这是一篇来自已证抗体库的有关大鼠 Stat5a的综述,是根据95篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Stat5a 抗体。
Stat5a 同义词: Stat5

赛默飞世尔
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛默飞世尔 Stat5a抗体(Zymed, 13-3600)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4g
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛默飞世尔 Stat5a抗体(Invitrogen, 71-6900)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Breast Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 Stat5a抗体(Invitrogen, 71-6900)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛默飞世尔 Stat5a抗体(Invitrogen, 71-6900)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫组化-自由浮动切片; 大鼠; 1:100
赛默飞世尔 Stat5a抗体(Invitrogen, 13-3600)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100. J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:100
赛默飞世尔 Stat5a抗体(Invitrogen, 71-6900)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100. J Neurosci Res (2016) ncbi
小鼠 单克隆(ST5a-2H2)
  • EMSA; 牛; 图 6
赛默飞世尔 Stat5a抗体(Invitrogen, 13-3600)被用于被用于EMSA在牛样本上 (图 6). PLoS ONE (2014) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Stat5a抗体(Ambion, 13-3600)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Sci (2013) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 Stat5a抗体(Invitrogen, 13-3600)被用于被用于免疫印迹在小鼠样本上 (图 5). Bone (2013) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 图 3
  • 免疫印迹; 小鼠; 1:500; 图 4
赛默飞世尔 Stat5a抗体(Zymed, 13-3600)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Neuroendocrinol (2012) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Stat5a抗体(Invitrogen, 13-3600)被用于被用于免疫印迹在人类样本上 (图 2). Nucleic Acids Res (2012) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 Stat5a抗体(Invitrogen, 13-3600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Endocrinology (2012) ncbi
小鼠 单克隆(ST5a-2H2)
  • 染色质免疫沉淀 ; 人类; 图 6
赛默飞世尔 Stat5a抗体(Zymed, 13-3600)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). Mol Endocrinol (2006) ncbi
小鼠 单克隆(ST5-8F7)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Stat5a抗体(Zymed, ST5-8F7)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2004) ncbi
小鼠 单克隆(ST5-8F7)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Stat5a抗体(Zymed, 33-5900)被用于被用于免疫印迹在小鼠样本上 (图 4). Leuk Res (2004) ncbi
domestic rabbit 多克隆
赛默飞世尔 Stat5a抗体(Zymed, 71?C6900)被用于. J Cell Biol (2003) ncbi
小鼠 单克隆(ST5a-2H2)
  • 免疫沉淀; African green monkey; 图 4
  • 免疫印迹; African green monkey; 图 4
赛默飞世尔 Stat5a抗体(Zymed, 13-3600)被用于被用于免疫沉淀在African green monkey样本上 (图 4) 和 被用于免疫印迹在African green monkey样本上 (图 4). J Immunol (2000) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR16671-40)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
艾博抗(上海)贸易有限公司 Stat5a抗体(Abcam, ab194898)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR16671-40)
  • 免疫组化; 大鼠; 1:250; 图 3d
  • 免疫印迹; 大鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司 Stat5a抗体(Abcam, ab194898)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 3d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3f). PLoS Genet (2019) ncbi
domestic rabbit 单克隆(E289)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 Stat5a抗体(Abcam, ab32043)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Stat5a抗体(Abcam, ab30648)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(EPR1914(2))
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司 Stat5a抗体(Epitomics, 5734?C1)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Cancer (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-9)
  • ChIP-Seq; 小鼠; 图 3c, 7b
圣克鲁斯生物技术 Stat5a抗体(Santa Cruz, sc-74442)被用于被用于ChIP-Seq在小鼠样本上 (图 3c, 7b). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(A-9)
  • 免疫沉淀; 人类; 图 5b
圣克鲁斯生物技术 Stat5a抗体(Santa-Cruz, sc-74442)被用于被用于免疫沉淀在人类样本上 (图 5b). Nat Commun (2018) ncbi
小鼠 单克隆(51)
  • 免疫印迹; 小鼠; 1:200; 图 4
圣克鲁斯生物技术 Stat5a抗体(Santa Cruz, sc-136081)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(A-9)
  • 染色质免疫沉淀 ; 小鼠; 图 7
圣克鲁斯生物技术 Stat5a抗体(Santa Cruz, sc-74442 X)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Stat5a抗体(Santa Cruz Biotechnology, A-9)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Genet (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 5e). Science (2020) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 5e). Science (2020) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1h). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫印迹; 小鼠; 图 s5c
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9314)被用于被用于免疫印迹在小鼠样本上 (图 s5c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b, s1b
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 1b, s1b) 和 被用于免疫印迹在小鼠样本上 (图 2h). Genes Dev (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b, s1b
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9351)被用于被用于免疫印迹在人类样本上 (图 1b, s1b) 和 被用于免疫印迹在小鼠样本上 (图 2h). Genes Dev (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technologies, 9359)被用于被用于免疫印迹在人类样本上 (图 2a). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signalling Technologies, 9363)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9351)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 5c). PLoS ONE (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359P)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Nature (2018) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Stat5a抗体(cell signalling, 9363)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Stat5a抗体(cell signalling, 9314)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, 9359)被用于被用于免疫印迹在小鼠样本上 (图 7a). Skelet Muscle (2017) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 5c
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5c). Leukemia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, 9351)被用于被用于免疫印迹在小鼠样本上 (图 4b). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, 9363)被用于被用于免疫印迹在小鼠样本上 (图 4b). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363S)被用于被用于染色质免疫沉淀 在人类样本上 (图 5b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9351)被用于被用于免疫沉淀在人类样本上 和 被用于免疫细胞化学在人类样本上. Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Stat5a抗体(cell signalling, 9351)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Med (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 牛; 1:1000; 表 2
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在牛样本上浓度为1:1000 (表 2). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9351)被用于被用于免疫印迹在人类样本上 (图 2d). Leukemia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 2d). Leukemia (2017) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signalling, 9359)被用于被用于免疫组化-石蜡切片在人类样本上. Respir Res (2016) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9314)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, C11C5)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Clin Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9351S)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C71E5)
  • 流式细胞仪; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, C71E5)被用于被用于流式细胞仪在小鼠样本上 (图 2i). J Exp Med (2016) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫组化; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9314)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9351)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C71E5)
  • 流式细胞仪; 小鼠
  • 免疫印迹; 小鼠; 图 5g
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, C71E5)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 5g). J Leukoc Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫印迹; 人类; 表 1
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9314S)被用于被用于免疫印迹在人类样本上 (表 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signalling, 9363)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9351)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:500; 图 7c
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technologies, C11C5)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9351)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). BMC Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9351)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Physiol (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上. Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在小鼠样本上. Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9363)被用于被用于免疫印迹在人类样本上 (图 s3). Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359L)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫印迹; 人类; 图 8d
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9314)被用于被用于免疫印迹在人类样本上 (图 8d). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9314)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Cytokine (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Ozyme, 9363)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:200; 图 4a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, C11C5)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化; 人类; 1:50; 表 2
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫组化在人类样本上浓度为1:50 (表 2). Hematol Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Stat5a抗体(cell Signaling Tech, 9363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, 9363)被用于被用于免疫印迹在小鼠样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫印迹; 人类; 图 1
  • 免疫细胞化学; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, 9314)被用于被用于免疫印迹在人类样本上 (图 1), 被用于免疫细胞化学在小鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 牛; 图 1
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在牛样本上 (图 1). Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). Nat Med (2015) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9351)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9314)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 s5d
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 s5d). Nat Genet (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9351 S)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫组化; 小鼠; 1:300; 表 2
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9359)被用于被用于免疫组化在小鼠样本上浓度为1:300 (表 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, C11C5)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell signaling, 9359)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Cancer (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9359S)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, C11C5)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 流式细胞仪; 大鼠; 图 8
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, C11C5)被用于被用于流式细胞仪在大鼠样本上 (图 8). Eur J Immunol (2015) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在人类样本上. Toxicol In Vitro (2014) ncbi
domestic rabbit 单克隆(C11C5)
  • 免疫印迹; 小鼠; 图 s16a
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling Technology, 9359)被用于被用于免疫印迹在小鼠样本上 (图 s16a). Int J Oncol (2013) ncbi
domestic rabbit 单克隆(C71E5)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 Stat5a抗体(Cell Signaling, 9314)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Oncogene (2013) ncbi
碧迪BD
小鼠 单克隆(89/Stat5)
  • 免疫印迹; 人类; 图 s5a
碧迪BD Stat5a抗体(BD Biosciences, 610191)被用于被用于免疫印迹在人类样本上 (图 s5a). Science (2018) ncbi
小鼠 单克隆(89/Stat5)
  • 免疫印迹; 小鼠; 1:500; 图 4c
碧迪BD Stat5a抗体(BD Transduction, 89/Stat5)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4c). Heliyon (2018) ncbi
小鼠 单克隆(89/Stat5)
  • 免疫印迹; 人类; 图 3b
碧迪BD Stat5a抗体(BD Biosciences, 610191)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(89/Stat5)
  • 免疫印迹; 小鼠
碧迪BD Stat5a抗体(BD Biosciences, 610191)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
文章列表
  1. Wilmes S, Hafer M, Vuorio J, Tucker J, Winkelmann H, Löchte S, et al. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science. 2020;367:643-652 pubmed 出版商
  2. You Y, Qin Z, Zhang H, Yuan Z, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;: pubmed 出版商
  3. Ding L, Shunkwiler L, Harper N, Zhao Y, Hinohara K, Huh S, et al. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genet. 2019;15:e1008002 pubmed 出版商
  4. Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao Shen H, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;130:1596-1611 pubmed 出版商
  5. Izumi T, Imai J, Yamamoto J, Kawana Y, Endo A, Sugawara H, et al. Vagus-macrophage-hepatocyte link promotes post-injury liver regeneration and whole-body survival through hepatic FoxM1 activation. Nat Commun. 2018;9:5300 pubmed 出版商
  6. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  7. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  8. Lee H, Willi M, Shin H, Liu C, Hennighausen L. Progressing super-enhancer landscape during mammary differentiation controls tissue-specific gene regulation. Nucleic Acids Res. 2018;46:10796-10809 pubmed 出版商
  9. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  10. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  11. Kim S, Knight D, Jones L, Vervoort S, Ng A, Seymour J, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias. Genes Dev. 2018;32:849-864 pubmed 出版商
  12. Luo N, Formisano L, Gonzalez Ericsson P, Sanchez V, Dean P, Opalenik S, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106 pubmed 出版商
  13. Sevin M, Kubovcakova L, Pernet N, Causse S, Vitte F, Villeval J, et al. HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun. 2018;9:1431 pubmed 出版商
  14. Olesen M, Christiansen J, Petersen S, Jensen P, Paslawski W, Romero Ramos M, et al. CD4 T cells react to local increase of α-synuclein in a pathology-associated variant-dependent manner and modify brain microglia in absence of brain pathology. Heliyon. 2018;4:e00513 pubmed 出版商
  15. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  16. Kulling P, Olson K, Hamele C, Toro M, Tan S, Feith D, et al. Dysregulation of the IFN-?-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS ONE. 2018;13:e0193429 pubmed 出版商
  17. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  18. Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y, Gu Y, et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature. 2018;554:123-127 pubmed 出版商
  19. Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest. 2018;128:125-140 pubmed 出版商
  20. Yang Y, Hu S, Liu J, Cui Y, Fan Y, Lv T, et al. CD8+ T cells promote proliferation of benign prostatic hyperplasia epithelial cells under low androgen level via modulation of CCL5/STAT5/CCND1 signaling pathway. Sci Rep. 2017;7:42893 pubmed 出版商
  21. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  22. Gopinath S. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor. Skelet Muscle. 2017;7:2 pubmed 出版商
  23. Reckel S, Hamelin R, Georgeon S, Armand F, Jolliet Q, Chiappe D, et al. Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia. 2017;31:1502-1512 pubmed 出版商
  24. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  25. Chaudhari A, Gupta R, Patel S, Velingkaar N, Kondratov R. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation. Mol Biol Cell. 2017;28:834-842 pubmed 出版商
  26. Schauwecker S, Kim J, Licht J, Clevenger C. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells. J Biol Chem. 2017;292:2237-2254 pubmed 出版商
  27. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  28. Li Y, Buijs Gladdines J, Canté Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  29. Ontsouka C, Huang X, Aliyev E, Albrecht C. In vitro characterization and endocrine regulation of cholesterol and phospholipid transport in the mammary gland. Mol Cell Endocrinol. 2017;439:35-45 pubmed 出版商
  30. Wu M, Hamaker M, Li L, Small D, Duffield A. DOCK2 interacts with FLT3 and modulates the survival of FLT3-expressing leukemia cells. Leukemia. 2017;31:688-696 pubmed 出版商
  31. Southworth T, Plumb J, Gupta V, Pearson J, Ramis I, Lehner M, et al. Anti-inflammatory potential of PI3K? and JAK inhibitors in asthma patients. Respir Res. 2016;17:124 pubmed
  32. Willi M, Yoo K, Wang C, Trajanoski Z, Hennighausen L. Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation. Nucleic Acids Res. 2016;44:10277-10291 pubmed
  33. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  34. Chakhtoura Z, Laki F, Bernadet M, Cherifi I, Chiche A, Pigat N, et al. Gain-of-function Prolactin Receptor Variants Are Not Associated With Breast Cancer and Multiple Fibroadenoma Risk. J Clin Endocrinol Metab. 2016;101:4449-4460 pubmed
  35. Guo L, Costanzo Garvey D, Smith D, Zavorka M, Venable Kang M, MacDonald R, et al. Cell non-autonomous regulation of hepatic IGF-1 and neonatal growth by Kinase Suppressor of Ras 2 (KSR2). Sci Rep. 2016;6:32093 pubmed 出版商
  36. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  37. Senzacqua M, Severi I, Perugini J, Acciarini S, Cinti S, Giordano A. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex. Front Neurosci. 2016;10:289 pubmed 出版商
  38. Zea A, Stewart T, Ascani J, Tate D, Finkel Jimenez B, Wilk A, et al. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?. PLoS ONE. 2016;11:e0157907 pubmed 出版商
  39. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  40. Michl C, Vivarelli F, Weigl J, De Nicola G, Canistro D, Paolini M, et al. The Chemopreventive Phytochemical Moringin Isolated from Moringa oleifera Seeds Inhibits JAK/STAT Signaling. PLoS ONE. 2016;11:e0157430 pubmed 出版商
  41. Cao G, Wang Q, Li G, Meng Z, Liu H, Tong J, et al. mTOR inhibition potentiates cytotoxicity of V?4 ?? T cells via up-regulating NKG2D and TNF-?. J Leukoc Biol. 2016;100:1181-1189 pubmed
  42. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  43. Lombardo G, Dentelli P, Togliatto G, Rosso A, Gili M, Gallo S, et al. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action. Sci Rep. 2016;6:25689 pubmed 出版商
  44. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki C, Kumura H. Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with ?-casein expression in mammary epithelial cells. Biochim Biophys Acta. 2016;1863:2006-16 pubmed 出版商
  45. Swamy M, Pathak S, Grzes K, Damerow S, Sinclair L, van Aalten D, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol. 2016;17:712-20 pubmed 出版商
  46. O Leary C, Riling C, Spruce L, Ding H, Kumar S, Deng G, et al. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun. 2016;7:11226 pubmed 出版商
  47. Pinz S, Unser S, Rascle A. Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer. BMC Mol Biol. 2016;17:10 pubmed 出版商
  48. Rooney N, Wang P, Brennan K, Gilmore A, Streuli C. The Integrin-Mediated ILK-Parvin-?Pix Signaling Axis Controls Differentiation in Mammary Epithelial Cells. J Cell Physiol. 2016;231:2408-17 pubmed 出版商
  49. Gomez Rodriguez J, Meylan F, Handon R, Hayes E, Anderson S, Kirby M, et al. Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat Commun. 2016;7:10857 pubmed 出版商
  50. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  51. Schwarzer M, Makki K, Storelli G, Machuca Gayet I, Srůtková D, Hermanova P, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351:854-7 pubmed 出版商
  52. Kim J, He X, Orr B, Wutz G, Hill V, Peters J, et al. Intact Cohesion, Anaphase, and Chromosome Segregation in Human Cells Harboring Tumor-Derived Mutations in STAG2. PLoS Genet. 2016;12:e1005865 pubmed 出版商
  53. Vieyra Garcia P, Wei T, Naym D, Fredholm S, Fink Puches R, Cerroni L, et al. STAT3/5-Dependent IL9 Overexpression Contributes to Neoplastic Cell Survival in Mycosis Fungoides. Clin Cancer Res. 2016;22:3328-39 pubmed 出版商
  54. Chen K, Yang J, Li J, Wang X, Chen Y, Huang S, et al. eIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants. Oncotarget. 2016;7:10073-89 pubmed 出版商
  55. Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon B, Lee J, et al. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling. J Biol Chem. 2016;291:7357-72 pubmed 出版商
  56. Mignacca L, Saint Germain E, Benoit A, Bourdeau V, Moro A, Ferbeyre G. Sponges against miR-19 and miR-155 reactivate the p53-Socs1 axis in hematopoietic cancers. Cytokine. 2016;82:80-6 pubmed 出版商
  57. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  58. Bothur E, Raifer H, Haftmann C, Stittrich A, Brüstle A, Brenner D, et al. Antigen receptor-mediated depletion of FOXP3 in induced regulatory T-lymphocytes via PTPN2 and FOXO1. Nat Commun. 2015;6:8576 pubmed 出版商
  59. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  60. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  61. Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, et al. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem. 2016;291:5817-31 pubmed 出版商
  62. Park H, Li J, Hannah R, Biddie S, Leal Cervantes A, Kirschner K, et al. Cytokine-induced megakaryocytic differentiation is regulated by genome-wide loss of a uSTAT transcriptional program. EMBO J. 2016;35:580-94 pubmed 出版商
  63. Ao J, Wei C, Si Y, Luo C, Lv W, Lin Y, et al. Tudor-SN Regulates Milk Synthesis and Proliferation of Bovine Mammary Epithelial Cells. Int J Mol Sci. 2015;16:29936-47 pubmed 出版商
  64. Wen Q, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider R, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473-80 pubmed 出版商
  65. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  66. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed 出版商
  67. Ma S, Yang L, Niu T, Cheng C, Zhong L, Zheng M, et al. SKLB-677, an FLT3 and Wnt/β-catenin signaling inhibitor, displays potent activity in models of FLT3-driven AML. Sci Rep. 2015;5:15646 pubmed 出版商
  68. Moravcová S, ÄŒervená K, Pačesová D, Bendová Z. Identification of STAT3 and STAT5 proteins in the rat suprachiasmatic nucleus and the Day/Night difference in astrocytic STAT3 phosphorylation in response to lipopolysaccharide. J Neurosci Res. 2016;94:99-108 pubmed 出版商
  69. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  70. Saliba J, Saint Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet. 2015;47:1131-40 pubmed 出版商
  71. Ahn J, Li J, Chen E, Kent D, Park H, Green A. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 2016;35:2235-46 pubmed 出版商
  72. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  73. Bernichtein S, Pigat N, Capiod T, Boutillon F, Verkarre V, Camparo P, et al. High milk consumption does not affect prostate tumor progression in two mouse models of benign and neoplastic lesions. PLoS ONE. 2015;10:e0125423 pubmed 出版商
  74. Zhang C, Nygaard M, Haxholm G, Boutillon F, Bernadet M, Hoos S, et al. A Residue Quartet in the Extracellular Domain of the Prolactin Receptor Selectively Controls Mitogen-activated Protein Kinase Signaling. J Biol Chem. 2015;290:11890-904 pubmed 出版商
  75. Nasr R, Hmadi R, El Eit R, Iskandarani A, Jabbour M, Zaatari G, et al. ST1926, an orally active synthetic retinoid, induces apoptosis in chronic myeloid leukemia cells and prolongs survival in a murine model. Int J Cancer. 2015;137:698-709 pubmed 出版商
  76. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  77. Nguyen M, Boutinaud M, Pétridou B, Gabory A, Pannetier M, Chat S, et al. DNA methylation and transcription in a distal region upstream from the bovine AlphaS1 casein gene after once or twice daily milking. PLoS ONE. 2014;9:e111556 pubmed 出版商
  78. Jay J, Hammer A, Nestor Kalinoski A, Diakonova M. JAK2 tyrosine kinase phosphorylates and is negatively regulated by centrosomal protein Ninein. Mol Cell Biol. 2015;35:111-31 pubmed 出版商
  79. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  80. Sackmann Sala L, Chiche A, Mosquera Garrote N, Boutillon F, Cordier C, Pourmir I, et al. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol. 2014;184:3105-19 pubmed 出版商
  81. Côté Maurais G, Bernier J. Silver and fullerene nanoparticles' effect on interleukin-2-dependent proliferation of CD4 (+) T cells. Toxicol In Vitro. 2014;28:1474-81 pubmed 出版商
  82. Bachmann S, Frommel S, Camicia R, Winkler H, Santoro R, Hassa P. DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells. Mol Cancer. 2014;13:125 pubmed 出版商
  83. Hashimoto M, Nasser H, Chihara T, Suzu S. Macropinocytosis and TAK1 mediate anti-inflammatory to pro-inflammatory macrophage differentiation by HIV-1 Nef. Cell Death Dis. 2014;5:e1267 pubmed 出版商
  84. Elsarraj H, Hong Y, Valdez K, Carletti M, Salah S, Raimo M, et al. A novel role of microRNA146b in promoting mammary alveolar progenitor cell maintenance. J Cell Sci. 2013;126:2446-58 pubmed 出版商
  85. Hoff P, Rakow A, Gaber T, Hahne M, Sentürk U, Strehl C, et al. Preoperative irradiation for the prevention of heterotopic ossification induces local inflammation in humans. Bone. 2013;55:93-101 pubmed 出版商
  86. Wu N, Kurosu T, Oshikawa G, Nagao T, Miura O. PECAM-1 is involved in BCR/ABL signaling and may downregulate imatinib-induced apoptosis of Philadelphia chromosome-positive leukemia cells. Int J Oncol. 2013;42:419-28 pubmed 出版商
  87. Chatain N, Ziegler P, Fahrenkamp D, Jost E, Moriggl R, Schmitz Van de Leur H, et al. Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells. Oncogene. 2013;32:3587-97 pubmed 出版商
  88. Yip S, Eguchi R, Grattan D, Bunn S. Prolactin signalling in the mouse hypothalamus is primarily mediated by signal transducer and activator of transcription factor 5b but not 5a. J Neuroendocrinol. 2012;24:1484-91 pubmed 出版商
  89. Barros P, Lam E, Jordan P, Matos P. Rac1 signalling modulates a STAT5/BCL-6 transcriptional switch on cell-cycle-associated target gene promoters. Nucleic Acids Res. 2012;40:7776-87 pubmed 出版商
  90. Zhao H, Pearson E, Brooks D, Coon J, Chen D, Demura M, et al. A humanized pattern of aromatase expression is associated with mammary hyperplasia in mice. Endocrinology. 2012;153:2701-13 pubmed 出版商
  91. Kabotyanski E, Huetter M, Xian W, Rijnkels M, Rosen J. Integration of prolactin and glucocorticoid signaling at the beta-casein promoter and enhancer by ordered recruitment of specific transcription factors and chromatin modifiers. Mol Endocrinol. 2006;20:2355-68 pubmed
  92. Duensing A, Medeiros F, McConarty B, Joseph N, Panigrahy D, Singer S, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004;23:3999-4006 pubmed
  93. Fisher R, Slayton W, Chien C, Guthrie S, Bray C, Scott E. PU.1 supports proliferation of immature erythroid progenitors. Leuk Res. 2004;28:83-9 pubmed
  94. Wang R, Vadlamudi R, Bagheri Yarmand R, Beuvink I, Hynes N, Kumar R. Essential functions of p21-activated kinase 1 in morphogenesis and differentiation of mammary glands. J Cell Biol. 2003;161:583-92 pubmed
  95. Aittomaki S, Pesu M, Groner B, Janne O, Palvimo J, Silvennoinen O. Cooperation among Stat1, glucocorticoid receptor, and PU.1 in transcriptional activation of the high-affinity Fc gamma receptor I in monocytes. J Immunol. 2000;164:5689-97 pubmed