这是一篇来自已证抗体库的有关大鼠 Sst的综述,是根据63篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Sst 抗体。
Sst 同义词: SS-14; SS-28; Smst; somatostatin

伯乐(Bio-Rad)公司
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 2
伯乐(Bio-Rad)公司 Sst抗体(Serotec, 8330-0009)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 2). Histochem Cell Biol (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:200
伯乐(Bio-Rad)公司 Sst抗体(AbD Serotec, 8330-0009)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Ann Clin Transl Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 猪; 1:10,000
伯乐(Bio-Rad)公司 Sst抗体(生物合成, 8330-0154)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:10,000. J Mol Neurosci (2015) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 猪; 1:100
伯乐(Bio-Rad)公司 Sst抗体(生物合成, 8330-0009)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:100. J Mol Neurosci (2013) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 猪; 1:100
伯乐(Bio-Rad)公司 Sst抗体(生物合成, 8330-0009)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:100. Cell Tissue Res (2012) ncbi
GeneTex
小鼠 单克隆(SOM-018)
  • 免疫组化; 大鼠; 1:1000; 图 s1
GeneTex Sst抗体(GeneTex, GTX7-1935)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 s1). Front Neural Circuits (2016) ncbi
小鼠 单克隆(SOM-018)
  • 免疫组化; 大鼠; 图 3
GeneTex Sst抗体(GeneTex, GTX71935)被用于被用于免疫组化在大鼠样本上 (图 3). Rom J Morphol Embryol (2015) ncbi
小鼠 单克隆(SOM-018)
  • 免疫组化; 小鼠; 1:100
  • 免疫组化; 人类; 1:100
GeneTex Sst抗体(GeneTex, GTX71935)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫组化在人类样本上浓度为1:100. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(SOM-018)
  • 免疫组化-石蜡切片; 大鼠; 1:200
GeneTex Sst抗体(GeneTex, GTX71935)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Endocrinol (2011) ncbi
小鼠 单克隆(SOM-018)
  • 免疫组化; 大鼠; 1:500
GeneTex Sst抗体(GeneTex, GTX71935)被用于被用于免疫组化在大鼠样本上浓度为1:500. Eur J Neurosci (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-11)
  • 流式细胞仪; 人类; 1:200; 图 s20
圣克鲁斯生物技术 Sst抗体(santa Cruz, sc-74556)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s20). Nat Commun (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 人类; 1:200
圣克鲁斯生物技术 Sst抗体(Santa Cruz, sc-47,706)被用于被用于免疫组化在人类样本上浓度为1:200. Cell Tissue Res (2014) ncbi
默克密理博中国
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:100; 图 5s1d
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5s1d). elife (2019) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:200; 图 1d
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). J Comp Neurol (2019) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:500; 图 3e
默克密理博中国 Sst抗体(Merck, MAB354)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Neuron (2019) ncbi
大鼠 单克隆(YC7)
默克密理博中国 Sst抗体(Millipore, MAB354)被用于. Science (2018) ncbi
大鼠 单克隆(YC7)
  • 免疫细胞化学; 人类; 1:200; 图 3d
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3d). Sci Rep (2018) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 人类; 1:250; 图 s21a
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在人类样本上浓度为1:250 (图 s21a). Science (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3c
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3c). J Clin Invest (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 人类; 1:200; 图 1h
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1h). Nature (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:200; 图 1b
默克密理博中国 Sst抗体(chemicon, Ab354)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). Front Neural Circuits (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 表 1
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (表 1). Neuron (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:200; 图 S4a
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 S4a). J Neuroinflammation (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2u
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2u). elife (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:150; 图 s1
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 s1). PLoS Biol (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2e
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2e). Nature (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 4e
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 4e). Neuron (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 1g
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 1g). Nat Neurosci (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:2500; 图 5d
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2500 (图 5d). J Comp Neurol (2017) ncbi
大鼠 单克隆(YC7)
  • 免疫细胞化学; 人类; 1:200; 图 3c
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3c). elife (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 图 st1
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 7
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 7). J Neurosci (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s2
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s2). Nature (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Neuron (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:400; 图 1
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:250; 图 st3
默克密理博中国 Sst抗体(Millipore, mab354)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 st3). Mol Psychiatry (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 5
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 2f
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 2f). Cereb Cortex (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:100
默克密理博中国 Sst抗体(Millipore, MAB 354)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Neuroscience (2016) ncbi
大鼠 单克隆(YC7)
默克密理博中国 Sst抗体(Millipore, MAB354)被用于. Nat Neurosci (2015) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在小鼠样本上. J Neurosci (2015) ncbi
大鼠 单克隆(YC7)
  • 免疫细胞化学; 人类; 1:5000
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫细胞化学在人类样本上浓度为1:5000. Methods (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫细胞化学; 小鼠; 1:1000
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 Sst抗体(Millipore, Mab354)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 和 被用于免疫组化在小鼠样本上浓度为1:1000 . F1000Res (2014) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:2,500
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2,500. J Comp Neurol (2015) ncbi
大鼠 单克隆(YC7)
  • 免疫细胞化学; 人类
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫细胞化学在人类样本上. Cereb Cortex (2016) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:250; 图 e1
默克密理博中国 Sst抗体(Chemicon, MAB354)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 e1). Nature (2014) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 人类
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在人类样本上. Diabetes (2014) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:100
默克密理博中国 Sst抗体(Millipore, YC7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 猪; 1:60
默克密理博中国 Sst抗体(Merck, MAB354)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:60. J Mol Neurosci (2014) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:200
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在小鼠样本上浓度为1:200. Cell Mol Neurobiol (2014) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 羊; 1:100
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在羊样本上浓度为1:100. Ann Neurol (2014) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:50
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 小鼠; 1:150
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化在小鼠样本上浓度为1:150. Dev Biol (2014) ncbi
大鼠 单克隆(YC7)
  • 免疫细胞化学; 小鼠
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫细胞化学在小鼠样本上. J Comp Neurol (2014) ncbi
大鼠 单克隆(YC7)
  • 免疫细胞化学; 人类; 1:100
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Stem Cell Rev (2013) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:1200
默克密理博中国 Sst抗体(Chemicon, MAB354)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1200. J Comp Neurol (2010) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国 Sst抗体(Chemicon, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
默克密理博中国 Sst抗体(Millipore, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. J Comp Neurol (2010) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:150
  • 免疫组化-冰冻切片; 小鼠; 1:150
默克密理博中国 Sst抗体(Chemicon, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:150 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150. J Comp Neurol (2008) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-自由浮动切片; 小鼠; 1:400
默克密理博中国 Sst抗体(Chemicon, MAB354)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. J Comp Neurol (2008) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; African green monkey; 1:400
默克密理博中国 Sst抗体(Chemicon, MAB354)被用于被用于免疫组化在African green monkey样本上浓度为1:400. J Comp Neurol (2007) ncbi
大鼠 单克隆(YC7)
  • 免疫组化-冰冻切片; 小鼠; 1:200
默克密理博中国 Sst抗体(Chemicon, MAB354)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Comp Neurol (2006) ncbi
大鼠 单克隆(YC7)
  • 免疫组化; 猪; 1:200
默克密理博中国 Sst抗体(Chemicon, MAB354)被用于被用于免疫组化在猪样本上浓度为1:200. J Comp Neurol (2006) ncbi
文章列表
  1. Naka A, Veit J, Shababo B, Chance R, Risso D, Stafford D, et al. Complementary networks of cortical somatostatin interneurons enforce layer specific control. elife. 2019;8: pubmed 出版商
  2. Riedemann S, Sutor B, Bergami M, Riedemann T. Gad1-promotor-driven GFP expression in non-GABAergic neurons of the nucleus endopiriformis in a transgenic mouse line. J Comp Neurol. 2019;: pubmed 出版商
  3. Williams L, Holtmaat A. Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term Potentiation via Disinhibition. Neuron. 2019;101:91-102.e4 pubmed 出版商
  4. Tosches M, Yamawaki T, Naumann R, Jacobi A, Tushev G, Laurent G. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science. 2018;360:881-888 pubmed 出版商
  5. Alshawaf A, Viventi S, Qiu W, D Abaco G, Nayagam B, Erlichster M, et al. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Sci Rep. 2018;8:603 pubmed 出版商
  6. Sousa A, Zhu Y, Raghanti M, Kitchen R, Onorati M, Tebbenkamp A, et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science. 2017;358:1027-1032 pubmed 出版商
  7. Kuroda M, Muramatsu R, Maedera N, Koyama Y, Hamaguchi M, Fujimura H, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127:3496-3509 pubmed 出版商
  8. Birey F, Andersen J, Makinson C, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54-59 pubmed 出版商
  9. Zhang X, Sullivan C, Kratz M, Kasten M, Maness P, Manis P. NCAM Regulates Inhibition and Excitability in Layer 2/3 Pyramidal Cells of Anterior Cingulate Cortex. Front Neural Circuits. 2017;11:19 pubmed 出版商
  10. Wallace M, Saunders A, Huang K, Philson A, Goldman M, Macosko E, et al. Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia. Neuron. 2017;94:138-152.e5 pubmed 出版商
  11. Fonseca M, Chu S, Hernandez M, Fang M, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14:48 pubmed 出版商
  12. Lischinsky J, Sokolowski K, Li P, Esumi S, Kamal Y, Goodrich M, et al. Embryonic transcription factor expression in mice predicts medial amygdala neuronal identity and sex-specific responses to innate behavioral cues. elife. 2017;6: pubmed 出版商
  13. Hilscher M, Leao R, Edwards S, Leao K, Kullander K. Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation. PLoS Biol. 2017;15:e2001392 pubmed 出版商
  14. Fadok J, Krabbe S, Markovic M, Courtin J, Xu C, Massi L, et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature. 2017;542:96-100 pubmed 出版商
  15. Fu H, Rodriguez G, Herman M, Emrani S, Nahmani E, Barrett G, et al. Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial Memory Deficits Reminiscent of Early Alzheimer's Disease. Neuron. 2017;93:533-541.e5 pubmed 出版商
  16. Dimidschstein J, Chen Q, Tremblay R, Rogers S, Saldi G, Guo L, et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci. 2016;19:1743-1749 pubmed 出版商
  17. Yamada J, Jinno S. Molecular heterogeneity of aggrecan-based perineuronal nets around five subclasses of parvalbumin-expressing neurons in the mouse hippocampus. J Comp Neurol. 2017;525:1234-1249 pubmed 出版商
  18. Sun Y, Paşca S, Portmann T, Goold C, Worringer K, Guan W, et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. elife. 2016;5: pubmed 出版商
  19. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  20. Zhang L, Hernandez V, Vázquez Juárez E, Chay F, Barrio R. Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway?. Front Neural Circuits. 2016;10:13 pubmed 出版商
  21. Saxena P, Heng B, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun. 2016;7:11247 pubmed 出版商
  22. Goodliffe J, Olmos Serrano J, Aziz N, Pennings J, Guedj F, Bianchi D, et al. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome. J Neurosci. 2016;36:2926-44 pubmed 出版商
  23. Li P, Janczewski W, Yackle K, Kam K, Pagliardini S, Krasnow M, et al. The peptidergic control circuit for sighing. Nature. 2016;530:293-297 pubmed 出版商
  24. Marques Smith A, Lyngholm D, Kaufmann A, Stacey J, Hoerder Suabedissen A, Becker E, et al. A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex. Neuron. 2016;89:536-49 pubmed 出版商
  25. Anastasiades P, Marques Smith A, Lyngholm D, Lickiss T, Raffiq S, Kätzel D, et al. GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun. 2016;7:10584 pubmed 出版商
  26. Canetta S, Bolkan S, Padilla Coreano N, Song L, Sahn R, Harrison N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956-68 pubmed 出版商
  27. Kishi N, MacDonald J, Ye J, Molyneaux B, Azim E, Macklis J. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice. Nat Commun. 2016;7:10520 pubmed 出版商
  28. De Stasi A, Farisello P, Marcon I, Cavallari S, Forli A, Vecchia D, et al. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy. Cereb Cortex. 2016;26:1778-94 pubmed 出版商
  29. Podlasz P, Jakimiuk A, Chmielewska Krzesinska M, Kasica N, Nowik N, Kaleczyc J. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol. 2016;145:105-17 pubmed 出版商
  30. Erbs E, Faget L, Ceredig R, Matifas A, Vonesch J, Kieffer B, et al. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience. 2016;313:46-56 pubmed 出版商
  31. Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang W, et al. Basal forebrain circuit for sleep-wake control. Nat Neurosci. 2015;18:1641-7 pubmed 出版商
  32. Miyoshi G, Young A, PETROS T, Karayannis T, McKenzie Chang M, Lavado A, et al. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons. J Neurosci. 2015;35:12869-89 pubmed 出版商
  33. Ahn S, Kim T, Kim K, Chung S. Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells. Methods. 2016;101:103-12 pubmed 出版商
  34. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  35. Orbán Kis K, Szabadi T, Szilágyi T. The loss of Ivy cells and the hippocampal input modulatory O-LM cells contribute to the emergence of hyperexcitability in the hippocampus. Rom J Morphol Embryol. 2015;56:155-61 pubmed
  36. Molgaard S, Ulrichsen M, Boggild S, Holm M, Vaegter C, Nyengaard J, et al. Immunohistochemical visualization of mouse interneuron subtypes. F1000Res. 2014;3:242 pubmed 出版商
  37. Aragón F, Karaca M, Novials A, Maldonado R, Maechler P, Rubí B. Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochim Biophys Acta. 2015;1850:343-51 pubmed 出版商
  38. Yamada J, Jinno S. Subclass-specific formation of perineuronal nets around parvalbumin-expressing GABAergic neurons in Ammon's horn of the mouse hippocampus. J Comp Neurol. 2015;523:790-804 pubmed 出版商
  39. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  40. Jabari S, da Silveira A, de Oliveira E, Quint K, Wirries A, Neuhuber W, et al. Mucosal layers and related nerve fibres in non-chagasic and chagasic human colon--a quantitative immunohistochemical study. Cell Tissue Res. 2014;358:75-83 pubmed 出版商
  41. Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
  42. Juranek J, Wojtkiewicz J. Origins and neurochemical complexity of preganglionic neurons supplying the superior cervical ganglion in the domestic pig. J Mol Neurosci. 2015;55:297-304 pubmed 出版商
  43. Molina J, Rodriguez Diaz R, Fachado A, Jacques Silva M, Berggren P, Caicedo A. Control of insulin secretion by cholinergic signaling in the human pancreatic islet. Diabetes. 2014;63:2714-26 pubmed 出版商
  44. Ledri M, Madsen M, Nikitidou L, Kirik D, Kokaia M. Global optogenetic activation of inhibitory interneurons during epileptiform activity. J Neurosci. 2014;34:3364-77 pubmed 出版商
  45. Kozłowska A, Majewski M, Jana B. Changes in the cholinergic innervation pattern of porcine ovaries with cysts induced by dexamethasone administration. J Mol Neurosci. 2014;54:10-9 pubmed 出版商
  46. Balu D, Takagi S, Puhl M, Benneyworth M, Coyle J. D-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol. 2014;34:419-35 pubmed 出版商
  47. McClendon E, Chen K, Gong X, Sharifnia E, Hagen M, Cai V, et al. Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol. 2014;75:508-24 pubmed 出版商
  48. Dolan J, Mitchell K. Mutation of Elfn1 in mice causes seizures and hyperactivity. PLoS ONE. 2013;8:e80491 pubmed 出版商
  49. Zhao Y, Flandin P, Vogt D, Blood A, Hermesz E, Westphal H, et al. Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon. Dev Biol. 2014;385:94-106 pubmed 出版商
  50. Sohn J, Hioki H, Okamoto S, Kaneko T. Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J Comp Neurol. 2014;522:1506-26 pubmed 出版商
  51. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  52. Wojtkiewicz J, Równiak M, Crayton R, Gonkowski S, Robak A, Zalecki M, et al. Axotomy-induced changes in the chemical coding pattern of colon projecting calbindin-positive neurons in the inferior mesenteric ganglia of the pig. J Mol Neurosci. 2013;51:99-108 pubmed 出版商
  53. Wojtkiewicz J, Równiak M, Crayton R, Majewski M, Gonkowski S. Chemical coding of zinc-enriched neurons in the intramural ganglia of the porcine jejunum. Cell Tissue Res. 2012;350:215-23 pubmed 出版商
  54. Romero Zerbo S, Rafacho A, Diaz Arteaga A, Suarez J, Quesada I, Imbernon M, et al. A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. J Endocrinol. 2011;211:177-85 pubmed 出版商
  55. Corteen N, Cole T, Sarna A, Sieghart W, Swinny J. Localization of GABA-A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. Eur J Neurosci. 2011;34:250-62 pubmed 出版商
  56. Akgul G, Wollmuth L. Expression pattern of membrane-associated guanylate kinases in interneurons of the visual cortex. J Comp Neurol. 2010;518:4842-54 pubmed 出版商
  57. Dimitrov E, Usdin T. Tuberoinfundibular peptide of 39 residues modulates the mouse hypothalamic-pituitary-adrenal axis via paraventricular glutamatergic neurons. J Comp Neurol. 2010;518:4375-94 pubmed 出版商
  58. Xu X, Roby K, Callaway E. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol. 2010;518:389-404 pubmed 出版商
  59. Zhao Y, Flandin P, Long J, Cuesta M, Westphal H, Rubenstein J. Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol. 2008;510:79-99 pubmed 出版商
  60. Xu Q, Tam M, Anderson S. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol. 2008;506:16-29 pubmed
  61. Tomioka R, Rockland K. Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J Comp Neurol. 2007;505:526-38 pubmed
  62. Xu X, Roby K, Callaway E. Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol. 2006;499:144-60 pubmed
  63. Liu S, Gao N, Hu H, Wang X, Wang G, Fang X, et al. Distribution and chemical coding of corticotropin-releasing factor-immunoreactive neurons in the guinea pig enteric nervous system. J Comp Neurol. 2006;494:63-74 pubmed