这是一篇来自已证抗体库的有关大鼠 蛋白酪氨酸磷酸酶受体C (Ptprc) 的综述,是根据116篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合蛋白酪氨酸磷酸酶受体C 抗体。
蛋白酪氨酸磷酸酶受体C 同义词: CD45; L-CA; Lca; RT7; T200

其他
蛋白酪氨酸磷酸酶受体C抗体(eBioscience, UCHL1)被用于. J Allergy Clin Immunol (2018) ncbi
赛默飞世尔
小鼠 单克隆(UCHL1)
  • 免疫组化; 人类; 图 4g
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(ThermoFisher Scientific, UCHL1)被用于被用于免疫组化在人类样本上 (图 4g). Nat Commun (2020) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 图 e4d
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, UCHL1)被用于被用于流式细胞仪在人类样本上 (图 e4d). Nature (2019) ncbi
小鼠 单克隆(HIS24)
  • 流式细胞仪; 大鼠; 图 4b
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, HIS24)被用于被用于流式细胞仪在大鼠样本上 (图 4b). PLoS ONE (2019) ncbi
小鼠 单克隆(HIS24)
  • 流式细胞仪; 大鼠; 1:400; 图 4b
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, His24)被用于被用于流式细胞仪在大鼠样本上浓度为1:400 (图 4b). J Immunol (2018) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 1:200; 图 9a
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, OX1)被用于被用于流式细胞仪在大鼠样本上浓度为1:200 (图 9a). J Immunol (2018) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, UCHL1)被用于被用于流式细胞仪在人类样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, UCHL1)被用于被用于流式细胞仪在人类样本上 (图 1a). J Allergy Clin Immunol (2018) ncbi
小鼠 单克隆(UCHL1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7a
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Thermo Fisher Scientific, MA5-11532)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7a). Exp Mol Pathol (2017) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, UCHL1)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2017) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 图 s1a
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, OX-33)被用于被用于流式细胞仪在大鼠样本上 (图 s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(UCHL1)
  • 免疫组化-冰冻切片; 人类; 表 2
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(ThermoFisher Scientific, UCHL1)被用于被用于免疫组化-冰冻切片在人类样本上 (表 2). Int J Cancer (2017) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 图 s3b
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, UCHL1)被用于被用于流式细胞仪在人类样本上 (图 s3b). Oncotarget (2016) ncbi
小鼠 单克隆(OX1)
  • 流式细胞仪; 大鼠; 1:50; 图 1
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, 11-0461)被用于被用于流式细胞仪在大鼠样本上浓度为1:50 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(OX1)
  • 流式细胞仪; 大鼠; 1:200; 图 1
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, 11-0461)被用于被用于流式细胞仪在大鼠样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(OX1)
  • 流式细胞仪; 大鼠; 图 1
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBioscience, 11-0461)被用于被用于流式细胞仪在大鼠样本上 (图 1). Int J Mol Med (2015) ncbi
小鼠 单克隆(HIS24)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(eBiosciences, 12-0460)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2). PLoS Biol (2015) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Invitrogen, OX-33)被用于被用于流式细胞仪在大鼠样本上. Neuroimmunomodulation (2015) ncbi
小鼠 单克隆(UCHL1)
  • 免疫组化; 人类
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Thermo Scientific, UCHL-1)被用于被用于免疫组化在人类样本上. Dis Markers (2014) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, OX-33)被用于被用于流式细胞仪在大鼠样本上. Front Behav Neurosci (2014) ncbi
小鼠 单克隆(UCHL1)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Zymed, UCHL1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncol Lett (2014) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, UCHL1)被用于被用于流式细胞仪在人类样本上. J Am Heart Assoc (2012) ncbi
小鼠 单克隆(UCHL1)
  • 免疫组化-石蜡切片; 人类; 表 4
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Zymed, clone UCHL1)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). J Cutan Pathol (2012) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Invitrogen, Clone UCHL1)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2012) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 1:100; 表 3
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(ZYMED, UCHL1)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 3). Cytopathology (2012) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 表 1
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, OX-33)被用于被用于流式细胞仪在大鼠样本上 (表 1). Front Behav Neurosci (2011) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, UCHL-1)被用于被用于流式细胞仪在人类样本上 (图 2). Clin Exp Immunol (2008) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, UCHL1)被用于被用于流式细胞仪在人类样本上. J Immunol (2006) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 图 2
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(CALTAG, OX-33)被用于被用于流式细胞仪在大鼠样本上 (图 2). J Neuroimmunol (2005) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, UCHL1)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2001) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, UCHL1)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (1999) ncbi
小鼠 单克隆(UCHL1)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, UCHL1)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (1998) ncbi
小鼠 单克隆(UCHL1)
  • 免疫组化-冰冻切片; 人类; 图 1
  • 流式细胞仪; 人类
  • 免疫沉淀; 人类; 图 2
赛默飞世尔蛋白酪氨酸磷酸酶受体C抗体(Caltag, UCHL1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1), 被用于流式细胞仪在人类样本上 和 被用于免疫沉淀在人类样本上 (图 2). Immunology (1986) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于流式细胞仪在人类样本上. Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化在小鼠样本上浓度为1:100. Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2e
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化在小鼠样本上 (图 s2e). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4g
  • 免疫印迹; 小鼠; 1:500; 图 5b
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, AB10558)被用于被用于免疫组化在大鼠样本上浓度为1:100. Exp Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7b
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, Ab10558)被用于被用于免疫组化在小鼠样本上 (图 7b). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 s3-2a
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s3-2a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). Front Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 家羊; 1:500; 图 3h
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:500 (图 3h). Front Physiol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1c). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s13e
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化在小鼠样本上 (图 s13e). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1a). Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 s1
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1). Bone Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3e). Breast Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(abcam, ab10558)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6a). Diabetes (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:3000; 图 3
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(abcam, ab10558)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3c
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(AbCam, ab10558)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). PLoS Pathog (2016) ncbi
小鼠 单克隆(MRC OX-22)
  • 流式细胞仪; 大鼠
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, OX-22)被用于被用于流式细胞仪在大鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 大鼠; 图 1
  • 流式细胞仪; domestic rabbit; 图 1
艾博抗(上海)贸易有限公司蛋白酪氨酸磷酸酶受体C抗体(Abcam, ab10558)被用于被用于流式细胞仪在大鼠样本上 (图 1) 和 被用于流式细胞仪在domestic rabbit样本上 (图 1). Sci Rep (2016) ncbi
BioLegend
小鼠 单克隆(OX-33)
  • 流式细胞仪; 小鼠; 图 4b, 4c, 4d
BioLegend蛋白酪氨酸磷酸酶受体C抗体(Biolegend, 202307)被用于被用于流式细胞仪在小鼠样本上 (图 4b, 4c, 4d). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 2b
BioLegend蛋白酪氨酸磷酸酶受体C抗体(BioLegend Inc, 202205)被用于被用于流式细胞仪在大鼠样本上 (图 2b). Connect Tissue Res (2019) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 s1j
BioLegend蛋白酪氨酸磷酸酶受体C抗体(Biolegend, OX-1)被用于被用于流式细胞仪在大鼠样本上 (图 s1j). Nature (2019) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 图 1a
BioLegend蛋白酪氨酸磷酸酶受体C抗体(Biolegend, 202318)被用于被用于流式细胞仪在大鼠样本上 (图 1a). Stem Cell Reports (2018) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 1a
BioLegend蛋白酪氨酸磷酸酶受体C抗体(Biolegend, 202216)被用于被用于流式细胞仪在大鼠样本上 (图 1a). Stem Cell Reports (2018) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 1a
BioLegend蛋白酪氨酸磷酸酶受体C抗体(Biolegend, OX-1)被用于被用于流式细胞仪在大鼠样本上 (图 1a). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 1.25 ug/ml; 图 7
BioLegend蛋白酪氨酸磷酸酶受体C抗体(BioLegend, 202212)被用于被用于流式细胞仪在大鼠样本上浓度为1.25 ug/ml (图 7). Front Syst Neurosci (2016) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 s1
BioLegend蛋白酪氨酸磷酸酶受体C抗体(biolegend, 202213)被用于被用于流式细胞仪在大鼠样本上 (图 s1). J Immunol (2015) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 1
BioLegend蛋白酪氨酸磷酸酶受体C抗体(BioLegend, 202207)被用于被用于流式细胞仪在大鼠样本上 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠
BioLegend蛋白酪氨酸磷酸酶受体C抗体(Biolegend, 202207)被用于被用于流式细胞仪在大鼠样本上. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 图 6
BioLegend蛋白酪氨酸磷酸酶受体C抗体(BioLegend, OX-33)被用于被用于流式细胞仪在大鼠样本上 (图 6). J Immunol (2015) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 1:200
BioLegend蛋白酪氨酸磷酸酶受体C抗体(BioLegend, 202307)被用于被用于流式细胞仪在大鼠样本上浓度为1:200. J Neuroinflammation (2015) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 5
BioLegend蛋白酪氨酸磷酸酶受体C抗体(Biolegend, OX- 1)被用于被用于流式细胞仪在大鼠样本上 (图 5). Mol Neurobiol (2016) ncbi
小鼠 单克隆(OX-22)
  • 流式细胞仪; 大鼠; 图 2
BioLegend蛋白酪氨酸磷酸酶受体C抗体(BioLegend, OX-22)被用于被用于流式细胞仪在大鼠样本上 (图 2). Eur J Immunol (2015) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 s6
BioLegend蛋白酪氨酸磷酸酶受体C抗体(BioLegend, OX-1)被用于被用于流式细胞仪在大鼠样本上 (图 s6). Eur J Immunol (2015) ncbi
小鼠 单克隆(OX-1)
BioLegend蛋白酪氨酸磷酸酶受体C抗体(BioLegend, OX-1)被用于. J Immunol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(OX1)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 s4d
圣克鲁斯生物技术蛋白酪氨酸磷酸酶受体C抗体(Santa Cruz, sc-53045)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 s4d). J Neuroinflammation (2020) ncbi
小鼠 单克隆(6A230)
  • 流式细胞仪; 大鼠; 图 1c
圣克鲁斯生物技术蛋白酪氨酸磷酸酶受体C抗体(Santa Cruz, sc-70696)被用于被用于流式细胞仪在大鼠样本上 (图 1c). Acta Biomater (2016) ncbi
小鼠 单克隆(35-Z6)
  • 免疫细胞化学; 人类; 图 6b
圣克鲁斯生物技术蛋白酪氨酸磷酸酶受体C抗体(Santa Cruz Biotechnology, 35-Z6)被用于被用于免疫细胞化学在人类样本上 (图 6b). PLoS ONE (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 图 6b
圣克鲁斯生物技术蛋白酪氨酸磷酸酶受体C抗体(Santa Cruz Biotechnology, 35-Z6)被用于被用于免疫细胞化学在人类样本上 (图 6b). PLoS ONE (2015) ncbi
小鼠 单克隆(35-Z6)
  • 免疫印迹; 人类; 图 8b
圣克鲁斯生物技术蛋白酪氨酸磷酸酶受体C抗体(Santa-Cruz, sc-1178)被用于被用于免疫印迹在人类样本上 (图 8b). J Immunol (2015) ncbi
小鼠 单克隆(35-Z6)
  • 免疫印迹; 人类
圣克鲁斯生物技术蛋白酪氨酸磷酸酶受体C抗体(Santa Cruz, sc-1178)被用于被用于免疫印迹在人类样本上. Clin Ther (2014) ncbi
小鼠 单克隆(35-Z6)
  • 免疫组化; 小鼠
圣克鲁斯生物技术蛋白酪氨酸磷酸酶受体C抗体(Santa Cruz, sc-1178)被用于被用于免疫组化在小鼠样本上. Kidney Int (2013) ncbi
小鼠 单克隆(OX33)
  • 流式细胞仪; 小鼠; 1:10; 图 6
圣克鲁斯生物技术蛋白酪氨酸磷酸酶受体C抗体(SCBT, sc-53048)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 6). BMC Immunol (2012) ncbi
Novus Biologicals
大鼠 单克隆(30-F11)
  • 免疫组化; 小鼠; 图 5
Novus Biologicals蛋白酪氨酸磷酸酶受体C抗体(Novusbio, 30-F11)被用于被用于免疫组化在小鼠样本上 (图 5). Sci Rep (2021) ncbi
大鼠 单克隆(30-F11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1c
Novus Biologicals蛋白酪氨酸磷酸酶受体C抗体(Novus, NB100-77417)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1c). Clin Exp Metastasis (2021) ncbi
大鼠 单克隆(30-F11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s9a
Novus Biologicals蛋白酪氨酸磷酸酶受体C抗体(Novus, 30-F11)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s9a). Science (2018) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(OX-1)
  • 免疫组化; 大鼠; 1:200; 图 7
伯乐(Bio-Rad)公司蛋白酪氨酸磷酸酶受体C抗体(Serotech, MCA43R)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 7). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(OX-22)
  • 流式细胞仪; 大鼠; 图 s7
伯乐(Bio-Rad)公司蛋白酪氨酸磷酸酶受体C抗体(AbD Serotec, OX-22)被用于被用于流式细胞仪在大鼠样本上 (图 s7). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(OX-33)
  • 免疫组化; 大鼠; 图 62
  • 免疫组化-冰冻切片; African green monkey; 1:4000
  • 免疫组化-石蜡切片; African green monkey; 1:10,000
伯乐(Bio-Rad)公司蛋白酪氨酸磷酸酶受体C抗体(Bio-Rad Laboratories, MCA340G)被用于被用于免疫组化在大鼠样本上 (图 62), 被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:4000 和 被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:10,000. J Toxicol Pathol (2017) ncbi
小鼠 单克隆(OX-1)
  • 免疫组化-冰冻切片; 大鼠; 图 5
伯乐(Bio-Rad)公司蛋白酪氨酸磷酸酶受体C抗体(AbD Serotec, MCA43R)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5). Inflammation (2016) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠
伯乐(Bio-Rad)公司蛋白酪氨酸磷酸酶受体C抗体(AbD Serotec, MCA340FT)被用于被用于流式细胞仪在大鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(OX-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3b
伯乐(Bio-Rad)公司蛋白酪氨酸磷酸酶受体C抗体(AbD Serotec, MCA43GA)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3b). BMC Musculoskelet Disord (2015) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 1:30; 图 2
伯乐(Bio-Rad)公司蛋白酪氨酸磷酸酶受体C抗体(Serotec, MCA 43A647)被用于被用于流式细胞仪在大鼠样本上浓度为1:30 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 1:100; 表 2
伯乐(Bio-Rad)公司蛋白酪氨酸磷酸酶受体C抗体(AbD Serotec, MCA43FT)被用于被用于流式细胞仪在大鼠样本上浓度为1:100 (表 2). Mol Med Rep (2015) ncbi
美天旎
人类 单克隆(REA504)
  • 流式细胞仪; 大鼠; 图 5a
美天旎蛋白酪氨酸磷酸酶受体C抗体(Miltenyi Biotec, REA504)被用于被用于流式细胞仪在大鼠样本上 (图 5a). FASEB J (2018) ncbi
碧迪BD
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 s2b
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, OX-1)被用于被用于流式细胞仪在大鼠样本上 (图 s2b). PLoS Genet (2019) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 图 5a
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Pharmingen, OX-33)被用于被用于流式细胞仪在大鼠样本上 (图 5a). PLoS ONE (2019) ncbi
小鼠 单克隆(HIS24)
  • 流式细胞仪; 大鼠; 图 2c, 2d
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, HIS24(20))被用于被用于流式细胞仪在大鼠样本上 (图 2c, 2d). Invest Ophthalmol Vis Sci (2018) ncbi
小鼠 单克隆(OX-33)
  • 免疫组化-冰冻切片; 大鼠; 1:50
  • 免疫组化; 大鼠; 图 61
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 554882)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 和 被用于免疫组化在大鼠样本上 (图 61). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 3b
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, 561867)被用于被用于流式细胞仪在大鼠样本上 (图 3b). Sci Rep (2017) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, 554875)被用于被用于流式细胞仪在大鼠样本上. Tissue Cell (2017) ncbi
小鼠 单克隆(69/CD45)
  • 免疫组化; 小鼠; 图 1g
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Bioscience, 610266)被用于被用于免疫组化在小鼠样本上 (图 1g). Nature (2016) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 1c
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 559135)被用于被用于流式细胞仪在大鼠样本上 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 1
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Horizon, 561587)被用于被用于流式细胞仪在大鼠样本上 (图 1). Front Endocrinol (Lausanne) (2016) ncbi
小鼠 单克隆(69/CD45)
  • 免疫组化-冰冻切片; 小鼠; 图 5k
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 610266)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5k). PLoS ONE (2016) ncbi
小鼠 单克隆(OX-1)
  • 免疫组化-冰冻切片; 大鼠; 图 s3
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Pharmingen, Ox-1)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s3). J Neuroinflammation (2016) ncbi
小鼠 单克隆(OX-33)
  • 免疫组化-冰冻切片; 大鼠
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Pharmingen, OX33)被用于被用于免疫组化-冰冻切片在大鼠样本上. J Neuroinflammation (2016) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 2
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 554878)被用于被用于流式细胞仪在大鼠样本上 (图 2). J Mater Sci Mater Med (2016) ncbi
小鼠 单克隆(OX-1)
  • 其他; 大鼠
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Pharmingen, 554875)被用于被用于其他在大鼠样本上. Cell Med (2015) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 1:5; 图 1
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, 561867)被用于被用于流式细胞仪在大鼠样本上浓度为1:5 (图 1). Stem Cells Int (2016) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 1:50; 图 2
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 554877)被用于被用于流式细胞仪在大鼠样本上浓度为1:50 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 1
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 554877)被用于被用于流式细胞仪在大鼠样本上 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 2b
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, OX-1)被用于被用于流式细胞仪在大鼠样本上 (图 2b). Brain Behav Immun (2015) ncbi
小鼠 单克隆(OX-22)
  • 流式细胞仪; 大鼠; 图 2b
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, OX-22)被用于被用于流式细胞仪在大鼠样本上 (图 2b). Brain Behav Immun (2015) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 图 4
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, OX-33)被用于被用于流式细胞仪在大鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 图 10A
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, 561624)被用于被用于流式细胞仪在大鼠样本上 (图 10A). Transplantation (2015) ncbi
小鼠 单克隆(HIS24)
  • 流式细胞仪; 大鼠; 图 10A
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, 561876)被用于被用于流式细胞仪在大鼠样本上 (图 10A). Transplantation (2015) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 人类; 图 4
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, OX-33)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 图 5
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD biosciences, 561867)被用于被用于流式细胞仪在大鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(OX-33)
  • 免疫组化-冰冻切片; 大鼠; 图 6
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 554882)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6). J Immunotoxicol (2015) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 559135)被用于被用于流式细胞仪在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠; 表 1
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, OX-33)被用于被用于流式细胞仪在大鼠样本上 (表 1). Am J Transplant (2014) ncbi
小鼠 单克隆(OX-33)
  • 免疫组化-石蜡切片; 大鼠; 图 1
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Pharmingen, OX33)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1). Methods Mol Biol (2014) ncbi
小鼠 单克隆(OX-33)
  • 流式细胞仪; 大鼠
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 551402)被用于被用于流式细胞仪在大鼠样本上. J Endocrinol (2014) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 小鼠
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Pharmingen, 561867)被用于被用于流式细胞仪在小鼠样本上. J Gerontol A Biol Sci Med Sci (2014) ncbi
小鼠 单克隆(OX-1)
  • 流式细胞仪; 大鼠; 1:100
  • 免疫细胞化学; 大鼠; 1:100
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 554875)被用于被用于流式细胞仪在大鼠样本上浓度为1:100 和 被用于免疫细胞化学在大鼠样本上浓度为1:100. J Tissue Eng Regen Med (2014) ncbi
小鼠 单克隆(HIS24)
  • 免疫组化-石蜡切片; 大鼠; 1:100
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD Biosciences, 554879)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. J Tissue Eng Regen Med (2014) ncbi
小鼠 单克隆(OX-1)
  • 免疫组化; 小鼠; 5 ug/ml
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, 554875)被用于被用于免疫组化在小鼠样本上浓度为5 ug/ml. FASEB J (2012) ncbi
小鼠 单克隆(OX-1)
  • 免疫组化; 大鼠
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, OX-1)被用于被用于免疫组化在大鼠样本上. J Immunol (2007) ncbi
小鼠 单克隆(HIS24)
  • 流式细胞仪; 大鼠
  • 免疫组化; 大鼠
碧迪BD蛋白酪氨酸磷酸酶受体C抗体(BD, HIS24)被用于被用于流式细胞仪在大鼠样本上 和 被用于免疫组化在大鼠样本上. J Immunol (2007) ncbi
文章列表
  1. Zhang S, Zhu D, Li Z, Huang K, Hu S, Lutz H, et al. A stem cell-derived ovarian regenerative patch restores ovarian function and rescues fertility in rats with primary ovarian insufficiency. Theranostics. 2021;11:8894-8908 pubmed 出版商
  2. Hülser M, Luo Y, Frommer K, Hasseli R, Köhler K, Diller M, et al. Systemic versus local adipokine expression differs in a combined obesity and osteoarthritis mouse model. Sci Rep. 2021;11:17001 pubmed 出版商
  3. Goonetilleke M, Kuk N, Correia J, Hodge A, Moore G, Gantier M, et al. Addressing the liver progenitor cell response and hepatic oxidative stress in experimental non-alcoholic fatty liver disease/non-alcoholic steatohepatitis using amniotic epithelial cells. Stem Cell Res Ther. 2021;12:429 pubmed 出版商
  4. Gao D, Salomonis N, Henderlight M, Woods C, Thakkar K, Grom A, et al. IFN-γ is essential for alveolar macrophage-driven pulmonary inflammation in macrophage activation syndrome. JCI Insight. 2021;6: pubmed 出版商
  5. Wutschka J, Kast B, Sator Schmitt M, Appak Baskoy S, Hess J, Sinn H, et al. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis. 2021;38:411-423 pubmed 出版商
  6. West J, Austin E, Rizzi E, Yan L, Tanjore H, Crabtree A, et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci. 2021;22: pubmed 出版商
  7. Mou S, Zhou Z, Feng H, Zhang N, Lin Z, Aiyasiding X, et al. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol. 2021;12:648688 pubmed 出版商
  8. Yang J, Chung S, Yun K, Kim B, So S, Kang S, et al. Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats. Exp Mol Med. 2021;53:631-642 pubmed 出版商
  9. Reyes J, Ekmark Lewén S, Perdiki M, Klingstedt T, Hoffmann A, Wiechec E, et al. Accumulation of alpha-synuclein within the liver, potential role in the clearance of brain pathology associated with Parkinson's disease. Acta Neuropathol Commun. 2021;9:46 pubmed 出版商
  10. Li N, Rignault Clerc S, Bielmann C, Bon Mathier A, Déglise T, Carboni A, et al. Increasing heart vascularisation after myocardial infarction using brain natriuretic peptide stimulation of endothelial and WT1+ epicardial cells. elife. 2020;9: pubmed 出版商
  11. Ferrara M, Chialli G, Ferreira L, Ruggieri E, Careccia G, Preti A, et al. Oxidation of HMGB1 Is a Dynamically Regulated Process in Physiological and Pathological Conditions. Front Immunol. 2020;11:1122 pubmed 出版商
  12. Liu X, Kong W, Peterson C, McGrail D, Hoang A, Zhang X, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11:2135 pubmed 出版商
  13. Smith M, Chan K, Papagianis P, Nitsos I, Zahra V, Allison B, et al. Umbilical Cord Blood Cells Do Not Reduce Ventilation-Induced Lung Injury in Preterm Lambs. Front Physiol. 2020;11:119 pubmed 出版商
  14. Chen C, Chencheng Z, Cuiying L, Xiaokun G. Plasmacytoid Dendritic Cells Protect Against Middle Cerebral Artery Occlusion Induced Brain Injury by Priming Regulatory T Cells. Front Cell Neurosci. 2020;14:8 pubmed 出版商
  15. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  16. Vargas Caraveo A, Sayd A, Robledo Montaña J, Caso J, Madrigal J, Garcia Bueno B, et al. Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs. J Neuroinflammation. 2020;17:6 pubmed 出版商
  17. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  18. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  19. Nan L, Wang F, Ran D, Zhou S, Liu Y, Zhang Z, et al. Naringin alleviates H2O2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res. 2019;:1-14 pubmed 出版商
  20. Gao Y, Wei L, Wang C, Huang Y, Li W, Li T, et al. Chronic prostatitis alters the prostatic microenvironment and accelerates preneoplastic lesions in C57BL/6 mice. Biol Res. 2019;52:30 pubmed 出版商
  21. Ding L, Shunkwiler L, Harper N, Zhao Y, Hinohara K, Huh S, et al. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genet. 2019;15:e1008002 pubmed 出版商
  22. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  23. Bath N, Ding X, Wilson N, Verhoven B, Boldt B, Sukhwal A, et al. Desensitization and treatment with APRIL/BLyS blockade in rodent kidney transplant model. PLoS ONE. 2019;14:e0211865 pubmed 出版商
  24. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  25. Pridans C, Raper A, Davis G, Alves J, Sauter K, Lefèvre L, et al. Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the Csf1r Locus. J Immunol. 2018;201:2683-2699 pubmed 出版商
  26. Yang X, Zhou J, He J, Liu J, Wang H, Liu Y, et al. An Immune System-Modified Rat Model for Human Stem Cell Transplantation Research. Stem Cell Reports. 2018;11:514-521 pubmed 出版商
  27. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  28. Pepple K, Wilson L, Van Gelder R. Comparison of Aqueous and Vitreous Lymphocyte Populations From Two Rat Models of Experimental Uveitis. Invest Ophthalmol Vis Sci. 2018;59:2504-2511 pubmed 出版商
  29. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  30. Lin Z, Wang S, Chen L, Zhuang J, Ke Q, Xiao D, et al. Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia. Front Cell Neurosci. 2017;11:391 pubmed 出版商
  31. Pizzolla A, Nguyen T, Sant S, Jaffar J, Loudovaris T, Mannering S, et al. Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. J Clin Invest. 2018;128:721-733 pubmed 出版商
  32. Wang Y, Lin Y, Wu Y, Yao Z, Tang J, Shen L, et al. Expression and Cellular Localization of IFITM1 in Normal and Injured Rat Spinal Cords. J Histochem Cytochem. 2018;66:175-187 pubmed 出版商
  33. Kojima M, Gimenes Júnior J, Chan T, Eliceiri B, Baird A, Costantini T, et al. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4. FASEB J. 2018;32:97-110 pubmed 出版商
  34. Kyratsous N, Bauer I, Zhang G, Pesic M, Bartholomäus I, Mues M, et al. Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proc Natl Acad Sci U S A. 2017;114:E6381-E6389 pubmed 出版商
  35. Schulten V, Tripple V, Seumois G, Qian Y, Scheuermann R, Fu Z, et al. Allergen-specific immunotherapy modulates the balance of circulating Tfh and Tfr cells. J Allergy Clin Immunol. 2018;141:775-777.e6 pubmed 出版商
  36. Hasby Saad M, Hasby E. Trichinella Spiralis Impact on Mesenchymal Stem Cells: Immunohistochemical Study by Image Analyzer in Murine Model. Exp Mol Pathol. 2017;102:396-407 pubmed 出版商
  37. Patil M, Sharma B, Elattar S, Chang J, Kapil S, Yuan J, et al. Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning. Diabetes. 2017;66:1611-1625 pubmed 出版商
  38. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  39. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  40. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  41. Dergilev K, Makarevich P, Tsokolaeva Z, Boldyreva M, Beloglazova I, Zubkova E, et al. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue Cell. 2017;49:64-71 pubmed 出版商
  42. Rigo Adrover M, Franch A, Castell M, Pérez Cano F. Preclinical Immunomodulation by the Probiotic Bifidobacterium breve M-16V in Early Life. PLoS ONE. 2016;11:e0166082 pubmed 出版商
  43. Govero J, Esakky P, Scheaffer S, Fernandez E, Drury A, Platt D, et al. Zika virus infection damages the testes in mice. Nature. 2016;540:438-442 pubmed 出版商
  44. Perea F, Bernal M, Sánchez Palencia A, Carretero J, Torres C, Bayarri C, et al. The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer. 2017;140:888-899 pubmed 出版商
  45. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  46. Komdeur F, Wouters M, Workel H, Tijans A, Terwindt A, Brunekreeft K, et al. CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+ CD8αβ+ T cells that can be targeted for cancer immunotherapy. Oncotarget. 2016;7:75130-75144 pubmed 出版商
  47. Jacobs F, Sadie Van Gijsen H, van de Vyver M, Ferris W. Vanadate Impedes Adipogenesis in Mesenchymal Stem Cells Derived from Different Depots within Bone. Front Endocrinol (Lausanne). 2016;7:108 pubmed 出版商
  48. Ghazaryan E, Zhang Y, He Y, Liu X, Li Y, Xie J, et al. Mesenchymal stem cells in corneal neovascularization: Comparison of different application routes. Mol Med Rep. 2016;14:3104-12 pubmed 出版商
  49. Gallini R, Huusko J, Yla Herttuala S, Betsholtz C, Andrae J. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart. PLoS ONE. 2016;11:e0160930 pubmed 出版商
  50. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  51. Hu J, Yang Z, Li X, Lu H. C-C motif chemokine ligand 20 regulates neuroinflammation following spinal cord injury via Th17 cell recruitment. J Neuroinflammation. 2016;13:162 pubmed 出版商
  52. Komatsu I, Wang J, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater. 2016;42:136-146 pubmed 出版商
  53. Modulevsky D, Cuerrier C, Pelling A. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS ONE. 2016;11:e0157894 pubmed 出版商
  54. Fu X, Tong Z, Li Q, Niu Q, Zhang Z, Tong X, et al. Induction of adipose-derived stem cells into Schwann-like cells and observation of Schwann-like cell proliferation. Mol Med Rep. 2016;14:1187-93 pubmed 出版商
  55. Marignier R, Ruiz A, Cavagna S, Nicole A, Watrin C, Touret M, et al. Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid. J Neuroinflammation. 2016;13:111 pubmed 出版商
  56. Yin Y, Ren X, Smith C, Guo Q, Malabunga M, Guernah I, et al. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody. Dis Model Mech. 2016;9:563-71 pubmed 出版商
  57. Del Bel Belluz L, Guidi R, Pateras I, Levi L, Mihaljevic B, Rouf S, et al. The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection. PLoS Pathog. 2016;12:e1005528 pubmed 出版商
  58. Liu Z, Wang S, Liu J, Wang F, Liu Y, Zhao Y. Leukocyte Infiltration Triggers Seizure Recurrence in a Rat Model of Temporal Lobe Epilepsy. Inflammation. 2016;39:1090-8 pubmed 出版商
  59. Wilson N, Titus D, Oliva A, Furones C, Atkins C. Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus. Front Syst Neurosci. 2016;10:5 pubmed 出版商
  60. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J Mater Sci Mater Med. 2016;27:77 pubmed 出版商
  61. Schläger C, Körner H, Krueger M, Vidoli S, Haberl M, Mielke D, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530:349-53 pubmed 出版商
  62. Raredon M, Ghaedi M, Calle E, Niklason L. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium. Cell Med. 2015;7:109-21 pubmed 出版商
  63. Chen X, Yang Q, Zheng T, Bian J, Sun X, Shi Y, et al. Neurotrophic Effect of Adipose Tissue-Derived Stem Cells on Erectile Function Recovery by Pigment Epithelium-Derived Factor Secretion in a Rat Model of Cavernous Nerve Injury. Stem Cells Int. 2016;2016:5161248 pubmed 出版商
  64. Liu T, Mu H, Shen Z, Song Z, Chen X, Wang Y. Autologous adipose tissue‑derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy. Mol Med Rep. 2016;13:2053-9 pubmed 出版商
  65. Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, et al. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Sci Rep. 2016;6:19073 pubmed 出版商
  66. Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein N, et al. EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer. PLoS ONE. 2015;10:e0144535 pubmed 出版商
  67. Wang Y, Zhu G, Wang J, Chen J. Irradiation alters the differentiation potential of bone marrow mesenchymal stem cells. Mol Med Rep. 2016;13:213-23 pubmed 出版商
  68. Bhat N, Adams C, Chen Y, Bieber M, Teng N. Identification of Cell Surface Straight Chain Poly-N-Acetyl-Lactosamine Bearing Protein Ligands for VH4-34-Encoded Natural IgM Antibodies. J Immunol. 2015;195:5178-88 pubmed 出版商
  69. Sawitza I, Kordes C, Götze S, Herebian D, Häussinger D. Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep. 2015;5:13320 pubmed 出版商
  70. Runesson E, Ackermann P, Karlsson J, Eriksson B. Nucleostemin- and Oct 3/4-positive stem/progenitor cells exhibit disparate anatomical and temporal expression during rat Achilles tendon healing. BMC Musculoskelet Disord. 2015;16:212 pubmed 出版商
  71. Zhang F, Cui J, Lv B, Yu B. Nicorandil protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Int J Mol Med. 2015;36:415-23 pubmed 出版商
  72. van Wyk M, Pielecka Fortuna J, Löwel S, Kleinlogel S. Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLoS Biol. 2015;13:e1002143 pubmed 出版商
  73. Nacka Aleksić M, Djikić J, Pilipović I, Stojić Vukanić Z, Kosec D, Bufan B, et al. Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun. 2015;49:101-18 pubmed 出版商
  74. Abril Gil M, Garcia Just A, Pérez Cano F, Franch Ã, Castell M. Development and characterization of an effective food allergy model in Brown Norway rats. PLoS ONE. 2015;10:e0125314 pubmed 出版商
  75. Reese S, Wilson N, Huang G, Redfield R, Zhong W, Djamali A. Calcineurin Inhibitor Minimization With Ixazomib, an Investigational Proteasome Inhibitor, for the Prevention of Antibody Mediated Rejection in a Preclinical Model. Transplantation. 2015;99:1785-95 pubmed 出版商
  76. Bhushan S, Tchatalbachev S, Lu Y, Fröhlich S, Fijak M, Vijayan V, et al. Differential activation of inflammatory pathways in testicular macrophages provides a rationale for their subdued inflammatory capacity. J Immunol. 2015;194:5455-64 pubmed 出版商
  77. Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12:2089-97 pubmed 出版商
  78. Rochman Y, Yukawa M, Kartashov A, Barski A. Functional characterization of human T cell hyporesponsiveness induced by CTLA4-Ig. PLoS ONE. 2015;10:e0122198 pubmed 出版商
  79. Cameron S, Alwakeel A, Goddard L, Hobbs C, Gowing E, Barnett E, et al. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia. Mol Cell Neurosci. 2015;68:56-72 pubmed 出版商
  80. Doorn K, Brevé J, Drukarch B, Boddeke H, Huitinga I, Lucassen P, et al. Brain region-specific gene expression profiles in freshly isolated rat microglia. Front Cell Neurosci. 2015;9:84 pubmed 出版商
  81. Fernández Hurst N, Bibolini M, Roth G. Diazepam Inhibits Proliferation of Lymph Node Cells Isolated from Rats with Experimental Autoimmune Encephalomyelitis. Neuroimmunomodulation. 2015;22:293-302 pubmed 出版商
  82. Bei Y, Zhou Q, Fu S, Lv D, Chen P, Chen Y, et al. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS ONE. 2015;10:e0115991 pubmed 出版商
  83. Haag S, Tuncel J, Thordardottir S, Mason D, Yau A, Dobritzsch D, et al. Positional identification of RT1-B (HLA-DQ) as susceptibility locus for autoimmune arthritis. J Immunol. 2015;194:2539-50 pubmed 出版商
  84. Kumar P, Kretzschmar B, Herold S, Nau R, Kreutzfeldt M, Schütze S, et al. Beneficial effect of chronic Staphylococcus aureus infection in a model of multiple sclerosis is mediated through the secretion of extracellular adherence protein. J Neuroinflammation. 2015;12:22 pubmed 出版商
  85. Däster S, Eppenberger Castori S, Hirt C, Zlobec I, Delko T, Nebiker C, et al. High frequency of CD8 positive lymphocyte infiltration correlates with lack of lymph node involvement in early rectal cancer. Dis Markers. 2014;2014:792183 pubmed 出版商
  86. Lee M, Jang M, Choi J, Lee G, Min H, Chung W, et al. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses. Mol Neurobiol. 2016;53:1419-1445 pubmed 出版商
  87. Thorn M, Hudson A, Kreeger J, Kawabe T, Bowman C, Collinge M. Evaluation of a novel delayed-type hypersensitivity assay to Candida albicans in adult and neonatal rats. J Immunotoxicol. 2015;12:350-60 pubmed 出版商
  88. Wong H, Siu W, Fung C, Zhang C, Shum W, Zhou X, et al. Characteristics of stem cells derived from rat fascia: in vitro proliferative and multilineage potential assessment. Mol Med Rep. 2015;11:1982-90 pubmed 出版商
  89. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  90. Shen W, Chung S, Irhimeh M, Li S, Lee S, Gillies M. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS ONE. 2014;9:e104759 pubmed 出版商
  91. Oksvold M, Kullmann A, Forfang L, Kierulf B, Li M, Brech A, et al. Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther. 2014;36:847-862.e1 pubmed 出版商
  92. Roque S, Mesquita A, Palha J, Sousa N, Correia Neves M. The behavioral and immunological impact of maternal separation: a matter of timing. Front Behav Neurosci. 2014;8:192 pubmed 出版商
  93. Xie L, Sun F, Wang J, Mao X, Xie L, Yang S, et al. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. J Immunol. 2014;192:6009-19 pubmed 出版商
  94. Yang Y, Li Y, Liu Y, Yang M, Liu K. CD30+ extranodal natural killer/T-cell lymphoma mimicking phlegmonous myositis: A case report. Oncol Lett. 2014;7:1419-1421 pubmed
  95. Okimura K, Maeta K, Kobayashi N, Goto M, Kano N, Ishihara T, et al. Characterization of ASKP1240, a fully human antibody targeting human CD40 with potent immunosuppressive effects. Am J Transplant. 2014;14:1290-9 pubmed 出版商
  96. Wang Y, Alexander S. DNA vaccination as a treatment for chronic kidney disease. Methods Mol Biol. 2014;1143:297-303 pubmed 出版商
  97. Danalache B, Yu C, Gutkowska J, Jankowski M. Oxytocin-Gly-Lys-Arg stimulates cardiomyogenesis by targeting cardiac side population cells. J Endocrinol. 2014;220:277-89 pubmed 出版商
  98. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2014;69:1212-26 pubmed 出版商
  99. Zhou D, Tan R, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509-20 pubmed 出版商
  100. Zschemisch N, Glage S, Wedekind D, Weinstein E, Cui X, Dorsch M, et al. Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol. 2012;13:60 pubmed 出版商
  101. Ammirati E, Cianflone D, Vecchio V, Banfi M, Vermi A, De Metrio M, et al. Effector Memory T cells Are Associated With Atherosclerosis in Humans and Animal Models. J Am Heart Assoc. 2012;1:27-41 pubmed 出版商
  102. Baek H, Noh Y, Lee J, Yeon S, Jeong J, Kwon H. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells. J Tissue Eng Regen Med. 2014;8:717-27 pubmed 出版商
  103. Tour G, Wendel M, Tcacencu I. Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction. J Tissue Eng Regen Med. 2014;8:841-9 pubmed 出版商
  104. Yang H, Xu C, Tang Y, Wan C, Liu W, Wang L. The significance of multiplex PCR/heteroduplex analysis-based TCR-? gene rearrangement combined with laser-capture microdissection in the diagnosis of early mycosis fungoides. J Cutan Pathol. 2012;39:337-46 pubmed 出版商
  105. Imataki O, Ansén S, Tanaka M, Butler M, Berezovskaya A, Milstein M, et al. IL-21 can supplement suboptimal Lck-independent MAPK activation in a STAT-3-dependent manner in human CD8(+) T cells. J Immunol. 2012;188:1609-19 pubmed 出版商
  106. Nakao S, Zandi S, Faez S, Kohno R, Hafezi Moghadam A. Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots. FASEB J. 2012;26:808-17 pubmed 出版商
  107. Su X, Huang J, Jiang Y, Tang Y, Li G, Liu W. Serous effusion cytology of extranodal natural killer/T-cell lymphoma. Cytopathology. 2012;23:96-102 pubmed 出版商
  108. Roque S, Oliveira T, Nobrega C, Barreira Silva P, Nunes Alves C, Sousa N, et al. Interplay between Depressive-Like Behavior and the Immune System in an Animal Model of Prenatal Dexamethasone Administration. Front Behav Neurosci. 2011;5:4 pubmed 出版商
  109. Yates J, Whittington A, Mitchell P, Lechler R, Lightstone L, Lombardi G. Natural regulatory T cells: number and function are normal in the majority of patients with lupus nephritis. Clin Exp Immunol. 2008;153:44-55 pubmed 出版商
  110. Taylor R, Patel S, Lin E, Butler B, Lake J, Newberry R, et al. Lymphotoxin-independent expression of TNF-related activation-induced cytokine by stromal cells in cryptopatches, isolated lymphoid follicles, and Peyer's patches. J Immunol. 2007;178:5659-67 pubmed
  111. Hoves S, Krause S, Schutz C, Halbritter D, Scholmerich J, Herfarth H, et al. Monocyte-derived human macrophages mediate anergy in allogeneic T cells and induce regulatory T cells. J Immunol. 2006;177:2691-8 pubmed
  112. Mazzanti B, Biagioli T, Aldinucci A, Cavaletti G, Cavalletti E, Oggioni N, et al. Effects of pixantrone on immune-cell function in the course of acute rat experimental allergic encephalomyelitis. J Neuroimmunol. 2005;168:111-7 pubmed
  113. Thompson S, Luyrink L, Graham T, Tsoras M, Ryan M, Passo M, et al. Chemokine receptor CCR4 on CD4+ T cells in juvenile rheumatoid arthritis synovial fluid defines a subset of cells with increased IL-4:IFN-gamma mRNA ratios. J Immunol. 2001;166:6899-906 pubmed
  114. Lee B, Sharron M, Montaner L, Weissman D, Doms R. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96:5215-20 pubmed
  115. Kim C, Pelus L, White J, Applebaum E, Johanson K, Broxmeyer H. CK beta-11/macrophage inflammatory protein-3 beta/EBI1-ligand chemokine is an efficacious chemoattractant for T and B cells. J Immunol. 1998;160:2418-24 pubmed
  116. Smith S, Brown M, Rowe D, Callard R, Beverley P. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology. 1986;58:63-70 pubmed