这是一篇来自已证抗体库的有关大鼠 Pvalb的综述,是根据52篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Pvalb 抗体。
Pvalb 同义词: PALB1; Pva

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s5b
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, b11427)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7e
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上 (图 7e). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2500; 图 s21b
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, b11427)被用于被用于免疫组化在人类样本上浓度为1:2500 (图 s21b). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2a). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4b
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4b). Transl Psychiatry (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3Ac
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, AB11427)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3Ac). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 5a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s1B-1
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫细胞化学在小鼠样本上 (图 s1B-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, Ab11427)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6). J Neuroimmune Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, AB11427)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3e). Am J Pathol (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 1b
赛默飞世尔 Pvalb抗体(Thermo Fisher, PA1-933)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 1b). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a
赛默飞世尔 Pvalb抗体(ThermoFisher Scientific, PA1-933)被用于被用于免疫组化在小鼠样本上 (图 1a). Front Genet (2017) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 4e
赛默飞世尔 Pvalb抗体(Thermo Fisher, PA5-18389)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 4e). Neuron (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2b
赛默飞世尔 Pvalb抗体(ThermoFisher, PA1-933)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; Holothuria glaberrima; 图 3
赛默飞世尔 Pvalb抗体(Affinity Bioreagents, PA1-933)被用于被用于免疫组化在Holothuria glaberrima样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 1
赛默飞世尔 Pvalb抗体(Pierce, PA1-933)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1). Exp Eye Res (2016) ncbi
安迪生物R&D
家羊 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 2g
安迪生物R&D Pvalb抗体(R&D Systems, AF5058)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2g). Sci Rep (2018) ncbi
西格玛奥德里奇
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 6d
西格玛奥德里奇 Pvalb抗体(Sigma, SAB2500752)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 6d). Mol Cell Biol (2017) ncbi
默克密理博中国
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7a
默克密理博中国 Pvalb抗体(EMD Millipore, MAB1572)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7a). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 人类; 1:100; 图 5s1c
默克密理博中国 Pvalb抗体(EMD Millipore, MAB1572)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5s1c). elife (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 斑马鱼; 1:500; 图 1b
默克密理博中国 Pvalb抗体(Sigma, MAB1572)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1b). elife (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 图 s4
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4). Nat Neurosci (2018) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; zebra finch; 1:10,000; 图 4b
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化-冰冻切片在zebra finch样本上浓度为1:10,000 (图 4b). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 人类; 1:1000; 图 s1
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s1). Nature (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 斑马鱼; 1:5000; 图 10c
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化在斑马鱼样本上浓度为1:5000 (图 10c). elife (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000; 表 1
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:1000; 图 2a
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2a). Synapse (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:250; 图 3e
默克密理博中国 Pvalb抗体(Chemicon, MAB1572)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3e). Neuroscience (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 5
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4
默克密理博中国 Pvalb抗体(Chemicon, MAB1572)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4). Dev Biol (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 斑马鱼; 1:400; 图 2
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化在斑马鱼样本上浓度为1:400 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫印迹; 人类; 图 s9
  • 免疫印迹; 小鼠; 图 s9
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫印迹在人类样本上 (图 s9) 和 被用于免疫印迹在小鼠样本上 (图 s9). Expert Rev Mol Med (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 1
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). elife (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e). Neuron (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:400; 图 1
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫印迹; 大鼠; 1:2000; 图 3
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Front Physiol (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 人类; 1:5000
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫细胞化学在人类样本上浓度为1:5000. Methods (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化-冰冻切片在小鼠样本上. Neural Dev (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1e
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1e). Nat Commun (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s1
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s1). Nature (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 日本大米鱼; 1:400
默克密理博中国 Pvalb抗体(Chemicon, MAB1572)被用于被用于免疫细胞化学在日本大米鱼样本上浓度为1:400. Development (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000
默克密理博中国 Pvalb抗体(Millpore, MAB1572)被用于被用于免疫组化在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:400
默克密理博中国 Pvalb抗体(Chemicon, MAB1572)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. Neuroscience (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
默克密理博中国 Pvalb抗体(Millipore, PARV-19)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. Toxicol Lett (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 人类; 1:1000
默克密理博中国 Pvalb抗体(EMD Millipore, MAB1572)被用于被用于免疫组化在人类样本上浓度为1:1000. Mol Brain (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 人类; 1:500
默克密理博中国 Pvalb抗体(Chemicon, MAB1572)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Stem Cell Rev (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:200
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
默克密理博中国 Pvalb抗体(Millipore, MAB1572)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:400
默克密理博中国 Pvalb抗体(Chemicon, MAB1572)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400. J Comp Neurol (2008) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
默克密理博中国 Pvalb抗体(Chemicon, MAB1572)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. J Comp Neurol (2008) ncbi
文章列表
  1. Schmid C, Alampi I, Briggs J, Tarcza K, Stawicki T. Mechanotransduction Activity Facilitates Hair Cell Toxicity Caused by the Heavy Metal Cadmium. Front Cell Neurosci. 2020;14:37 pubmed 出版商
  2. Chen W, Cai Z, Chao E, Chen H, Longley C, Hao S, et al. Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. elife. 2020;9: pubmed 出版商
  3. Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, et al. Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. elife. 2019;8: pubmed 出版商
  4. Inoue M, Takeuchi A, Manita S, Horigane S, Sakamoto M, Kawakami R, et al. Rational Engineering of XCaMPs, a Multicolor GECI Suite for In Vivo Imaging of Complex Brain Circuit Dynamics. Cell. 2019;: pubmed 出版商
  5. Ast T, Meisel J, Patra S, Wang H, Grange R, Kim S, et al. Hypoxia Rescues Frataxin Loss by Restoring Iron Sulfur Cluster Biogenesis. Cell. 2019;: pubmed 出版商
  6. Thomas E, Raible D. Distinct progenitor populations mediate regeneration in the zebrafish lateral line. elife. 2019;8: pubmed 出版商
  7. Alshawaf A, Viventi S, Qiu W, D Abaco G, Nayagam B, Erlichster M, et al. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Sci Rep. 2018;8:603 pubmed 出版商
  8. Gstrein T, Edwards A, Přistoupilová A, Leca I, Breuss M, Pilat Carotta S, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat Neurosci. 2018;21:207-217 pubmed 出版商
  9. Sousa A, Zhu Y, Raghanti M, Kitchen R, Onorati M, Tebbenkamp A, et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science. 2017;358:1027-1032 pubmed 出版商
  10. Bayguinov P, Ma Y, Gao Y, Zhao X, Jackson M. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. J Neurosci. 2017;37:9305-9319 pubmed 出版商
  11. Ikeda M, Krentzel A, Oliver T, Scarpa G, Remage Healey L. Clustered organization and region-specific identities of estrogen-producing neurons in the forebrain of Zebra Finches (Taeniopygia guttata). J Comp Neurol. 2017;525:3636-3652 pubmed 出版商
  12. Birey F, Andersen J, Makinson C, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54-59 pubmed 出版商
  13. Larimore J, Zlatic S, Arnold M, Singleton K, Cross R, Rudolph H, et al. Dysbindin Deficiency Modifies the Expression of GABA Neuron and Ion Permeation Transcripts in the Developing Hippocampus. Front Genet. 2017;8:28 pubmed 出版商
  14. Kawata M, Morikawa S, Shiosaka S, Tamura H. Ablation of neuropsin-neuregulin 1 signaling imbalances ErbB4 inhibitory networks and disrupts hippocampal gamma oscillation. Transl Psychiatry. 2017;7:e1052 pubmed 出版商
  15. Jiang T, Kindt K, Wu D. Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. elife. 2017;6: pubmed 出版商
  16. Blewett N, Iben J, Gaidamakov S, Maraia R. La Deletion from Mouse Brain Alters Pre-tRNA Metabolism and Accumulation of Pre-5.8S rRNA, with Neuron Death and Reactive Astrocytosis. Mol Cell Biol. 2017;37: pubmed 出版商
  17. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  18. Goodings L, He J, Wood A, Harris W, Currie P, Jusuf P. In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish Tg(nr4a2a:eGFP) transgenics. J Comp Neurol. 2017;525:1962-1979 pubmed 出版商
  19. Yu T, Qi Y, Zhu J, Xu J, Gong H, Luo Q, et al. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue. Sci Rep. 2017;7:38848 pubmed 出版商
  20. Fu H, Rodriguez G, Herman M, Emrani S, Nahmani E, Barrett G, et al. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease. Neuron. 2017;93:533-541.e5 pubmed 出版商
  21. Calakos K, Blackman D, Schulz A, Bauer E. Distribution of type I corticotropin-releasing factor (CRF1) receptors on GABAergic neurons within the basolateral amygdala. Synapse. 2017;71: pubmed 出版商
  22. Huh S, Baek S, Lee K, Whitcomb D, Jo J, Choi S, et al. The reemergence of long-term potentiation in aged Alzheimer's disease mouse model. Sci Rep. 2016;6:29152 pubmed 出版商
  23. Choi Y, Lee B, Hansen K, Aten S, Horning P, Wheaton K, et al. Status epilepticus stimulates NDEL1 expression via the CREB/CRE pathway in the adult mouse brain. Neuroscience. 2016;331:1-12 pubmed 出版商
  24. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  25. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  26. Cai X, Kardon A, Snyder L, Kuzirian M, Minestro S, de Souza L, et al. Bhlhb5::flpo allele uncovers a requirement for Bhlhb5 for the development of the dorsal cochlear nucleus. Dev Biol. 2016;414:149-60 pubmed 出版商
  27. Suli A, Pujol R, Cunningham D, Hailey D, Prendergast A, Rubel E, et al. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. J Cell Sci. 2016;129:2250-60 pubmed 出版商
  28. Toral Ojeda I, Aldanondo G, Lasa Elgarresta J, Lasa Fernández H, Fernandez Torron R, Lopez de Munain A, et al. Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle. Expert Rev Mol Med. 2016;18:e7 pubmed 出版商
  29. Díaz Balzac C, Lázaro Peña M, Vázquez Figueroa L, Díaz Balzac R, Garcia Arraras J. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis. PLoS ONE. 2016;11:e0151129 pubmed 出版商
  30. Kaplan E, Cooke S, Komorowski R, Chubykin A, Thomazeau A, Khibnik L, et al. Contrasting roles for parvalbumin-expressing inhibitory neurons in two forms of adult visual cortical plasticity. elife. 2016;5: pubmed 出版商
  31. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  32. McNally A, Poplawski S, Mayweather B, White K, Abel T. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning. Front Mol Neurosci. 2016;9:11 pubmed 出版商
  33. Marques Smith A, Lyngholm D, Kaufmann A, Stacey J, Hoerder Suabedissen A, Becker E, et al. A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex. Neuron. 2016;89:536-49 pubmed 出版商
  34. Anastasiades P, Marques Smith A, Lyngholm D, Lickiss T, Raffiq S, Kätzel D, et al. GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun. 2016;7:10584 pubmed 出版商
  35. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. J Neuroimmune Pharmacol. 2016;11:279-93 pubmed 出版商
  36. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  37. Hong C, Siddiqui A, Sabljic T, Ball A. Changes in parvalbumin immunoreactive retinal ganglion cells and amacrine cells after optic nerve injury. Exp Eye Res. 2016;145:363-372 pubmed 出版商
  38. de Andrade P, Neff L, Strosova M, Arsenijevic D, Patthey Vuadens O, Scapozza L, et al. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding. Front Physiol. 2015;6:254 pubmed 出版商
  39. Ahn S, Kim T, Kim K, Chung S. Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells. Methods. 2016;101:103-12 pubmed 出版商
  40. Hoch R, Clarke J, Rubenstein J. Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Neural Dev. 2015;10:8 pubmed 出版商
  41. Wei P, Liu N, Zhang Z, Liu X, Tang Y, He X, et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun. 2015;6:6756 pubmed 出版商
  42. Saunders A, Oldenburg I, Berezovskii V, Johnson C, Kingery N, Elliott H, et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature. 2015;521:85-9 pubmed 出版商
  43. Centanin L, Ander J, Hoeckendorf B, Lust K, Kellner T, Kraemer I, et al. Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development. 2014;141:3472-82 pubmed 出版商
  44. Ding Y, Qu Y, Feng J, Wang M, Han Q, So K, et al. Functional motor recovery from motoneuron axotomy is compromised in mice with defective corticospinal projections. PLoS ONE. 2014;9:e101918 pubmed 出版商
  45. Liu Y, Liang X, Ren W, Li B. Expression of ?1- and ?2-adrenoceptors in different subtypes of interneurons in the medial prefrontal cortex of mice. Neuroscience. 2014;257:149-57 pubmed 出版商
  46. Akane H, Shiraki A, Imatanaka N, Akahori Y, Itahashi M, Abe H, et al. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol Lett. 2014;224:424-32 pubmed 出版商
  47. Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y, Akamatsu W, et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain. 2013;6:19 pubmed 出版商
  48. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  49. McKenna J, Yang C, Franciosi S, Winston S, Abarr K, Rigby M, et al. Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. J Comp Neurol. 2013;521:1225-50 pubmed 出版商
  50. Wang X, Sun Q. Characterization of axo-axonic synapses in the piriform cortex of Mus musculus. J Comp Neurol. 2012;520:832-47 pubmed 出版商
  51. Yang Z, You Y, Levison S. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol. 2008;511:19-33 pubmed 出版商
  52. Xu Q, Tam M, Anderson S. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol. 2008;506:16-29 pubmed