  • 免疫印迹; 人类; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:2000 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Redox Biol (2020) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫印迹; 人类; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab81298)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Redox Biol (2020) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫印迹; 人类; 1:1000; 图 s3i
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab81298)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3i). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫细胞化学; 人类; 图 7a
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, Ab81298)被用于被用于免疫细胞化学在人类样本上 (图 7a). Mol Biol Cell (2020) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab81298)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Rep (2020) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 4b, 6s1c
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab81298)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, 6s1c). elife (2019) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫印迹; 大鼠; 图 s1
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab81298)被用于被用于免疫印迹在大鼠样本上 (图 s1). Front Neurol (2019) ncbi
domestic rabbit 单克隆(EP695Y)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类; 图 3l
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上 (图 3l). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫细胞化学; 人类; 1:400; 图 8a2
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, EP2160Y)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 8a2). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab81298)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 单克隆(EP2160Y)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab81298)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫组化; 小鼠; 1:40; 图 4c
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫组化在小鼠样本上浓度为1:40 (图 4c). Nat Med (2016) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹基因敲除验证; 人类; 图 5
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5). Neoplasia (2016) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 图 5
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上 (图 5). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类; 1:100; 图 s7
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s7). Nature (2015) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类; 1:500; 图 1d
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1d). Biophys J (2015) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上 (图 6). Biomaterials (2015) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类; 1:1000; 图 S4
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 S4). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上. Int J Mol Sci (2014) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫细胞化学; 人类; 2 ug/ml
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml. J Lab Autom (2015) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Mol Med Rep (2015) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab4792)被用于. Development (2014) ncbi
domestic rabbit 单克隆(EP695Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Ptk2抗体(Abcam, ab40794)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
赛默飞世尔
小鼠 单克隆(ZF002)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛默飞世尔 Ptk2抗体(Thermo Fisher Scientific, 39-6500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). elife (2020) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Oncol (Dordr) (2017) ncbi
小鼠 单克隆(34Q36)
  • 免疫印迹; 人类; 1000 ng/ml; 图 4g
赛默飞世尔 Ptk2抗体(Invitrogen, 34Q36)被用于被用于免疫印迹在人类样本上浓度为1000 ng/ml (图 4g). Am J Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1000 ng/ml; 图 4g
赛默飞世尔 Ptk2抗体(Invitrogen, 44-652G)被用于被用于免疫印迹在人类样本上浓度为1000 ng/ml (图 4g). Am J Cancer Res (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 人类; 图 s2
赛默飞世尔 Ptk2抗体(Biosource, 44-625G)被用于被用于免疫印迹在人类样本上 (图 s2). J Proteome Res (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 6e
赛默飞世尔 Ptk2抗体(Invitrogen, AH00502)被用于被用于免疫组化在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6e). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:100; 图 6j
赛默飞世尔 Ptk2抗体(Invitrogen, 44-652G)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100 (图 6j). Development (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 1a
赛默飞世尔 Ptk2抗体(Thermo Fisher, 44-625G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 1a). Hear Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 Ptk2抗体(Invitrogen, 44650 G)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫组化; 小鼠; 1:200; 图 2
赛默飞世尔 Ptk2抗体(Invitrogen, 44625)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2). Nat Med (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Ptk2抗体(Invitrogen, 44625G)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5
赛默飞世尔 Ptk2抗体(ThermoFisher Scientific, 44-650G)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5). Endocrinology (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫组化; 鸡; 1:200; 图 s1
赛默飞世尔 Ptk2抗体(Invitrogen, 44625G)被用于被用于免疫组化在鸡样本上浓度为1:200 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫细胞化学; 人类; 1:200; 图 6
  • 免疫印迹; 人类; 1:500; 图 5
  • 免疫细胞化学; 小鼠; 1:200; 图 s5
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6), 被用于免疫印迹在人类样本上浓度为1:500 (图 5) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s5). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5
赛默飞世尔 Ptk2抗体(Invitrogen, 44-652G)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 Ptk2抗体(Invitrogen, AHO0502)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ptk2抗体(Invirtogen, AHO0502)被用于. Sci Rep (2015) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 小鼠; 1:500; 图 5
  • 免疫印迹; 人类; 1:500; 图 5
赛默飞世尔 Ptk2抗体(Invirtogen, 44-625G)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5). Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 表 2
赛默飞世尔 Ptk2抗体(Invitrogen, 44650G)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (表 2). FASEB J (2016) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫细胞化学; 人类; 1:200; 图 s7
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s7). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ptk2抗体(Invitrogen, 44-652G)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ptk2抗体(Invitrogen, 44?C650G)被用于. Nat Commun (2015) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Endocrinol (2013) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2012) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫细胞化学; 人类; 1:100; 图 6
赛默飞世尔 Ptk2抗体(Invitrogen, 44-625G)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). PLoS ONE (2010) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫印迹; 人类
赛默飞世尔 Ptk2抗体(Biosource, 44-652ZG)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2009) ncbi
domestic rabbit 单克隆(141-9)
  • 免疫组化; 人类; 图 2
赛默飞世尔 Ptk2抗体(Biosource, 44-625G)被用于被用于免疫组化在人类样本上 (图 2). Clin Sci (Lond) (2007) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-12)
  • 流式细胞仪; 人类; 图 6b
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz Biotechnology, A-12)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz, sc-271195)被用于被用于免疫印迹在人类样本上 (图 7a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(B-8)
  • 免疫沉淀; 人类; 图 5c
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Ptk2抗体(SantaCruz, sc-271195)被用于被用于免疫沉淀在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5a). Lab Invest (2017) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz, sc-1688)被用于被用于免疫印迹在人类样本上 (图 6A). Sci Rep (2017) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz Biotechnology, sc-271195)被用于被用于免疫印迹在人类样本上 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(H-1)
  • 免疫细胞化学; 豚鼠; 1:100; 图 1
  • 免疫印迹; 豚鼠; 1:100; 图 1
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz, sc-1688)被用于被用于免疫细胞化学在豚鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在豚鼠样本上浓度为1:100 (图 1). Biol Open (2016) ncbi
小鼠 单克隆(B-8)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz, SC271195)被用于被用于免疫印迹在人类样本上 (图 4). Front Endocrinol (Lausanne) (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz, sc-374668)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Exp Dermatol (2015) ncbi
小鼠 单克隆(B-8)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz, sc-271195)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Exp Dermatol (2015) ncbi
小鼠 单克隆(2D11)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz Biotechnology, sc-81493)被用于被用于免疫印迹在人类样本上. Colloids Surf B Biointerfaces (2015) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz Biotechnology, Inc., 1688)被用于被用于免疫印迹在人类样本上 (图 5d). FASEB J (2015) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz, sc-1688)被用于被用于免疫印迹在人类样本上 (图 6). Cardiovasc Res (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫细胞化学; 人类; 1:300
圣克鲁斯生物技术 Ptk2抗体(Santa Cruz Biotech, sc-374668)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Biores Open Access (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3281)被用于被用于免疫印迹在人类样本上 (图 2g). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3285)被用于被用于免疫印迹在人类样本上 (图 2g). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Ptk2抗体(CST, 3285)被用于被用于免疫印迹在人类样本上 (图 10a). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 1n
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1n). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 8556)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3284)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Ptk2抗体(CST, 3283)被用于被用于免疫印迹在人类样本上 (图 5d). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上 (图 6a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 图 4c, 4h
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 8556)被用于被用于免疫印迹在人类样本上 (图 4c, 4h). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Ptk2抗体(CST, 3285)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Ptk2抗体(CST, 3284)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell signaling Technology, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7g). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3283)被用于被用于免疫印迹在人类样本上 (图 1d). EMBO J (2020) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3285S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3283S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signalling, 3285)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285S)被用于被用于免疫印迹在人类样本上 (图 3a). Cells (2020) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫细胞化学; 人类; 图 3d, 3f
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, D20B1)被用于被用于免疫细胞化学在人类样本上 (图 3d, 3f) 和 被用于免疫印迹在人类样本上 (图 3a). Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Ptk2抗体(CST, 3283)被用于被用于免疫印迹在人类样本上 (图 2c). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Ptk2抗体(CST, 3285)被用于被用于免疫印迹在人类样本上 (图 2c). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上 (图 7a). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 10b
  • 免疫细胞化学; 人类; 1:100; 图 11a, 11b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫沉淀在人类样本上 (图 10b) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 11a, 11b). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D20B1)
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell signaling, D20B1)被用于. Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3285)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6b, 6c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b, 6c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6b, 6c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b, 6c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6g
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3284S)被用于被用于免疫印迹在人类样本上 (图 6g). Mol Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1e
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 s1e). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1e
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在人类样本上 (图 s1e). Cell (2019) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 2i, s5e
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell signaling, D20B1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i, s5e). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signalling Technology, 3283)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signalling Technology, 3284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). EMBO Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3281S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上 (图 3f). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285T)被用于被用于免疫印迹在人类样本上 (图 3f). Cancer Cell Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s3d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3d). J Cell Biol (2019) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫细胞化学; 小鼠; 1:100; 图 s3d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, D20B1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s3d). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). elife (2019) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 8556)被用于被用于免疫印迹在人类样本上 (图 5a). J Cell Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s12d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在小鼠样本上 (图 s12d). Science (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 7a). Biochemistry (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3281)被用于被用于免疫印迹在人类样本上 (图 7a). Biochemistry (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Ptk2抗体(CST, 3281)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Ptk2抗体(CST, 3285)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Ptk2抗体(CST, 3284)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 3c). J Immunol (2017) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上 (图 3c). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上 (图 9e). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). JCI Insight (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 7a1
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a1). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 7b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7a
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫细胞化学在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 7b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在人类样本上 (图 10a). Breast Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2C
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3281)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2C). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3281)被用于被用于免疫印迹在人类样本上 (图 2b). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上 (图 4h). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 4h). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 ev3b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ev3b). Mol Syst Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1b). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 8556)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上 (图 8a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3281)被用于被用于免疫细胞化学在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 2c
  • 免疫细胞化学; 人类; 图 9b
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫细胞化学在小鼠样本上 (图 2d), 被用于免疫印迹在小鼠样本上 (图 2c), 被用于免疫细胞化学在人类样本上 (图 9b) 和 被用于免疫印迹在人类样本上 (图 9a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫细胞化学在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9a
  • 免疫印迹; 小鼠; 图 s10c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 9a) 和 被用于免疫印迹在小鼠样本上 (图 s10c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在小鼠样本上 (图 5e). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3281)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell signaling, 3283)被用于被用于免疫细胞化学在人类样本上 (图 7a). Integr Biol (Camb) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Nat Med (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 小鼠; 1:1000; 图 s7d
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7d). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5s1
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell signalling, 3283)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5s1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3284)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1a, 3c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3285)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a, 3c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1a, 3c
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3283)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a, 3c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Tech, 3285)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Tech, 3283)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3283)被用于被用于免疫印迹在人类样本上 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 8
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3285BC)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
  • 免疫印迹; 人类; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s6). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3285)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上 (图 6). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 6). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 6
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 7). Am J Physiol Renal Physiol (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technologies, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technologies, 3285)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell signaling, 3285)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell signaling, 3283)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3285)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 3285)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling Technology, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000; 图 11
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, D20B1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 11). Anticancer Agents Med Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 3283)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell signaling, 8556)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signalling, 8556)被用于被用于免疫组化在人类样本上浓度为1:100. Org Biomol Chem (2014) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D20B1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ptk2抗体(Cell Signaling, 8556)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
碧迪BD
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:1000; 图 3a
碧迪BD Ptk2抗体(BD, 610087)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Rep (2021) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:1000; 图 5c
碧迪BD Ptk2抗体(BD Transduction Laboratories, 610087)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Commun Biol (2021) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 图 6a
碧迪BD Ptk2抗体(BD Biosciences, 610088)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Biol Cell (2020) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 小鼠; 图 6a
碧迪BD Ptk2抗体(BD Biosciences, 610088)被用于被用于免疫印迹在小鼠样本上 (图 6a). Immunity (2019) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
碧迪BD Ptk2抗体(BD, 610087)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Cell Stem Cell (2018) ncbi
小鼠 单克隆(77/FAK)
  • 免疫细胞化学; 人类; 图 5c
  • 免疫印迹; 人类; 图 5f
碧迪BD Ptk2抗体(BD Biosciences, 610088)被用于被用于免疫细胞化学在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5f). Neuron (2018) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 犬; 图 3b
碧迪BD Ptk2抗体(MilliporeBD Transduction Lab, BD610088)被用于被用于免疫印迹在犬样本上 (图 3b). Nature (2018) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 犬; 1:1000; 图 7b
碧迪BD Ptk2抗体(BD Transduction, 610087)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 7b). J Cell Sci (2018) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 小鼠; 1:800; 图 s5a
碧迪BD Ptk2抗体(BD Biosciences, 610088)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 s5a). Development (2017) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:1000; 图 3b
碧迪BD Ptk2抗体(BD Biosciences, 610087)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Oncol Lett (2017) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:500; 图 1b
碧迪BD Ptk2抗体(BD Biosciences, 610088)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Int J Oncol (2017) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 图 s2
碧迪BD Ptk2抗体(BD, 610088)被用于被用于免疫印迹在人类样本上 (图 s2). J Proteome Res (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:500; 图 2b
碧迪BD Ptk2抗体(BD Biosciences, 610088)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Mol Med Rep (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:1000
碧迪BD Ptk2抗体(BD, 610087)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 图 2
碧迪BD Ptk2抗体(BD Biosciences, 610088)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫组化; 小鼠; 1:1000
碧迪BD Ptk2抗体(BD Biosciences, 610088)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Nat Med (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 图 2a
碧迪BD Ptk2抗体(BD, Bioscience, 610088)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 小鼠; 1:2000; 图 5
碧迪BD Ptk2抗体(BD Bioscience, 77)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 图 4b
碧迪BD Ptk2抗体(BD, 61087)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:500; 图 s5
碧迪BD Ptk2抗体(BD Biosciences, 610087)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s5). J Cell Biol (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫组化; 鸡; 1:200; 图 s1
碧迪BD Ptk2抗体(BD-Biosciences, 610087)被用于被用于免疫组化在鸡样本上浓度为1:200 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:1000; 图 5
碧迪BD Ptk2抗体(BD Biosciences, 610088)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Cell Biol (2016) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 图 2a,2c
碧迪BD Ptk2抗体(BD, 610087)被用于被用于免疫印迹在人类样本上 (图 2a,2c). Mol Cancer (2015) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:500
碧迪BD Ptk2抗体(BD, BD610087)被用于被用于免疫印迹在人类样本上浓度为1:500. Integr Biol (Camb) (2015) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:100-1:300
碧迪BD Ptk2抗体(BD biosciences, 610087)被用于被用于免疫印迹在人类样本上浓度为1:100-1:300. Cell Struct Funct (2015) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类
碧迪BD Ptk2抗体(BD, 610088)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 图 3, 4
碧迪BD Ptk2抗体(BD Transduction Laboratories, 610087)被用于被用于免疫印迹在人类样本上 (图 3, 4). Mol Cancer Res (2015) ncbi
小鼠 单克隆(77/FAK)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
碧迪BD Ptk2抗体(BD Bioscience, 610087)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. J Virol (2014) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 1:500
碧迪BD Ptk2抗体(BD Biosciences, 77)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(77/FAK)
  • 免疫印迹; 人类; 图 4
碧迪BD Ptk2抗体(BD Biosciences, 610087)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2014) ncbi
小鼠 单克隆(77/FAK)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BD Ptk2抗体(BD Transduction Laboratories, 610088)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Cell Mol Med (2014) ncbi
文章列表
  1. Zhang L, Yao L, Zhou W, Tian J, Ruan B, Lu Z, et al. miR-497 defect contributes to gastric cancer tumorigenesis and progression via regulating CDC42/ITGB1/FAK/PXN/AKT signaling. Mol Ther Nucleic Acids. 2021;25:567-577 pubmed 出版商
  2. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  3. Hsu H, Chen H, Tsai C, Liao P, Chan Y, Lee Y, et al. Aryl Hydrocarbon Receptor Defect Attenuates Mitogen-Activated Signaling through Leucine-Rich Repeats and Immunoglobulin-like Domains 1 (LRIG1)-Dependent EGFR Degradation. Int J Mol Sci. 2021;22: pubmed 出版商
  4. Li P, Cao S, Huang Y, Zhang Y, Liu J, Cai X, et al. A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. Cell Death Discov. 2021;7:198 pubmed 出版商
  5. Yin H, Wang J, Li H, Yu Y, Wang X, Lu L, et al. Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness. Nat Commun. 2021;12:4230 pubmed 出版商
  6. Shelton W, Thomas S, Alexander H, Thomes C, Conway D, Dubash A. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep. 2021;11:13295 pubmed 出版商
  7. Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 2021;40:199 pubmed 出版商
  8. Garcia Garcia S, Rodrigo Faus M, Fonseca N, Manzano S, Gyorffy B, Ocana A, et al. HGK promotes metastatic dissemination in prostate cancer. Sci Rep. 2021;11:12287 pubmed 出版商
  9. Zhu J, Cai T, Zhou J, Du W, Zeng Y, Liu T, et al. CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer. J Exp Clin Cancer Res. 2021;40:192 pubmed 出版商
  10. Qin X, Li J, Wang S, Lv J, Luan F, Liu Y, et al. Serotonin/HTR1E signaling blocks chronic stress-promoted progression of ovarian cancer. Theranostics. 2021;11:6950-6965 pubmed 出版商
  11. Errico A, Stocco A, Riccardi V, Gambalunga A, Bassetto F, Grigatti M, et al. Neurofibromin Deficiency and Extracellular Matrix Cooperate to Increase Transforming Potential through FAK-Dependent Signaling. Cancers (Basel). 2021;13: pubmed 出版商
  12. Shi X, Wen Z, Wang Y, Liu Y, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol. 2021;9:665919 pubmed 出版商
  13. Kariya Y, Oyama M, Suzuki T, Kariya Y. αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol. 2021;4:490 pubmed 出版商
  14. Qin L, Fu X, Ma J, Lin M, Zhang P, Wang Y, et al. Kindlin-2 mediates mechanotransduction in bone by regulating expression of Sclerostin in osteocytes. Commun Biol. 2021;4:402 pubmed 出版商
  15. Li Z, Meng Y, Liu C, Liu H, Cao W, Tong C, et al. Kcnh2 mediates FAK/AKT-FOXO3A pathway to attenuate sepsis-induced cardiac dysfunction. Cell Prolif. 2021;54:e12962 pubmed 出版商
  16. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  17. Moissoglu K, Stueland M, Gasparski A, Wang T, Jenkins L, Hastings M, et al. RNA localization and co-translational interactions control RAB13 GTPase function and cell migration. EMBO J. 2020;39:e104958 pubmed 出版商
  18. Liu P, Wu D, Duan J, Xiao H, Zhou Y, Zhao L, et al. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol. 2020;37:101702 pubmed 出版商
  19. Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, et al. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. elife. 2020;9: pubmed 出版商
  20. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  21. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  22. Oguri Y, Shinoda K, Kim H, Alba D, Bolus W, Wang Q, et al. CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell. 2020;: pubmed 出版商
  23. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  24. Rigiracciolo D, Nohata N, Lappano R, Cirillo F, Talia M, Scordamaglia D, et al. IGF-1/IGF-1R/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells. 2020;9: pubmed 出版商
  25. Mondal B, Jin H, Kallappagoudar S, Sedkov Y, Martinez T, Sentmanat M, et al. The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. elife. 2020;9: pubmed 出版商
  26. Taneja N, Neininger A, Burnette D. Coupling to substrate adhesions drives the maturation of muscle stress fibers into myofibrils within cardiomyocytes. Mol Biol Cell. 2020;31:1273-1288 pubmed 出版商
  27. Park J, Burckhardt C, Lazcano R, Solis L, Isogai T, Li L, et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature. 2020;578:621-626 pubmed 出版商
  28. Lai S, Lin H, Liu Y, Yang L, Lu D. Monocarboxylate Transporter 4 Regulates Glioblastoma Motility and Monocyte Binding Ability. Cancers (Basel). 2020;12: pubmed 出版商
  29. Wang S, Zhang Q, Tiwari S, Lichinchi G, Yau E, Hui H, et al. Integrin αvβ5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. Cell Rep. 2020;30:969-983.e4 pubmed 出版商
  30. Perri A, Agosti V, Olivo E, Concolino A, Angelis M, Tammè L, et al. Histone proteomics reveals novel post-translational modifications in breast cancer. Aging (Albany NY). 2019;11:11722-11755 pubmed 出版商
  31. Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, et al. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol. 2019;: pubmed 出版商
  32. Reed M, Luissint A, Azcutia V, Fan S, O Leary M, Quirós M, et al. Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun. 2019;10:5004 pubmed 出版商
  33. Gao X, Zhao L, Liu S, Li Y, Xia S, Chen D, et al. γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Mol Cell. 2019;76:857-871.e9 pubmed 出版商
  34. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  35. Kuninty P, Bansal R, de Geus S, Mardhian D, Schnittert J, van Baarlen J, et al. ITGA5 inhibition in pancreatic stellate cells attenuates desmoplasia and potentiates efficacy of chemotherapy in pancreatic cancer. Sci Adv. 2019;5:eaax2770 pubmed 出版商
  36. Diaz Osterman C, Ozmadenci D, Kleinschmidt E, Taylor K, Barrie A, Jiang S, et al. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. elife. 2019;8: pubmed 出版商
  37. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  38. Shanbhag V, Jasmer McDonald K, Zhu S, Martin A, Gudekar N, Khan A, et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci U S A. 2019;116:6836-6841 pubmed 出版商
  39. Hlavac N, VandeVord P. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol. 2019;10:99 pubmed 出版商
  40. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  41. Mason D, Collins J, Dawahare J, Nguyen T, Lin Y, Voytik Harbin S, et al. YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. J Cell Biol. 2019;218:1369-1389 pubmed 出版商
  42. Lin C, Zhang Y, Zhang K, Zheng Y, Lu L, Chang H, et al. Fever Promotes T Lymphocyte Trafficking via a Thermal Sensory Pathway Involving Heat Shock Protein 90 and α4 Integrins. Immunity. 2019;50:137-151.e6 pubmed 出版商
  43. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  44. Baghdadi M, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, et al. Notch-Induced miR-708 Antagonizes Satellite Cell Migration and Maintains Quiescence. Cell Stem Cell. 2018;23:859-868.e5 pubmed 出版商
  45. de Jong O, van der Waals L, Kools F, Verhaar M, van Balkom B. Lysyl oxidase-like 2 is a regulator of angiogenesis through modulation of endothelial-to-mesenchymal transition. J Cell Physiol. 2019;234:10260-10269 pubmed 出版商
  46. Chen X, Wanggou S, Bodalia A, Zhu M, Dong W, Fan J, et al. A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression. Neuron. 2018;100:799-815.e7 pubmed 出版商
  47. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  48. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  49. Wang Z, Kim M, Martinez Ferrando I, Koleske A, Pandey A, Cole P. Analysis of Cellular Tyrosine Phosphorylation via Chemical Rescue of Conditionally Active Abl Kinase. Biochemistry. 2018;57:1390-1398 pubmed 出版商
  50. Palesch D, Bosinger S, Tharp G, Vanderford T, Paiardini M, Chahroudi A, et al. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature. 2018;553:77-81 pubmed 出版商
  51. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  52. Van Itallie C, Tietgens A, Aponte A, Gucek M, Cartagena Rivera A, Chadwick R, et al. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells. J Cell Sci. 2018;131: pubmed 出版商
  53. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  54. Emori T, Hirose J, Ise K, Yomoda J, Kasahara M, Shinkuma T, et al. Constitutive Activation of Integrin ?9 Augments Self-Directed Hyperplastic and Proinflammatory Properties of Fibroblast-like Synoviocytes of Rheumatoid Arthritis. J Immunol. 2017;199:3427-3436 pubmed 出版商
  55. Rashid M, Belmont J, Carpenter D, Turner C, Olson E. Neural-specific deletion of the focal adhesion adaptor protein paxillin slows migration speed and delays cortical layer formation. Development. 2017;144:4002-4014 pubmed 出版商
  56. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  57. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  58. Wu Y, Jhao Y, Cheng Y, Chen Y. 15-Deoxy-?12,14-prostaglandin J2 inhibits migration of human thyroid carcinoma cells by disrupting focal adhesion complex and adherens junction. Oncol Lett. 2017;13:2569-2576 pubmed 出版商
  59. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  60. McKay T, Hjortdal J, Priyadarsini S, Karamichos D. Acute hypoxia influences collagen and matrix metalloproteinase expression by human keratoconus cells in vitro. PLoS ONE. 2017;12:e0176017 pubmed 出版商
  61. Gerarduzzi C, Kumar R, Trivedi P, Ajay A, Iyer A, Boswell S, et al. Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight. 2017;2: pubmed 出版商
  62. Wang K, Liu W, Song Y, Wu X, Zhang Y, Li S, et al. The role of angiopoietin-2 in nucleus pulposus cells during human intervertebral disc degeneration. Lab Invest. 2017;97:971-982 pubmed 出版商
  63. Mon N, Senga T, Ito S. Interleukin-1? activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955-960 pubmed 出版商
  64. Shen C, Sun L, Zhu N, Qi F. Kindlin-1 contributes to EGF-induced re-epithelialization in skin wound healing. Int J Mol Med. 2017;39:949-959 pubmed 出版商
  65. Eppler F, Quast T, Kolanus W. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion. PLoS ONE. 2017;12:e0172443 pubmed 出版商
  66. Lemler D, Lynch M, Tesfay L, Deng Z, Paul B, Wang X, et al. DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res. 2017;19:25 pubmed 出版商
  67. Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, et al. Targeting glutamine metabolism and the focal adhesion kinase additively inhibits the mammalian target of the rapamycin pathway in spheroid cancer stem-like properties of ovarian clear cell carcinoma in vitro. Int J Oncol. 2017;50:1431-1438 pubmed 出版商
  68. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  69. Wang N, Yao F, Li K, Zhang L, Yin G, Du M, et al. Fisetin regulates astrocyte migration and proliferation in vitro. Int J Mol Med. 2017;39:783-790 pubmed 出版商
  70. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  71. Ma K, Fu W, Tang M, Zhang C, Hou T, Li R, et al. PTK2-mediated degradation of ATG3 impedes cancer cells susceptible to DNA damage treatment. Autophagy. 2017;13:579-591 pubmed 出版商
  72. Lee H, Diaz M, Price K, Ozuna J, Zhang S, Sevick Muraca E, et al. Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun. 2017;8:14122 pubmed 出版商
  73. Fallahi Sichani M, Becker V, Izar B, Baker G, Lin J, Boswell S, et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol Syst Biol. 2017;13:905 pubmed 出版商
  74. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  75. Diez Bello R, Jardin I, Salido G, Rosado J. Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochim Biophys Acta Mol Cell Res. 2017;1864:1064-1070 pubmed 出版商
  76. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  77. Wang Y, Chiang H, Huang Y, Hsu C, Yang P, Juan H, et al. A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016;7:e2458 pubmed 出版商
  78. Dragoj M, Milosević Z, Bankovic J, Tanic N, Pesic M, Stankovic T. Targeting CXCR4 and FAK reverses doxorubicin resistance and suppresses invasion in non-small cell lung carcinoma. Cell Oncol (Dordr). 2017;40:47-62 pubmed 出版商
  79. Sun L, Pan J, Yu L, Liu H, Shu X, Sun L, et al. Tumor endothelial cells promote metastasis and cancer stem cell-like phenotype through elevated Epiregulin in esophageal cancer. Am J Cancer Res. 2016;6:2277-2288 pubmed
  80. Alekhina O, Marchese A. ?-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem. 2016;291:26083-26097 pubmed
  81. Richter E, Harms M, Ventz K, Nölker R, Fraunholz M, Mostertz J, et al. Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus. J Proteome Res. 2016;15:4369-4386 pubmed
  82. Zeng F, Xie Y, Liao L, Li L, Chen B, Xie J, et al. Biological characterization of three immortalized esophageal epithelial cell lines. Mol Med Rep. 2016;14:4802-4810 pubmed 出版商
  83. Zhang C, Wang H, Bao Q, Wang L, Guo T, Chen W, et al. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget. 2016;7:73593-73606 pubmed 出版商
  84. Kishi T, Mayanagi T, Iwabuchi S, Akasaka T, Sobue K. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget. 2016;7:72113-72130 pubmed 出版商
  85. Peng D, Ungewiss C, Tong P, Byers L, Wang J, Canales J, et al. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene. 2017;36:1925-1938 pubmed 出版商
  86. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  87. Cheng F, Miao L, Wu Q, Gong X, Xiong J, Zhang J. Vinculin b deficiency causes epicardial hyperplasia and coronary vessel disorganization in zebrafish. Development. 2016;143:3522-3531 pubmed
  88. Girola N, Matsuo A, Figueiredo C, Massaoka M, Farias C, Arruda D, et al. The Ig VH complementarity-determining region 3-containing Rb9 peptide, inhibits melanoma cells migration and invasion by interactions with Hsp90 and an adhesion G-protein coupled receptor. Peptides. 2016;85:1-15 pubmed 出版商
  89. Meehan D, Delimont D, Dufek B, Zallocchi M, Phillips G, Gratton M, et al. Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice. Hear Res. 2016;341:100-108 pubmed 出版商
  90. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  91. Ryskamp D, Frye A, Phuong T, Yarishkin O, Jo A, Xu Y, et al. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye. Sci Rep. 2016;6:30583 pubmed 出版商
  92. Ling D, Chen Z, Liao Q, Feng J, Zhang X, Yin T. Differential effects of MTSS1 on invasion and proliferation in subtypes of non-small cell lung cancer cells. Exp Ther Med. 2016;12:1225-1231 pubmed
  93. Kreger B, Dougherty A, Greene K, Cerione R, Antonyak M. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem. 2016;291:19774-85 pubmed 出版商
  94. Taneja N, Fenix A, Rathbun L, Millis B, Tyska M, Hehnly H, et al. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis. Sci Rep. 2016;6:29846 pubmed 出版商
  95. Roa Espitia A, Hernández Rendón E, Baltiérrez Hoyos R, Muñoz Gotera R, Cote Vélez A, Jiménez I, et al. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation. Biol Open. 2016;5:1189-99 pubmed 出版商
  96. Carey S, Goldblatt Z, MARTIN K, Romero B, Williams R, Reinhart King C. Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integr Biol (Camb). 2016;8:821-35 pubmed 出版商
  97. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  98. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  99. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  100. Legeay S, Clere N, Hilairet G, Do Q, Bernard P, Quignard J, et al. The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells. Sci Rep. 2016;6:28546 pubmed 出版商
  101. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  102. Khan S, Sikander M, Ebeling M, Ganju A, Kumari S, Yallapu M, et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene. 2017;36:491-500 pubmed 出版商
  103. Desrochers L, Bordeleau F, Reinhart King C, Cerione R, Antonyak M. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat Commun. 2016;7:11958 pubmed 出版商
  104. Jeong A, Han S, Lee S, Su Park J, Lu Y, Yu S, et al. Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep. 2016;6:27391 pubmed 出版商
  105. CONSTANZO J, Tang K, Rindhe S, Melegari M, Liu H, Tang X, et al. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer. Neoplasia. 2016;18:282-293 pubmed 出版商
  106. Su L, Li X, Wu X, Hui B, Han S, Gao J, et al. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar. Sci Rep. 2016;6:26023 pubmed 出版商
  107. Segatto I, Massarut S, Boyle R, Baldassarre G, Walker D, Belletti B. Preclinical validation of a novel compound targeting p70S6 kinase in breast cancer. Aging (Albany NY). 2016;8:958-76 pubmed 出版商
  108. Jadav R, Kumar D, Buwa N, Ganguli S, Thampatty S, Balasubramanian N, et al. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice. Cell Signal. 2016;28:1124-36 pubmed 出版商
  109. SILVA P, Mendoza P, Rivas S, Diaz J, Moraga C, Quest A, et al. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis. Oncotarget. 2016;7:29548-62 pubmed 出版商
  110. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  111. Laklai H, Miroshnikova Y, Pickup M, Collisson E, Kim G, Barrett A, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497-505 pubmed 出版商
  112. von Mässenhausen A, SANDERS C, Thewes B, Deng M, Queisser A, Vogel W, et al. MERTK as a novel therapeutic target in head and neck cancer. Oncotarget. 2016;7:32678-94 pubmed 出版商
  113. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  114. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  115. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  116. Mukherjee D, Lu H, Yu L, He C, Lahiri S, Li T, et al. Krüppel-like factor 8 activates the transcription of C-X-C cytokine receptor type 4 to promote breast cancer cell invasion, transendothelial migration and metastasis. Oncotarget. 2016;7:23552-68 pubmed 出版商
  117. Hayashi K, Michiue H, Yamada H, Takata K, Nakayama H, Wei F, et al. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Sci Rep. 2016;6:23372 pubmed 出版商
  118. Scott D, Tolbert C, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell. 2016;27:1420-30 pubmed 出版商
  119. Budina Kolomets A, Webster M, Leu J, Jennis M, Krepler C, Guerrini A, et al. HSP70 Inhibition Limits FAK-Dependent Invasion and Enhances the Response to Melanoma Treatment with BRAF Inhibitors. Cancer Res. 2016;76:2720-30 pubmed 出版商
  120. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  121. Sugar T, Wassenhove McCarthy D, Orr A, Green J, van Kuppevelt T, McCarthy K. N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions. Am J Physiol Renal Physiol. 2016;310:F1123-35 pubmed 出版商
  122. Kenific C, Stehbens S, Goldsmith J, Leidal A, Faure N, Ye J, et al. NBR1 enables autophagy-dependent focal adhesion turnover. J Cell Biol. 2016;212:577-90 pubmed 出版商
  123. Tang E, Lee W, Cheng C. Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis. Endocrinology. 2016;157:1644-59 pubmed 出版商
  124. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  125. Long K, Moss L, Laursen L, Boulter L, ffrench Constant C. Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin. Nat Commun. 2016;7:10354 pubmed 出版商
  126. Horton E, Humphries J, Stutchbury B, Jacquemet G, Ballestrem C, Barry S, et al. Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. J Cell Biol. 2016;212:349-64 pubmed 出版商
  127. Theodosiou M, Widmaier M, Böttcher R, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. elife. 2016;5:e10130 pubmed 出版商
  128. Luey B, May F. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8 pubmed 出版商
  129. Dave J, Abbey C, Duran C, Seo H, Johnson G, Bayless K. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci. 2016;129:743-56 pubmed 出版商
  130. da Silva P, Do Amaral V, Gabrielli V, Montt Guevara M, Mannella P, Baracat E, et al. Prolactin Promotes Breast Cancer Cell Migration through Actin Cytoskeleton Remodeling. Front Endocrinol (Lausanne). 2015;6:186 pubmed 出版商
  131. Ungewiss C, Rizvi Z, Roybal J, Peng D, Gold K, Shin D, et al. The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Sci Rep. 2016;6:18652 pubmed 出版商
  132. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  133. Wu J, Chen Y, Kuo C, Wenshin Yu H, Chen Y, Chiou A, et al. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration. Sci Rep. 2015;5:18476 pubmed 出版商
  134. Li N, Mruk D, Mok K, Li M, Wong C, Lee W, et al. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. FASEB J. 2016;30:1436-52 pubmed 出版商
  135. Oudart J, Doué M, Vautrin A, Brassart B, Sellier C, Dupont Deshorgue A, et al. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget. 2016;7:1516-28 pubmed 出版商
  136. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  137. Wang S, Hsu J, Ko C, Chiu N, Kan W, Lai M, et al. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol. 2016;53:5912-5927 pubmed 出版商
  138. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed 出版商
  139. Horton E, Byron A, Askari J, Ng D, Millon Frémillon A, Robertson J, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol. 2015;17:1577-1587 pubmed 出版商
  140. Sugiyama S, Yoshino Y, Kuriyama S, Inoue M, Komine K, Otsuka K, et al. A Curcumin Analog, GO-Y078, Effectively Inhibits Angiogenesis through Actin Disorganization. Anticancer Agents Med Chem. 2016;16:633-47 pubmed
  141. Fuhrmann A, Engler A. The cytoskeleton regulates cell attachment strength. Biophys J. 2015;109:57-65 pubmed 出版商
  142. Zhang J, Gao Q, Zhou Y, Dier U, Hempel N, Hochwald S. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene. 2016;35:1926-42 pubmed 出版商
  143. Cáceres M, Ortiz L, Recabarren T, Romero A, Colombo A, Leiva Salcedo E, et al. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility. PLoS ONE. 2015;10:e0130540 pubmed 出版商
  144. Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed 出版商
  145. Kiss A, Gong X, Kowalewski J, Shafqat Abbasi H, Strömblad S, Lock J. Non-monotonic cellular responses to heterogeneity in talin protein expression-level. Integr Biol (Camb). 2015;7:1171-85 pubmed 出版商
  146. Bhang S, Han J, Jang H, Noh M, La W, Yi M, et al. pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials. 2015;55:33-43 pubmed 出版商
  147. Iguchi Y, Ishihara S, Uchida Y, Tajima K, Mizutani T, Kawabata K, et al. Filamin B Enhances the Invasiveness of Cancer Cells into 3D Collagen Matrices. Cell Struct Funct. 2015;40:61-7 pubmed 出版商
  148. Pasiliao C, Chang C, Sutherland B, Valdez S, Schaeffer D, Yapp D, et al. The involvement of insulin-like growth factor 2 binding protein 3 (IMP3) in pancreatic cancer cell migration, invasion, and adhesion. BMC Cancer. 2015;15:266 pubmed 出版商
  149. Richter E, Harms M, Ventz K, Gierok P, Chilukoti R, Hildebrandt J, et al. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS ONE. 2015;10:e0122089 pubmed 出版商
  150. Hoekstra E, Kodach L, Das A, Ruela de Sousa R, Ferreira C, Hardwick J, et al. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer. Oncotarget. 2015;6:8300-12 pubmed
  151. Choi C, Kim Y, Sohn J, Lee H, Kim W. Focal adhesion kinase and Src expression in premalignant and malignant skin lesions. Exp Dermatol. 2015;24:361-4 pubmed 出版商
  152. Robertson J, Jacquemet G, Byron A, Jones M, Warwood S, Selley J, et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun. 2015;6:6265 pubmed 出版商
  153. Shen Y, Gao M, Ma Y, Yu H, Cui F, Gregersen H, et al. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration. Colloids Surf B Biointerfaces. 2015;126:188-97 pubmed 出版商
  154. Inaba J, McConnell E, Davis K. Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Int J Mol Sci. 2014;15:23705-24 pubmed 出版商
  155. Guckenberger D, Berthier E, Beebe D. High-density self-contained microfluidic KOALA kits for use by everyone. J Lab Autom. 2015;20:146-53 pubmed 出版商
  156. Zhang Z, Nie F, Chen X, Qin Z, Kang C, Chen B, et al. Upregulated periostin promotes angiogenesis in keloids through activation of the ERK 1/2 and focal adhesion kinase pathways, as well as the upregulated expression of VEGF and angiopoietin‑1. Mol Med Rep. 2015;11:857-64 pubmed 出版商
  157. Niu G, Ye T, Qin L, Bourbon P, Chang C, Zhao S, et al. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin β4. FASEB J. 2015;29:131-40 pubmed 出版商
  158. Puig M, Lugo R, Gabasa M, Giménez A, Velásquez A, Galgoczy R, et al. Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer. Mol Cancer Res. 2015;13:161-73 pubmed 出版商
  159. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  160. Sa S, Wong L, McCloskey K. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access. 2014;3:150-61 pubmed 出版商
  161. Jacobshagen M, Niquille M, Chaumont Dubel S, Marin P, Dayer A. The serotonin 6 receptor controls neuronal migration during corticogenesis via a ligand-independent Cdk5-dependent mechanism. Development. 2014;141:3370-7 pubmed 出版商
  162. Cheshenko N, Trepanier J, González P, Eugenin E, Jacobs W, Herold B. Herpes simplex virus type 2 glycoprotein H interacts with integrin ?v?3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells. J Virol. 2014;88:10026-38 pubmed 出版商
  163. Sallam A, Mohyeldin M, Foudah A, Akl M, Nazzal S, Meyer S, et al. Marine natural products-inspired phenylmethylene hydantoins with potent in vitro and in vivo antitumor activities via suppression of Brk and FAK signaling. Org Biomol Chem. 2014;12:5295-303 pubmed 出版商
  164. Bassagañas S, Carvalho S, Dias A, Pérez Garay M, Ortiz M, Figueras J, et al. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of ?2?1 integrin and E-cadherin function. PLoS ONE. 2014;9:e98595 pubmed 出版商
  165. Zhu Z, Liu Y, Li K, Liu J, Wang H, Sun B, et al. Protein tyrosine phosphatase receptor U (PTPRU) is required for glioma growth and motility. Carcinogenesis. 2014;35:1901-10 pubmed 出版商
  166. Elliott V, Rychahou P, Zaytseva Y, Evers B. Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model. PLoS ONE. 2014;9:e97432 pubmed 出版商
  167. Flamini M, Gauna G, Sottile M, Nadin B, Sanchez A, Vargas Roig L. Retinoic acid reduces migration of human breast cancer cells: role of retinoic acid receptor beta. J Cell Mol Med. 2014;18:1113-23 pubmed 出版商
  168. Singel S, Batten K, Cornelius C, Jia G, Fasciani G, Barron S, et al. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways. Breast Cancer Res. 2014;16:R28 pubmed 出版商
  169. Dave J, Kang H, Abbey C, Maxwell S, Bayless K. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem. 2013;288:30720-33 pubmed 出版商
  170. Xiao X, Cheng C, Mruk D. Intercellular adhesion molecule-2 is involved in apical ectoplasmic specialization dynamics during spermatogenesis in the rat. J Endocrinol. 2013;216:73-86 pubmed 出版商
  171. Tomar A, Lawson C, Ghassemian M, Schlaepfer D. Cortactin as a target for FAK in the regulation of focal adhesion dynamics. PLoS ONE. 2012;7:e44041 pubmed 出版商
  172. Cole C, Hansen S, Barath M, Rushton G, Gardiner J, Avizienyte E, et al. Synthetic heparan sulfate oligosaccharides inhibit endothelial cell functions essential for angiogenesis. PLoS ONE. 2010;5:e11644 pubmed 出版商
  173. Huot M, Brown C, Lamarche Vane N, Richard S. An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization. Mol Cell Biol. 2009;29:1933-43 pubmed 出版商
  174. Lopes M, Ribeiro G, Tornatore T, Clemente C, Teixeira V, Franchini K. Increased expression and phosphorylation of focal adhesion kinase correlates with dysfunction in the volume-overloaded human heart. Clin Sci (Lond). 2007;113:195-204 pubmed