这是一篇来自已证抗体库的有关大鼠 Pvalb的综述,是根据142篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Pvalb 抗体。
Pvalb 同义词: PALB1; Pva

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4s2a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4s2a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s5b
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, b11427)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7e
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上 (图 7e). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2500; 图 s21b
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, b11427)被用于被用于免疫组化在人类样本上浓度为1:2500 (图 s21b). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2a). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4b
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4b). Transl Psychiatry (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3Ac
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, AB11427)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3Ac). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 5a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s1B-1
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫细胞化学在小鼠样本上 (图 s1B-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, Ab11427)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6). J Neuroimmune Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, AB11427)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3e). Am J Pathol (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 1b
赛默飞世尔 Pvalb抗体(Thermo Fisher, PA1-933)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 1b). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a
赛默飞世尔 Pvalb抗体(ThermoFisher Scientific, PA1-933)被用于被用于免疫组化在小鼠样本上 (图 1a). Front Genet (2017) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 4e
赛默飞世尔 Pvalb抗体(Thermo Fisher, PA5-18389)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 4e). Neuron (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2b
赛默飞世尔 Pvalb抗体(ThermoFisher, PA1-933)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; Holothuria glaberrima; 图 3
赛默飞世尔 Pvalb抗体(Affinity Bioreagents, PA1-933)被用于被用于免疫组化在Holothuria glaberrima样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 1
赛默飞世尔 Pvalb抗体(Pierce, PA1-933)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1). Exp Eye Res (2016) ncbi
安迪生物R&D
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 1j
安迪生物R&D Pvalb抗体(R&D systems, AF5058)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 1j). Mol Psychiatry (2022) ncbi
西格玛奥德里奇
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 6m
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 6m). ASN Neuro (2022) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1c
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1c). Front Behav Neurosci (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 2j
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2j). Nat Commun (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 s4a
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s4a). Nat Commun (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:3000; 图 2b
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:3000 (图 2b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4b
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4b). Sci Rep (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). Front Neuroanat (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 8b
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 8b). elife (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 8b
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 8b). elife (2021) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2500
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2500. elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1c
西格玛奥德里奇 Pvalb抗体(Sigma Aldrich, P3088)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1c). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, PARV-19)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). IBRO Rep (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 图 1c
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上 (图 1c). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 图 1c
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088-.2ML)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 3a, 3b
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3a, 3b). Genes (Basel) (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:5000; 图 2g
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2g). Nat Commun (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2b
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2b). elife (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:4000; 图 2a
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:4000 (图 2a). Front Aging Neurosci (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 7a
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 7a). Aging Dis (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 图 5e
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上 (图 5e). Cell Rep (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 图 4e
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在小鼠样本上 (图 4e). Cell Rep (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 图 1i
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上 (图 1i). J Comp Neurol (2020) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1g
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1g). Mol Brain (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; grey mouse lemur; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在grey mouse lemur样本上浓度为1:2000. J Comp Neurol (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 图 8c
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8c). J Comp Neurol (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:500; 图 3m
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3m). Brain Struct Funct (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3a'
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3a'). Development (2018) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 婴猴属; 1:2000; 图 2b
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在婴猴属样本上浓度为1:2000 (图 2b). J Comp Neurol (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; grey mouse lemur; 1:2000; 图 3b
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在grey mouse lemur样本上浓度为1:2000 (图 3b). J Comp Neurol (2019) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 1
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; African green monkey; 1:2000; 图 2d
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:2000 (图 2d). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 鸡; 1:10,000; 图 8h
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在鸡样本上浓度为1:10,000 (图 8h). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; jirds; 1:300; 表 1
西格玛奥德里奇 Pvalb抗体(Sigma, P-3088)被用于被用于免疫组化在jirds样本上浓度为1:300 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 图 1b
西格玛奥德里奇 Pvalb抗体(Sigma, Parv-19)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Front Neural Circuits (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 5a
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 5a). Transl Psychiatry (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:300; 图 s4a
西格玛奥德里奇 Pvalb抗体(sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s4a). J Neuroinflammation (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; Nothoprocta perdicaria; 图 8d
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在Nothoprocta perdicaria样本上 (图 8d). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 人类; 1:10,000; 图 1
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在人类样本上浓度为1:10,000 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Neuroscience (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:200; 表 1
西格玛奥德里奇 Pvalb抗体(SIGMA, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). Brain Struct Funct (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 大鼠; 1:500; 图 s1b
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s1b). Nat Commun (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000; 图 3a
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P-3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000 (图 3a). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 表 1
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:500; 图 s1d
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1d). Science (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4a
西格玛奥德里奇 Pvalb抗体(Sigma Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4a). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:250; 图 1a
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 1a). Neurotherapeutics (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 2
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 2). J Comp Neurol (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:1000; 图 s1
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 s1). Hippocampus (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫印迹; Spanish mackerel ; 图 2b
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫印迹在Spanish mackerel 样本上 (图 2b). Food Chem (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; common tree shrew ; 1:5000; 图 3c
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在common tree shrew 样本上浓度为1:5000 (图 3c). J Comp Neurol (2017) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, PARV-19)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). Cereb Cortex (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 猕猴; 1:500
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在猕猴样本上浓度为1:500. Neural Plast (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 8
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000; 图 2
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2). Mol Psychiatry (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2b
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2b). Cereb Cortex (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7). J Comp Neurol (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 5
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 5). Front Neurosci (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 人类; 1:1000; 表 1
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 图 7b
西格玛奥德里奇 Pvalb抗体(Sigma, P-3088)被用于被用于免疫组化在小鼠样本上 (图 7b). Cereb Cortex (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 大鼠; 1:400
西格玛奥德里奇 Pvalb抗体(Sigma, PARV-19)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400. Brain Struct Funct (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:2000; 表 1
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (表 1). Sci Rep (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1). J Neurosci Res (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. PLoS ONE (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Hippocampus (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s3c
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s3c). Stem Cell Reports (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2d
西格玛奥德里奇 Pvalb抗体(Sigma, PARV-19)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2d). J Neurosci (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 大鼠; 1:2000
  • 免疫组化; 大鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma Aldrich, P3088)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 和 被用于免疫组化在大鼠样本上浓度为1:2000. J Comp Neurol (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠; 1:2000
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma- Aldrich, P3088)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 和 被用于免疫组化在小鼠样本上浓度为1:2000. F1000Res (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Psychopharmacology (Berl) (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:200
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 猕猴
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P-3088)被用于被用于免疫组化在猕猴样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 人类
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫细胞化学在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 猕猴; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, p3088)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫细胞化学在大鼠样本上浓度为1:1000. Arch Biochem Biophys (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:1,000
西格玛奥德里奇 Pvalb抗体(Sigma Immunochemicals, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:1,000. Brain Struct Funct (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; black ferret; 1:6000
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在black ferret样本上浓度为1:6000. Eur J Neurosci (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. J Physiol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 大鼠; 1:40,000
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫细胞化学在大鼠样本上浓度为1:40,000. J Neurosci (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000; 图 e4
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 e4). Nature (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; gerbils; 1:200
  • 免疫组化; 大鼠; 1:200
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在gerbils样本上浓度为1:200 和 被用于免疫组化在大鼠样本上浓度为1:200. J Comp Neurol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:8,000
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P-3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:8,000. J Comp Neurol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠; 1:10,000
  • 免疫细胞化学; 人类; 1:5000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10,000 和 被用于免疫细胞化学在人类样本上浓度为1:5000. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:300; 图 2, 3
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2, 3). Development (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. Brain Struct Funct (2015) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Dev Biol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P 3088)被用于被用于免疫细胞化学在小鼠样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; pigs ; 1:50
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, PARV19)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:50. Toxicon (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 小鼠; 1:100
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Exp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 猕猴; 1:2,000
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在猕猴样本上浓度为1:2,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Pvalb抗体(Sigma-aldrich, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; elephantnose fish; 1:1,000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-石蜡切片在elephantnose fish样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Genesis (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-石蜡切片; 大鼠; 1:500
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:4000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:4000. Neurotox Res (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; African green monkey; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, PARV19)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠
  • 免疫组化; 小鼠
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化在大鼠样本上 和 被用于免疫组化在小鼠样本上. J Comp Neurol (2011) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 猕猴; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 人类; 1:2500
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2500. J Comp Neurol (2010) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 小鼠; 1:10,000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, PARV19)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; eastern gray squirrel; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma-Aldrich, P3088)被用于被用于免疫组化-冰冻切片在eastern gray squirrel样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
  • 免疫组化-冰冻切片; 小鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma Aldrich, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:8000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:8000. J Comp Neurol (2008) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
西格玛奥德里奇 Pvalb抗体(Sigma, P 3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; zebra finch; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在zebra finch样本上浓度为1:1000. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 大鼠; 1:4000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在大鼠样本上浓度为1:4000. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上. J Comp Neurol (2007) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 猕猴; 1:1000
西格玛奥德里奇 Pvalb抗体(Sigma, PARV19)被用于被用于免疫组化在猕猴样本上浓度为1:1000. J Comp Neurol (2006) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化-自由浮动切片; 大鼠
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化-自由浮动切片在大鼠样本上. J Comp Neurol (2006) ncbi
小鼠 单克隆(PARV-19)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇 Pvalb抗体(Sigma, P3088)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Comp Neurol (2005) ncbi
Neuromab
小鼠 单克隆(L114/3)
  • 免疫组化; 小鼠; 1:500; 图 2a
Neuromab Pvalb抗体(Neuromab, L114/3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). elife (2020) ncbi
文章列表
  1. Dragić M, Mihajlovic K, Adzic M, Jakovljevic M, Kontic M, Mitrovi x107 N, et al. Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro. ASN Neuro. 2022;14:17590914221102068 pubmed 出版商
  2. Lee G, Graham D, Noble B, Trammell T, McCarthy D, Anderson L, et al. Behavioral and Neuroanatomical Consequences of Cell-Type Specific Loss of Dopamine D2 Receptors in the Mouse Cerebral Cortex. Front Behav Neurosci. 2021;15:815713 pubmed 出版商
  3. El Khoueiry C, Cabungcal J, Rov xf3 Z, Fournier M, Do K, Steullet P. Developmental oxidative stress leads to T-type Ca2+ channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia. Mol Psychiatry. 2022;27:2042-2051 pubmed 出版商
  4. Zhang X, Liu Y, Hong X, Li X, Meshul C, Moore C, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun. 2021;12:5740 pubmed 出版商
  5. Zhang M, Wang J, Zhang K, Lu G, Liu Y, Ren K, et al. Ten-eleven translocation 1 mediated-DNA hydroxymethylation is required for myelination and remyelination in the mouse brain. Nat Commun. 2021;12:5091 pubmed 出版商
  6. Scekic Zahirovic J, Sanjuan Ruiz I, Kan V, Megat S, de Rossi P, Dieterlé S, et al. Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nat Commun. 2021;12:3028 pubmed 出版商
  7. Vojtechova I, Maleninska K, Kútna V, Klovrza O, Tuckova K, Petrasek T, et al. Behavioral Alterations and Decreased Number of Parvalbumin-Positive Interneurons in Wistar Rats after Maternal Immune Activation by Lipopolysaccharide: Sex Matters. Int J Mol Sci. 2021;22: pubmed 出版商
  8. Uchida K, Hasuoka K, Fuse T, Kobayashi K, Moriya T, Suzuki M, et al. Thyroid hormone insufficiency alters the expression of psychiatric disorder-related molecules in the hypothyroid mouse brain during the early postnatal period. Sci Rep. 2021;11:6723 pubmed 出版商
  9. Kement D, Reumann R, Schostak K, Vo xdf H, Douceau S, Dottermusch M, et al. Neuroserpin Is Strongly Expressed in the Developing and Adult Mouse Neocortex but Its Absence Does Not Perturb Cortical Lamination and Synaptic Proteome. Front Neuroanat. 2021;15:627896 pubmed 出版商
  10. Jager P, Moore G, Calpin P, Durmishi X, Salgarella I, Menage L, et al. Dual midbrain and forebrain origins of thalamic inhibitory interneurons. elife. 2021;10: pubmed 出版商
  11. Young H, Belbut B, Baeta M, Petreanu L. Laminar-specific cortico-cortical loops in mouse visual cortex. elife. 2021;10: pubmed 出版商
  12. Segebarth D, Griebel M, Stein N, von Collenberg C, Martin C, Fiedler D, et al. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses. elife. 2020;9: pubmed 出版商
  13. Scheckel C, Imeri M, Schwarz P, Aguzzi A. Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons. elife. 2020;9: pubmed 出版商
  14. Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep. 2020;9:102-114 pubmed 出版商
  15. Vaden R, González J, Tsai M, Niver A, Fusilier A, Griffith C, et al. Parvalbumin interneurons provide spillover to newborn and mature dentate granule cells. elife. 2020;9: pubmed 出版商
  16. Menendez L, Trecek T, Gopalakrishnan S, Tao L, Markowitz A, Yu H, et al. Generation of inner ear hair cells by direct lineage conversion of primary somatic cells. elife. 2020;9: pubmed 出版商
  17. Liu C, Seo R, Ho T, Stankewich M, Mohler P, Hund T, et al. β spectrin-dependent and domain specific mechanisms for Na+ channel clustering. elife. 2020;9: pubmed 出版商
  18. Khan M, Regehr W. Loss of Doc2b does not influence transmission at Purkinje cell to deep nuclei synapses under physiological conditions. elife. 2020;9: pubmed 出版商
  19. Mossner J, Batista Brito R, Pant R, Cardin J. Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior. elife. 2020;9: pubmed 出版商
  20. Provenzano G, Gilardoni A, Maggia M, Pernigo M, Sgadò P, Casarosa S, et al. Altered Expression of GABAergic Markers in the Forebrain of Young and Adult Engrailed-2 Knockout Mice. Genes (Basel). 2020;11: pubmed 出版商
  21. Schmid C, Alampi I, Briggs J, Tarcza K, Stawicki T. Mechanotransduction Activity Facilitates Hair Cell Toxicity Caused by the Heavy Metal Cadmium. Front Cell Neurosci. 2020;14:37 pubmed 出版商
  22. Wu Z, Parry M, Hou X, Liu M, Wang H, Cain R, et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nat Commun. 2020;11:1105 pubmed 出版商
  23. Pelkey K, Calvigioni D, Fang C, Vargish G, Ekins T, Auville K, et al. Paradoxical network excitation by glutamate release from VGluT3+ GABAergic interneurons. elife. 2020;9: pubmed 出版商
  24. Calva C, Fayyaz H, Fadel J. Effects of Intranasal Orexin-A (Hypocretin-1) Administration on Neuronal Activation, Neurochemistry, and Attention in Aged Rats. Front Aging Neurosci. 2019;11:362 pubmed 出版商
  25. Upadhya D, Kodali M, Gitaí D, Castro O, Zanirati G, Upadhya R, et al. A Model of Chronic Temporal Lobe Epilepsy Presenting Constantly Rhythmic and Robust Spontaneous Seizures, Co-morbidities and Hippocampal Neuropathology. Aging Dis. 2019;10:915-936 pubmed 出版商
  26. Adler A, Cardoso T, Nolbrant S, Mattsson B, Hoban D, Jarl U, et al. hESC-Derived Dopaminergic Transplants Integrate into Basal Ganglia Circuitry in a Preclinical Model of Parkinson's Disease. Cell Rep. 2019;28:3462-3473.e5 pubmed 出版商
  27. Park H, Kim T, Kim J, Yamamoto Y, Tanaka Yamamoto K. Inputs from Sequentially Developed Parallel Fibers Are Required for Cerebellar Organization. Cell Rep. 2019;28:2939-2954.e5 pubmed 出版商
  28. Whyland K, Slusarczyk A, Bickford M. GABAergic cell types in the superficial layers of the mouse superior colliculus. J Comp Neurol. 2020;528:308-320 pubmed 出版商
  29. Lee F, Lai T, Su P, Liu F. Altered cortical Cytoarchitecture in the Fmr1 knockout mouse. Mol Brain. 2019;12:56 pubmed 出版商
  30. Inoue M, Takeuchi A, Manita S, Horigane S, Sakamoto M, Kawakami R, et al. Rational Engineering of XCaMPs, a Multicolor GECI Suite for In Vivo Imaging of Complex Brain Circuit Dynamics. Cell. 2019;: pubmed 出版商
  31. Ast T, Meisel J, Patra S, Wang H, Grange R, Kim S, et al. Hypoxia Rescues Frataxin Loss by Restoring Iron Sulfur Cluster Biogenesis. Cell. 2019;: pubmed 出版商
  32. Saraf M, Balaram P, Pifferi F, Kennedy H, Kaas J. The sensory thalamus and visual midbrain in mouse lemurs. J Comp Neurol. 2019;527:2599-2611 pubmed 出版商
  33. Bienkowski M, Benavidez N, Wu K, Gou L, Becerra M, Dong H. Extrastriate connectivity of the mouse dorsal lateral geniculate thalamic nucleus. J Comp Neurol. 2019;527:1419-1442 pubmed 出版商
  34. Yu Q, Liu Y, Zhu Y, Wang Y, Li Q, Yin D. Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain. Brain Struct Funct. 2019;224:1035-1049 pubmed 出版商
  35. Zhang H, Pan H, Zhou C, Wei Y, Ying W, Li S, et al. Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Development. 2018;145: pubmed 出版商
  36. Moore B, Li K, Kaas J, Liao C, Boal A, Mavity Hudson J, et al. Cortical projections to the two retinotopic maps of primate pulvinar are distinct. J Comp Neurol. 2019;527:577-588 pubmed 出版商
  37. Saraf M, Balaram P, Pifferi F, Gămănuţ R, Kennedy H, Kaas J. Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs. J Comp Neurol. 2019;527:625-639 pubmed 出版商
  38. Sousa A, Zhu Y, Raghanti M, Kitchen R, Onorati M, Tebbenkamp A, et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science. 2017;358:1027-1032 pubmed 出版商
  39. Bayguinov P, Ma Y, Gao Y, Zhao X, Jackson M. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. J Neurosci. 2017;37:9305-9319 pubmed 出版商
  40. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed 出版商
  41. Scott B, Saleem K, Kikuchi Y, Fukushima M, Mishkin M, Saunders R. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey. J Comp Neurol. 2017;525:3488-3513 pubmed 出版商
  42. Wang Y, Zorio D, Karten H. Heterogeneous organization and connectivity of the chicken auditory thalamus (Gallus gallus). J Comp Neurol. 2017;525:3044-3071 pubmed 出版商
  43. Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, et al. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol. 2017;525:2890-2914 pubmed 出版商
  44. Zhang X, Sullivan C, Kratz M, Kasten M, Maness P, Manis P. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. Front Neural Circuits. 2017;11:19 pubmed 出版商
  45. Larimore J, Zlatic S, Arnold M, Singleton K, Cross R, Rudolph H, et al. Dysbindin Deficiency Modifies the Expression of GABA Neuron and Ion Permeation Transcripts in the Developing Hippocampus. Front Genet. 2017;8:28 pubmed 出版商
  46. Kawata M, Morikawa S, Shiosaka S, Tamura H. Ablation of neuropsin-neuregulin 1 signaling imbalances ErbB4 inhibitory networks and disrupts hippocampal gamma oscillation. Transl Psychiatry. 2017;7:e1052 pubmed 出版商
  47. Fonseca M, Chu S, Hernandez M, Fang M, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14:48 pubmed 出版商
  48. Krabichler Q, Vega Zuniga T, Carrasco D, Fernández M, Gutiérrez Ibáñez C, Marín G, et al. The centrifugal visual system of a palaeognathous bird, the Chilean Tinamou (Nothoprocta perdicaria). J Comp Neurol. 2017;525:2514-2534 pubmed 出版商
  49. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  50. Yu T, Qi Y, Zhu J, Xu J, Gong H, Luo Q, et al. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue. Sci Rep. 2017;7:38848 pubmed 出版商
  51. Fu H, Rodriguez G, Herman M, Emrani S, Nahmani E, Barrett G, et al. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease. Neuron. 2017;93:533-541.e5 pubmed 出版商
  52. Glausier J, Roberts R, Lewis D. Ultrastructural analysis of parvalbumin synapses in human dorsolateral prefrontal cortex. J Comp Neurol. 2017;525:2075-2089 pubmed 出版商
  53. Ueno H, Suemitsu S, Okamoto M, Matsumoto Y, Ishihara T. Parvalbumin neurons and perineuronal nets in the mouse prefrontal cortex. Neuroscience. 2017;343:115-127 pubmed 出版商
  54. Fraser J, Essebier A, Gronostajski R, Boden M, Wainwright B, Harvey T, et al. Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct. 2017;222:2251-2270 pubmed 出版商
  55. Berryer M, Chattopadhyaya B, Xing P, Riebe I, Bosoi C, Sanon N, et al. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat Commun. 2016;7:13340 pubmed 出版商
  56. Yamada J, Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Comp Neurol. 2017;525:1234-1249 pubmed 出版商
  57. Patel M, Sons S, Yudintsev G, Lesicko A, Yang L, Taha G, et al. Anatomical characterization of subcortical descending projections to the inferior colliculus in mouse. J Comp Neurol. 2017;525:885-900 pubmed 出版商
  58. Habib N, Li Y, Heidenreich M, Swiech L, Avraham Davidi I, Trombetta J, et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science. 2016;353:925-8 pubmed 出版商
  59. Huh S, Baek S, Lee K, Whitcomb D, Jo J, Choi S, et al. The reemergence of long-term potentiation in aged Alzheimer's disease mouse model. Sci Rep. 2016;6:29152 pubmed 出版商
  60. Botterill J, Nogovitsyn N, Caruncho H, Kalynchuk L. Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions. J Comp Neurol. 2017;525:389-406 pubmed 出版商
  61. Antyborzec I, O Leary V, Dolly J, Ovsepian S. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain. Neurotherapeutics. 2016;13:859-870 pubmed 出版商
  62. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  63. Olsen G, Witter M. Posterior parietal cortex of the rat: Architectural delineation and thalamic differentiation. J Comp Neurol. 2016;524:3774-3809 pubmed 出版商
  64. Harden S, Frazier C. Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus. Hippocampus. 2016;26:1124-39 pubmed 出版商
  65. Kubota H, Kobayashi A, Kobayashi Y, Shiomi K, Hamada Sato N. Reduction in IgE reactivity of Pacific mackerel parvalbumin by heat treatment. Food Chem. 2016;206:78-84 pubmed 出版商
  66. Díaz Balzac C, Lázaro Peña M, Vázquez Figueroa L, Díaz Balzac R, Garcia Arraras J. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis. PLoS ONE. 2016;11:e0151129 pubmed 出版商
  67. Day Brown J, Slusarczyk A, Zhou N, Quiggins R, Petry H, Bickford M. Synaptic organization of striate cortex projections in the tree shrew: A comparison of the claustrum and dorsal thalamus. J Comp Neurol. 2017;525:1403-1420 pubmed 出版商
  68. Bonini S, Mastinu A, Maccarinelli G, Mitola S, Premoli M, La Rosa L, et al. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice. Cereb Cortex. 2016;26:2832-49 pubmed 出版商
  69. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  70. McNally A, Poplawski S, Mayweather B, White K, Abel T. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning. Front Mol Neurosci. 2016;9:11 pubmed 出版商
  71. Mueller A, Davis A, Sovich S, Carlson S, Robinson F. Distribution of N-Acetylgalactosamine-Positive Perineuronal Nets in the Macaque Brain: Anatomy and Implications. Neural Plast. 2016;2016:6021428 pubmed 出版商
  72. Kinjo E, Higa G, Santos B, de Sousa E, Damico M, Walter L, et al. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Sci Rep. 2016;6:20969 pubmed 出版商
  73. Canetta S, Bolkan S, Padilla Coreano N, Song L, Sahn R, Harrison N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956-68 pubmed 出版商
  74. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. J Neuroimmune Pharmacol. 2016;11:279-93 pubmed 出版商
  75. De Stasi A, Farisello P, Marcon I, Cavallari S, Forli A, Vecchia D, et al. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy. Cereb Cortex. 2016;26:1778-94 pubmed 出版商
  76. Villette V, Guigue P, Picardo M, Sousa V, Leprince E, Lachamp P, et al. Development of early-born ?-Aminobutyric acid hub neurons in mouse hippocampus from embryogenesis to adulthood. J Comp Neurol. 2016;524:2440-61 pubmed 出版商
  77. Lee S, Kang B, Shin M, Min J, Heo C, Lee Y, et al. Chronic Stress Decreases Cerebrovascular Responses During Rat Hindlimb Electrical Stimulation. Front Neurosci. 2015;9:462 pubmed 出版商
  78. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  79. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  80. Hong C, Siddiqui A, Sabljic T, Ball A. Changes in parvalbumin immunoreactive retinal ganglion cells and amacrine cells after optic nerve injury. Exp Eye Res. 2016;145:363-372 pubmed 出版商
  81. Wagener R, Witte M, Guy J, Mingo Moreno N, Kügler S, Staiger J. Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the Mislaminated Reeler Somatosensory Cortex. Cereb Cortex. 2016;26:820-37 pubmed 出版商
  82. Chidlow G, Wood J, Knoops B, Casson R. Expression and distribution of peroxiredoxins in the retina and optic nerve. Brain Struct Funct. 2016;221:3903-3925 pubmed
  83. Ang S, Lee A, Foo F, Ng L, Low C, Khanna S. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect. Sci Rep. 2015;5:15419 pubmed 出版商
  84. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed 出版商
  85. Miyoshi G, Young A, PETROS T, Karayannis T, McKenzie Chang M, Lavado A, et al. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. J Neurosci. 2015;35:12869-89 pubmed 出版商
  86. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed 出版商
  87. Hooper A, Maguire J. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone. Hippocampus. 2016;26:41-53 pubmed 出版商
  88. Niu W, Zang T, Smith D, Vue T, Zou Y, Bachoo R, et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports. 2015;4:780-94 pubmed 出版商
  89. Zhang N, Zhong P, Shin S, Metallo J, Danielson E, Olsen C, et al. S-SCAM, a rare copy number variation gene, induces schizophrenia-related endophenotypes in transgenic mouse model. J Neurosci. 2015;35:1892-904 pubmed 出版商
  90. Fekete C, Chiou T, Miralles C, Harris R, Fiondella C, LoTurco J, et al. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. J Comp Neurol. 2015;523:1359-78 pubmed 出版商
  91. Molgaard S, Ulrichsen M, Boggild S, Holm M, Vaegter C, Nyengaard J, et al. Immunohistochemical visualization of mouse interneuron subtypes. F1000Res. 2014;3:242 pubmed 出版商
  92. Zohar I, Dosoretz Abittan L, Shoham S, Weinstock M. Sex dependent reduction by prenatal stress of the expression of 5HT1A receptors in the prefrontal cortex and CRF type 2 receptors in the raphe nucleus in rats: reversal by citalopram. Psychopharmacology (Berl). 2015;232:1643-53 pubmed 出版商
  93. Kinjo E, Higa G, Morya E, Valle A, Kihara A, Britto L. Reciprocal regulation of epileptiform neuronal oscillations and electrical synapses in the rat hippocampus. PLoS ONE. 2014;9:e109149 pubmed 出版商
  94. Gray D, Engle J, Recanzone G. Age-related neurochemical changes in the rhesus macaque superior olivary complex. J Comp Neurol. 2013;522:573-91 pubmed 出版商
  95. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  96. Gray D, Engle J, Rudolph M, Recanzone G. Regional and age-related differences in GAD67 expression of parvalbumin- and calbindin-expressing neurons in the rhesus macaque auditory midbrain and brainstem. J Comp Neurol. 2014;522:4074-84 pubmed 出版商
  97. Oenarto J, Gorg B, Moos M, Bidmon H, Haussinger D. Expression of organic osmolyte transporters in cultured rat astrocytes and rat and human cerebral cortex. Arch Biochem Biophys. 2014;560:59-72 pubmed 出版商
  98. Roland J, Janke K, Servatius R, Pang K. GABAergic neurons in the medial septum-diagonal band of Broca (MSDB) are important for acquisition of the classically conditioned eyeblink response. Brain Struct Funct. 2014;219:1231-7 pubmed 出版商
  99. Bajo V, Leach N, Cordery P, Nodal F, King A. The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex. Eur J Neurosci. 2014;40:2922-40 pubmed 出版商
  100. Yi F, Ball J, Stoll K, Satpute V, Mitchell S, Pauli J, et al. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol. 2014;592:3463-94 pubmed 出版商
  101. Cruz F, Babin K, Leão R, Goldart E, Bossert J, Shaham Y, et al. Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci. 2014;34:7437-46 pubmed 出版商
  102. Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
  103. Pujol R, Pickett S, Nguyen T, Stone J. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs. J Comp Neurol. 2014;522:3141-59 pubmed 出版商
  104. Oda S, Funato H, Sato F, Adachi Akahane S, Ito M, Takase K, et al. A subset of thalamocortical projections to the retrosplenial cortex possesses two vesicular glutamate transporter isoforms, VGluT1 and VGluT2, in axon terminals and somata. J Comp Neurol. 2014;522:2089-106 pubmed 出版商
  105. Liu Z, Fang J, Dearman J, Zhang L, Zuo J. In vivo generation of immature inner hair cells in neonatal mouse cochleae by ectopic Atoh1 expression. PLoS ONE. 2014;9:e89377 pubmed 出版商
  106. Balu D, Takagi S, Puhl M, Benneyworth M, Coyle J. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol. 2014;34:419-35 pubmed 出版商
  107. Di Giovannantonio L, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, et al. Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development. 2014;141:377-88 pubmed 出版商
  108. Kao F, Su S, Carlson G, Liao W. MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Struct Funct. 2015;220:419-34 pubmed 出版商
  109. Zhao Y, Flandin P, Vogt D, Blood A, Hermesz E, Westphal H, et al. Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon. Dev Biol. 2014;385:94-106 pubmed 出版商
  110. Sohn J, Hioki H, Okamoto S, Kaneko T. Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J Comp Neurol. 2014;522:1506-26 pubmed 出版商
  111. Cholich L, Marquez M, Pumarola I Batlle M, Gimeno E, Teibler G, Rios E, et al. Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations. Toxicon. 2013;76:28-36 pubmed 出版商
  112. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  113. Cerkevich C, Qi H, Kaas J. Thalamic input to representations of the teeth, tongue, and face in somatosensory area 3b of macaque monkeys. J Comp Neurol. 2013;521:3954-71 pubmed 出版商
  114. Puglisi F, Vanni V, Ponterio G, Tassone A, Sciamanna G, Bonsi P, et al. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. PLoS ONE. 2013;8:e68063 pubmed 出版商
  115. Pusch R, Wagner H, von der Emde G, Engelmann J. Spatial resolution of an eye containing a grouped retina: ganglion cell morphology and tectal physiology in the weakly electric fish Gnathonemus petersii. J Comp Neurol. 2013;521:4075-93 pubmed 出版商
  116. Edwards I, Bruce G, Lawrenson C, Howe L, Clapcote S, Deuchars S, et al. Na+/K+ ATPase α1 and α3 isoforms are differentially expressed in α- and γ-motoneurons. J Neurosci. 2013;33:9913-9 pubmed 出版商
  117. Ohtsuka N, Badurek S, Busslinger M, Benes F, Minichiello L, Rudolph U. GABAergic neurons regulate lateral ventricular development via transcription factor Pax5. Genesis. 2013;51:234-45 pubmed 出版商
  118. Nivison Smith L, Sun D, Fletcher E, Marc R, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol. 2013;521:2416-38 pubmed 出版商
  119. Li J, Xue Z, Deng S, Luo X, Patrylo P, Rose G, et al. Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013;24:1-14 pubmed 出版商
  120. Marion R, Li K, Purushothaman G, Jiang Y, Casagrande V. Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. J Comp Neurol. 2013;521:813-32 pubmed 出版商
  121. Tereshchenko Y, Morellini F, Dityatev A, Schachner M, Irintchev A. Neural cell adhesion molecule ablation in mice causes hippocampal dysplasia and loss of septal cholinergic neurons. J Comp Neurol. 2011;519:2475-92 pubmed 出版商
  122. Liu X, Murray K, Jones E. Low-threshold calcium channel subunit Ca(v) 3.3 is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J Comp Neurol. 2011;519:1181-95 pubmed 出版商
  123. Qi H, Gharbawie O, Wong P, Kaas J. Cell-poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos. J Comp Neurol. 2011;519:738-58 pubmed 出版商
  124. Kataoka Y, Kalanithi P, Grantz H, Schwartz M, Saper C, Leckman J, et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol. 2010;518:277-91 pubmed 出版商
  125. Kotani T, Murata Y, Ohnishi H, Mori M, Kusakari S, Saito Y, et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb. J Comp Neurol. 2010;518:119-36 pubmed 出版商
  126. Liguz Lecznar M, Waleszczyk W, Zakrzewska R, Skangiel Kramska J, Kossut M. Associative pairing involving monocular stimulation selectively mobilizes a subclass of GABAergic interneurons in the mouse visual cortex. J Comp Neurol. 2009;516:482-92 pubmed 出版商
  127. Jakovcevski I, Siering J, Hargus G, Karl N, Hoelters L, Djogo N, et al. Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development. J Comp Neurol. 2009;513:496-510 pubmed 出版商
  128. Wong P, Gharbawie O, Luethke L, Kaas J. Thalamic connections of architectonic subdivisions of temporal cortex in grey squirrels (Sciurus carolinensis). J Comp Neurol. 2008;510:440-61 pubmed 出版商
  129. Zhao Y, Flandin P, Long J, Cuesta M, Westphal H, Rubenstein J. Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol. 2008;510:79-99 pubmed 出版商
  130. Wee K, Zhang Y, Khanna S, Low C. Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. J Comp Neurol. 2008;509:118-35 pubmed 出版商
  131. Reznikov L, Reagan L, Fadel J. Activation of phenotypically distinct neuronal subpopulations in the anterior subdivision of the rat basolateral amygdala following acute and repeated stress. J Comp Neurol. 2008;508:458-72 pubmed 出版商
  132. Sun D, Vingrys A, Kalloniatis M. Metabolic and functional profiling of the normal rat retina. J Comp Neurol. 2007;505:92-113 pubmed
  133. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;502:734-45 pubmed
  134. Wolansky T, Pagliardini S, Greer J, Dickson C. Immunohistochemical characterization of substance P receptor (NK(1)R)-expressing interneurons in the entorhinal cortex. J Comp Neurol. 2007;502:427-41 pubmed
  135. Scott B, Lois C. Developmental origin and identity of song system neurons born during vocal learning in songbirds. J Comp Neurol. 2007;502:202-14 pubmed
  136. Kuramoto E, Fujiyama F, Unzai T, Nakamura K, Hioki H, Furuta T, et al. Metabotropic glutamate receptor 4-immunopositive terminals of medium-sized spiny neurons selectively form synapses with cholinergic interneurons in the rat neostriatum. J Comp Neurol. 2007;500:908-22 pubmed
  137. Ding J, Weinberg R. Distribution of soluble guanylyl cyclase in rat retina. J Comp Neurol. 2007;500:734-45 pubmed
  138. Martin L, Liu Z, Chen K, Price A, Pan Y, Swaby J, et al. Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol. 2007;500:20-46 pubmed
  139. Meyer E, Illig K, Brunjes P. Differences in chemo- and cytoarchitectural features within pars principalis of the rat anterior olfactory nucleus suggest functional specialization. J Comp Neurol. 2006;498:786-95 pubmed
  140. Bordt A, Hoshi H, Yamada E, Perryman Stout W, Marshak D. Synaptic input to OFF parasol ganglion cells in macaque retina. J Comp Neurol. 2006;498:46-57 pubmed
  141. Rainnie D, Mania I, Mascagni F, McDonald A. Physiological and morphological characterization of parvalbumin-containing interneurons of the rat basolateral amygdala. J Comp Neurol. 2006;498:142-61 pubmed
  142. Treloar H, Uboha U, Jeromin A, Greer C. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol. 2005;482:201-16 pubmed