这是一篇来自已证抗体库的有关大鼠 Snap25的综述,是根据40篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Snap25 抗体。
Snap25 同义词: SNAP-25B; SNAP-25a

Synaptic Systems
小鼠 单克隆(71.1)
  • 免疫印迹; 小鼠; 图 1b, 5h, s1g
Synaptic Systems Snap25抗体(Synaptic Systems, 111 011)被用于被用于免疫印迹在小鼠样本上 (图 1b, 5h, s1g). Sci Adv (2022) ncbi
小鼠 单克隆(71.1)
  • 免疫细胞化学; 大鼠
Synaptic Systems Snap25抗体(Synaptic Systems, 111 011)被用于被用于免疫细胞化学在大鼠样本上. Sci Adv (2021) ncbi
小鼠 单克隆(71.1)
  • 免疫印迹; 小鼠; 图 3g
Synaptic Systems Snap25抗体(Synaptic Systems, 111011)被用于被用于免疫印迹在小鼠样本上 (图 3g). Neuron (2021) ncbi
小鼠 单克隆(71.1)
  • 免疫组化; 小鼠; 1:1000
Synaptic Systems Snap25抗体(Synaptic Systems, 111 011)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Physiol Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Synaptic Systems Snap25抗体(Synaptic Systems, 111002)被用于被用于免疫印迹在人类样本上 (图 2a). J Neurosci (2019) ncbi
小鼠 单克隆(71.1)
  • 免疫印迹; 小鼠; 图 1f
Synaptic Systems Snap25抗体(Synaptic Systems, 111011)被用于被用于免疫印迹在小鼠样本上 (图 1f). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 8a
Synaptic Systems Snap25抗体(Synaptic Systems, 111 002)被用于被用于免疫组化在大鼠样本上 (图 8a). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1c
Synaptic Systems Snap25抗体(Synaptic Systems, 111002)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Cell (2018) ncbi
小鼠 单克隆(71.1)
  • 免疫印迹; 小鼠; 1:1000; 图 3i
Synaptic Systems Snap25抗体(Synaptic Systems, 71.1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Nat Commun (2017) ncbi
小鼠 单克隆(71.2)
  • 免疫印迹; 小鼠; 图 3a
Synaptic Systems Snap25抗体(Synaptic systems, 111111)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Immunol Methods (2017) ncbi
小鼠 单克隆(71.1)
  • 免疫印迹; 小鼠; 图 4
  • 免疫细胞化学; 大鼠; 图 8a
Synaptic Systems Snap25抗体(Synaptic Systems, 111011)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫细胞化学在大鼠样本上 (图 8a). Sci Rep (2017) ncbi
小鼠 单克隆(71.1)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
Synaptic Systems Snap25抗体(Synaptic Systems, 111011)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). J Gen Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
Synaptic Systems Snap25抗体(Synaptic systems, 111 002)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Neurosci (2016) ncbi
小鼠 单克隆(71.1)
  • 免疫沉淀; 大鼠; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 3a
Synaptic Systems Snap25抗体(Synaptic Systems, 111011)被用于被用于免疫沉淀在大鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(71.1)
  • 免疫组化; 大鼠; 1:2000; 图 4
Synaptic Systems Snap25抗体(Synaptic System, 111011)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 4). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(71.1)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
Synaptic Systems Snap25抗体(Synaptic Systems, 111011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Synaptic Systems Snap25抗体(Synaptic Systems, 111002)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(71.1)
  • 免疫印迹; 大鼠; 图 1
Synaptic Systems Snap25抗体(Synaptic Systems, 111011)被用于被用于免疫印迹在大鼠样本上 (图 1). EMBO Rep (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 Snap25抗体(Abcam, ab5666)被用于被用于免疫印迹在小鼠样本上 (图 5d). Brain Pathol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4
艾博抗(上海)贸易有限公司 Snap25抗体(Abcam, ab5666)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Front Endocrinol (Lausanne) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2t
艾博抗(上海)贸易有限公司 Snap25抗体(Abcam, ab5666)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2t). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5c
艾博抗(上海)贸易有限公司 Snap25抗体(Abcam, ab5666)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司 Snap25抗体(Abcam, ab5666)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Nature (2017) ncbi
domestic rabbit 单克隆(EPR3275)
  • 免疫细胞化学; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司 Snap25抗体(Abcam, AB109105)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP3274)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 Snap25抗体(Abcam, ab108990)被用于被用于免疫印迹在人类样本上浓度为1:2000. Brain Pathol (2015) ncbi
BioLegend
小鼠 单克隆(SMI 81)
  • 免疫印迹; 小鼠; 图 s1
BioLegend Snap25抗体(BioLegend, SMI 81)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Biol Chem (2019) ncbi
小鼠 单克隆(SMI 81)
  • 免疫印迹; 小鼠; 图 ev2f
BioLegend Snap25抗体(Sternberger Monoclonals, SMI81)被用于被用于免疫印迹在小鼠样本上 (图 ev2f). EMBO J (2019) ncbi
小鼠 单克隆(SMI 81)
  • 免疫组化; 小鼠; 图 s6a
BioLegend Snap25抗体(BioLegend, SMI81)被用于被用于免疫组化在小鼠样本上 (图 s6a). Nature (2017) ncbi
小鼠 单克隆(SMI 81)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
  • 免疫沉淀; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 图 7c
BioLegend Snap25抗体(Covance, SMI-81)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c), 被用于免疫沉淀在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上 (图 7c). J Cell Biol (2016) ncbi
小鼠 单克隆(SMI 81)
  • 免疫印迹; 人类; 1:10,000; 图 6B
BioLegend Snap25抗体(Covance, SMI81)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6B). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(SMI 81)
  • proximity ligation assay; 小鼠; 图 4
  • 免疫组化-冰冻切片; 小鼠; 图 4
BioLegend Snap25抗体(Covance, SMI-81R)被用于被用于proximity ligation assay在小鼠样本上 (图 4) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(SMI 81)
  • 免疫印迹; 小鼠; 图 6
BioLegend Snap25抗体(Sternberger Monoclonals, SMI81)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-1)
  • 免疫印迹; 小鼠; 1:500; 图 4h
圣克鲁斯生物技术 Snap25抗体(Santa Cruz, Sc-376713)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4h). elife (2020) ncbi
小鼠 单克隆(H-1)
  • 酶联免疫吸附测定; 人类; 表 4
圣克鲁斯生物技术 Snap25抗体(Santa Cruz, sc-376713)被用于被用于酶联免疫吸附测定在人类样本上 (表 4). Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(4E203)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Snap25抗体(Santa, sc-73044)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2011) ncbi
赛默飞世尔
小鼠 单克隆(SP12)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 Snap25抗体(Thermo Fisher, MA5-17609)被用于被用于免疫印迹在人类样本上 (图 4b). Structure (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D7B4)
  • 免疫印迹; 小鼠; 图 s2c
赛信通(上海)生物试剂有限公司 Snap25抗体(CST, 5308)被用于被用于免疫印迹在小鼠样本上 (图 s2c). Theranostics (2020) ncbi
domestic rabbit 单克隆(D7B4)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
  • 免疫沉淀; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 Snap25抗体(Cell Signaling, 5308)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c), 被用于免疫沉淀在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上 (图 7c). J Cell Biol (2016) ncbi
碧迪BD
小鼠 单克隆(20/SNAP-25)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 表 2
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6b
碧迪BD Snap25抗体(BD Biosciences, 610366)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (表 2) 和 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6b). PLoS ONE (2016) ncbi
小鼠 单克隆(20/SNAP-25)
  • 免疫印迹; 大鼠; 1:1000; 图 2
碧迪BD Snap25抗体(BD Biosciences, 610366)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(20/SNAP-25)
  • 免疫印迹; 大鼠; 图 1
碧迪BD Snap25抗体(BD Bioscience, 610366)被用于被用于免疫印迹在大鼠样本上 (图 1). Cereb Cortex (2015) ncbi
文章列表
  1. Azarnia Tehran D, Kochlamazashvili G, Pampaloni N, Sposini S, Shergill J, Lehmann M, et al. Selective endocytosis of Ca2+-permeable AMPARs by the Alzheimer's disease risk factor CALM bidirectionally controls synaptic plasticity. Sci Adv. 2022;8:eabl5032 pubmed 出版商
  2. Lakkaraju A, Sorce S, Senatore A, Nuvolone M, Guo J, Schwarz P, et al. Glial activation in prion diseases is selectively triggered by neuronal PrPSc. Brain Pathol. 2022;32:e13056 pubmed 出版商
  3. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed 出版商
  4. Ivanova D, Dobson K, Gajbhiye A, Davenport E, Hacker D, Ultanir S, et al. Control of synaptic vesicle release probability via VAMP4 targeting to endolysosomes. Sci Adv. 2021;7: pubmed 出版商
  5. Bele S, Girada S, Ray A, Gupta A, Oruganti S, Prakash Babu P, et al. MS-275, a class 1 histone deacetylase inhibitor augments glucagon-like peptide-1 receptor agonism to improve glycemic control and reduce obesity in diet-induced obese mice. elife. 2020;9: pubmed 出版商
  6. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht M, et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2021;109:299-313.e9 pubmed 出版商
  7. Arias Hervert E, Xu N, Njus M, Murphy G, Hou Y, Williams J, et al. Actions of Rab27B-GTPase on mammalian central excitatory synaptic transmission. Physiol Rep. 2020;8:e14428 pubmed 出版商
  8. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  9. Yao W, Tambini M, Liu X, D ADAMIO L. Tuning of glutamate, but not GABA, release by an intra-synaptic vesicles APP domain whose function can be modulated by β- or α-secretase cleavage. J Neurosci. 2019;: pubmed 出版商
  10. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  11. Silverman J, Christy D, Shyu C, Moon K, Fernando S, Gidden Z, et al. CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)G93A ALS mice originate from astrocytes and neurons and carry misfolded SOD1. J Biol Chem. 2019;294:3744-3759 pubmed 出版商
  12. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  13. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  14. Truckenbrodt S, Viplav A, Jähne S, Vogts A, Denker A, Wildhagen H, et al. Newly produced synaptic vesicle proteins are preferentially used in synaptic transmission. EMBO J. 2018;37: pubmed 出版商
  15. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  16. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser P. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell. 2018;172:706-718.e15 pubmed 出版商
  17. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  18. Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods. 2017;451:90-99 pubmed 出版商
  19. Wallrapp A, Riesenfeld S, Burkett P, Abdulnour R, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549:351-356 pubmed 出版商
  20. Verardi R, Kim J, Ghirlando R, Banerjee A. Structural Basis for Substrate Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase. Structure. 2017;25:1337-1347.e6 pubmed 出版商
  21. Mews P, Donahue G, Drake A, Luczak V, Abel T, Berger S. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature. 2017;546:381-386 pubmed 出版商
  22. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  23. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  24. Gioia D, Alexander N, McCool B. Differential Expression of Munc13-2 Produces Unique Synaptic Phenotypes in the Basolateral Amygdala of C57BL/6J and DBA/2J Mice. J Neurosci. 2016;36:10964-10977 pubmed
  25. Takeuchi S, Iwama S, Takagi H, Kiyota A, Nakashima K, Izumida H, et al. Tomosyn Negatively Regulates Arginine Vasopressin Secretion in Embryonic Stem Cell-Derived Neurons. PLoS ONE. 2016;11:e0164544 pubmed 出版商
  26. Kunii M, Ohara Imaizumi M, Takahashi N, Kobayashi M, Kawakami R, Kondoh Y, et al. Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells. J Cell Biol. 2016;215:121-138 pubmed
  27. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  28. Toft Bertelsen T, Ziomkiewicz I, Houy S, Pinheiro P, Sørensen J. Regulation of Ca2+ channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters. Mol Biol Cell. 2016;27:3329-3341 pubmed
  29. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  30. Bodaleo F, Montenegro Venegas C, Henríquez D, Court F, Gonzalez Billault C. Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology. Sci Rep. 2016;6:30069 pubmed 出版商
  31. Nishida K, Kubota T, Matsumoto S, Kato J, Watanabe Y, Yamamoto A, et al. Expression of Prostatic Acid Phosphatase in Rat Circumvallate Papillae. PLoS ONE. 2016;11:e0158401 pubmed 出版商
  32. Craig T, Anderson D, Evans A, Girach F, Henley J. SUMOylation of Syntaxin1A regulates presynaptic endocytosis. Sci Rep. 2015;5:17669 pubmed 出版商
  33. Benítez B, Cairns N, Schmidt R, Morris J, Norton J, Cruchaga C, et al. Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathol Commun. 2015;3:73 pubmed 出版商
  34. Wang C, Wang Y, Hu M, Chai Z, Wu Q, Huang R, et al. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep. 2016;17:47-63 pubmed 出版商
  35. Zulliger R, Conley S, Mwoyosvi M, Stuck M, Azadi S, Naash M. SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting. PLoS ONE. 2015;10:e0138508 pubmed 出版商
  36. Sinclair L, Tayler H, Love S. Synaptic protein levels altered in vascular dementia. Neuropathol Appl Neurobiol. 2015;41:533-43 pubmed 出版商
  37. Lue L, Schmitz C, Serrano G, Sue L, Beach T, Walker D. TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain Pathol. 2015;25:469-80 pubmed 出版商
  38. Yan Y, Eipper B, Mains R. Kalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth and Branching. Cereb Cortex. 2015;25:3487-501 pubmed 出版商
  39. Lee S, Sharma M, S dhof T, Shen J. Synaptic function of nicastrin in hippocampal neurons. Proc Natl Acad Sci U S A. 2014;111:8973-8 pubmed 出版商
  40. Kolesnikov A, Rikimaru L, Hennig A, Lukasiewicz P, Fliesler S, Govardovskii V, et al. G-protein betagamma-complex is crucial for efficient signal amplification in vision. J Neurosci. 2011;31:8067-77 pubmed 出版商