这是一篇来自已证抗体库的有关大鼠 Syp的综述,是根据246篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Syp 抗体。
Syp 同义词: Syp1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(YE269)
  • 免疫组化; 小鼠; 1:200; 图 4d
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4d). Int J Mol Sci (2022) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫印迹在小鼠样本上 (图 6a). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 大鼠; 图 6c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫印迹在大鼠样本上 (图 6c). Front Pharmacol (2022) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 图 8d
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫印迹在小鼠样本上 (图 8d). EMBO J (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32594)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 8a). EMBO J (2022) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1b). Mol Neurobiol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, Ab-14692)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6a). Front Neurosci (2021) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司 Syp抗体(abcam, ab32127)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Exp Neurobiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32594)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4f
  • 免疫印迹; 小鼠; 图 s3d
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32594)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4f) 和 被用于免疫印迹在小鼠样本上 (图 s3d). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab14692)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2021) ncbi
小鼠 单克隆(SY38)
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于. Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 大鼠; 图 1h
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化在大鼠样本上 (图 1h). Brain Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, 14692)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3a). J Neuroinflammation (2021) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 猕猴; 1:10; 图 8a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化在猕猴样本上浓度为1:10 (图 8a). elife (2021) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化; 小鼠; 1:500; 图 1b
  • 免疫印迹; 小鼠; 1:3000; 图 4i
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4i). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s4a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab14692)被用于被用于免疫细胞化学在小鼠样本上 (图 s4a). Mol Metab (2021) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, AB8049)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5). Stem Cells (2021) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 图 7a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab206870)被用于被用于免疫细胞化学在人类样本上 (图 7a). ACS Biomater Sci Eng (2020) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s4j
  • 免疫印迹; 小鼠; 图 s6d
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s4j) 和 被用于免疫印迹在小鼠样本上 (图 s6d). Sci Adv (2020) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, 8049)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). elife (2020) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Amino Acids (2020) ncbi
小鼠 单克隆(SY38)
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于. Dis Model Mech (2020) ncbi
小鼠 单克隆(SY38)
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于. J Virol (2020) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3c
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 1:1000; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3c), 被用于免疫细胞化学在人类样本上 (图 3b), 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Oncol Lett (2020) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 图 6e
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上 (图 6e). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab14692)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1d). Aging Cell (2020) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Front Endocrinol (Lausanne) (2019) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-自由浮动切片; 大鼠; 1:250; 图 7a
  • 免疫印迹; 大鼠; 1:1000; 图 s2e
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:250 (图 7a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s2e). Nat Commun (2020) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Aging Cell (2020) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化; 小鼠; 1:100; 图 2h
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, 32127)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2h). Nat Commun (2019) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, YE269)被用于被用于免疫印迹在小鼠样本上 (图 s1). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2e
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, Ab14692)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2e). Aging Cell (2018) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化; 小鼠; 1:500; 图 6c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 5a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab14692)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5a). J Exp Med (2018) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s7j
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s7j). Cell (2018) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3c). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 1b). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Sci Rep (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 大鼠; 图 2
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Mol Cell Neurosci (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 大鼠; 1:200; 表 2
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化在大鼠样本上浓度为1:200 (表 2). J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:200; 表 2
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab14692)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (表 2). J Neuroinflammation (2017) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化; 小鼠; 1:500; 图 7k
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, EP1098Y)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7k). Theranostics (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5a
  • 免疫印迹; 大鼠; 图 5b
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在大鼠样本上 (图 5b). Sci Rep (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s3b
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s3b). Science (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Syp抗体(abcam, ab8049)被用于被用于免疫印迹在小鼠样本上 (图 4a). Neuropharmacology (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Exp Neurol (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 小鼠; 1:200; 图 8b
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, Ab8049)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 8b). J Mol Neurosci (2017) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 人类; 1:600; 图 1e
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600 (图 1e). Front Neuroanat (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上 (图 3f). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7c). Sci Rep (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 小鼠; 1:200; 图 3b
  • 免疫印迹; 小鼠; 1:8000; 图 3c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:8000 (图 3c). Neurobiol Dis (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:15,000; 图 4f
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 4f). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab14692)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:20,000; 图 2b
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, 32127)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 2b). J Neurosci Res (2017) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 1b
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 1b). J Physiol (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32594)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3). Mol Neurodegener (2016) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 大鼠; 1:100; 图 s1
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, Ab8049)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 s1). J Neuroimmunol (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, AB8049)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 3
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 3). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab14692)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:5000; 图 s2
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:2000; 图 9a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9a). Sci Rep (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 7g
  • 免疫印迹; 大鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 7g) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Sci Rep (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 大鼠; 1:25; 图 5
艾博抗(上海)贸易有限公司 Syp抗体(abcam, ab8049)被用于被用于免疫组化在大鼠样本上浓度为1:25 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab14692)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s1c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:40,000; 图 6a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000 (图 6a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab32127)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuropharmacology (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 小鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Cereb Cortex (2016) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 人类; 1:5000; 图 6B
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6B). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). J Neurosci (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫组化在人类样本上. Hum Pathol (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 大鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Int J Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫组化; 人类; 1:50
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, Ab8049)被用于被用于免疫组化在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:5000. Acta Neuropathol Commun (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫组化-自由浮动切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, EP1098Y)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1). J Neurodegener Dis (2013) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Psychiatry Res (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 大鼠; 1:20,000
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000. Cell Death Dis (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫沉淀; pigs ; 图 3
  • 免疫印迹; pigs ; 图 1d,3
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫沉淀在pigs 样本上 (图 3), 被用于免疫印迹在pigs 样本上 (图 1d,3), 被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1c). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(YE269)
  • 免疫组化-石蜡切片; 人类; 1:600
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab 32127)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Dev Neurobiol (2015) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Bipolar Disord (2015) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1a). Brain Struct Funct (2016) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Neurosci Lett (2014) ncbi
domestic rabbit 单克隆(EP1098Y)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab52636)被用于被用于免疫印迹在小鼠样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Cancer Res (2013) ncbi
小鼠 单克隆(SY38)
  • 免疫印迹; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). J Alzheimers Dis (2014) ncbi
小鼠 单克隆(SY38)
  • 免疫细胞化学; 小鼠; 1:10
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10. PLoS Comput Biol (2013) ncbi
小鼠 单克隆(SY38)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 Syp抗体(Abcam, ab8049)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上. PLoS ONE (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6b
圣克鲁斯生物技术 Syp抗体(Santa Cruz, SC-17750)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6b). Commun Biol (2022) ncbi
小鼠 单克隆(SVP38)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
圣克鲁斯生物技术 Syp抗体(Santa Cruz, SVP38)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Int J Mol Sci (2021) ncbi
小鼠 单克隆(H-8)
  • 免疫印迹; 小鼠; 1:500; 图 3a
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-55507)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). Biol Res (2021) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 小鼠; 1:200; 图 6e
圣克鲁斯生物技术 Syp抗体(Santa Cruz, 17750)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 6e). Commun Biol (2021) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 小鼠; 1:250; 图 4d
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-17750)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4d). Front Neurosci (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 小鼠; 图 3
圣克鲁斯生物技术 Syp抗体(Santa Cruz Biotechnology, 17750)被用于被用于免疫组化在小鼠样本上 (图 3). Biomolecules (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 小鼠; 1:500; 图 4h
圣克鲁斯生物技术 Syp抗体(Santa Cruz, D4)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4h). elife (2020) ncbi
小鼠 单克隆(SVP38)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 Syp抗体(Santa, sc-12,737)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurodegener (2020) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 小鼠; 1:500; 图 5a
圣克鲁斯生物技术 Syp抗体(SCB, sc-17750)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Aging Cell (2019) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 小鼠; 1:500; 图 5f
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-17750)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5f). elife (2019) ncbi
小鼠 单克隆(SVP38)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-12737)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Biol Chem (2019) ncbi
小鼠 单克隆(H-8)
  • 免疫组化; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-55507)被用于被用于免疫组化在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 大鼠; 图 5c
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-17750)被用于被用于免疫印迹在大鼠样本上 (图 5c). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 小鼠; 图 s1f
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-17750)被用于被用于免疫组化在小鼠样本上 (图 s1f). elife (2017) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 小鼠; 1:1000; 图 1
圣克鲁斯生物技术 Syp抗体(santa Cruz, Sc-17750)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(H-8)
  • 免疫印迹; 大鼠; 1:100; 图 1
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-55507)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 1). Brain Behav Immun (2016) ncbi
小鼠 单克隆(A-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Syp抗体(Santa Cruz Biotechnology, A-9)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(D-4)
  • 其他; 人类; 1:100; 图 1d
  • 免疫印迹; 人类; 图 6f
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-17750)被用于被用于其他在人类样本上浓度为1:100 (图 1d) 和 被用于免疫印迹在人类样本上 (图 6f). Oncotarget (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 大鼠; 1:300
圣克鲁斯生物技术 Syp抗体(Santa Cruz Biotechnology, sc-17750)被用于被用于免疫组化在大鼠样本上浓度为1:300. Neurosci Lett (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫细胞化学; 大鼠; 1:1000; 图 6
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc-17750)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 6). J Cell Biol (2015) ncbi
小鼠 单克隆(D-4)
  • 免疫组化; 大鼠
圣克鲁斯生物技术 Syp抗体(Santa Cruz Biotechnology, sc 17750)被用于被用于免疫组化在大鼠样本上. Brain Struct Funct (2016) ncbi
小鼠 单克隆(D-4)
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术 Syp抗体(Santa Cruz Biotechnology, sc-17750)被用于被用于免疫印迹在小鼠样本上 (图 4c). Hum Mol Genet (2015) ncbi
小鼠 单克隆(D-4)
  • 酶联免疫吸附测定; 人类; 表 4
圣克鲁斯生物技术 Syp抗体(Santa Cruz, sc17750)被用于被用于酶联免疫吸附测定在人类样本上 (表 4). Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(H-8)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 Syp抗体(Santa, sc-55507)被用于被用于免疫印迹在小鼠样本上 (图 2c). Hum Mol Genet (2014) ncbi
赛默飞世尔
domestic rabbit 单克隆(SP11)
  • 免疫细胞化学; 小鼠; 1:250; 图 s3
赛默飞世尔 Syp抗体(Thermo Fisher, MA5-14532)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 s3). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1c
赛默飞世尔 Syp抗体(Thermo Fisher Scientific, RB1461P1)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1c). Genes Dev (2021) ncbi
小鼠 单克隆(SYP02)
  • 免疫印迹; 小鼠
赛默飞世尔 Syp抗体(Invitrogen, MA5-11475)被用于被用于免疫印迹在小鼠样本上. Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1c
赛默飞世尔 Syp抗体(Thermo Fisher, PA1-1043)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1c). Front Synaptic Neurosci (2020) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫印迹; 小鼠; 1:1000; 图 s15c, s15d
赛默飞世尔 Syp抗体(Invitrogen, MA5-14532)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s15c, s15d). Nat Commun (2020) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化; 大鼠; 1:500; 图 6d
赛默飞世尔 Syp抗体(Invitrogen, MA5-14532,)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 6d). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
赛默飞世尔 Syp抗体(Thermo Fisher Scientific, PA1-1043)被用于被用于免疫组化在小鼠样本上 (图 2d). elife (2019) ncbi
domestic rabbit 重组(8H2L12)
  • 免疫印迹; 小鼠; 1:1000; 图 s1a
赛默飞世尔 Syp抗体(生活技术, 701503)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 Syp抗体(pierce, MA5-16402)被用于被用于免疫印迹在人类样本上 (图 2a). Science (2017) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化; 人类; 图 4d
赛默飞世尔 Syp抗体(Thermo Scientific, SP11)被用于被用于免疫组化在人类样本上 (图 4d). Case Rep Pathol (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Syp抗体(Thermo Scientific, SP11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Clin Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6d'
赛默飞世尔 Syp抗体(Pierce, PA5-27286)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6d'). Cell Rep (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-冰冻切片; 人类; 1:50; 表 3
  • 免疫组化-冰冻切片; 小鼠; 1:50; 表 3
赛默飞世尔 Syp抗体(Thermo Scientific, RM-9111-S)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (表 3) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (表 3). J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫印迹; 大鼠; 表 2
赛默飞世尔 Syp抗体(ThermoScientific, RM-9111S0)被用于被用于免疫印迹在大鼠样本上 (表 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
赛默飞世尔 Syp抗体(Neomarker, RM-9111)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 表 1
  • 免疫组化-石蜡切片; 人类; 1:150; 表 1
赛默飞世尔 Syp抗体(Thermo Scientific, MA1-39558)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (表 1) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:150 (表 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔 Syp抗体(NeoMarkers, SP11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Pathol Res Pract (2016) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Syp抗体(Thermo Fisher Scientific, SP11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. J Clin Pathol (2015) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化; 人类; 1:100; 图 s1
赛默飞世尔 Syp抗体(Neo Markers, SP11)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1). J Gastroenterol (2015) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化; 人类; 1:200
赛默飞世尔 Syp抗体(Thermo Scientific, 15-RM-9111-S)被用于被用于免疫组化在人类样本上浓度为1:200. Histopathology (2014) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化; 人类; 1:100
赛默飞世尔 Syp抗体(Thermo, SP11)被用于被用于免疫组化在人类样本上浓度为1:100. J Pak Med Assoc (2014) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔 Syp抗体(Lab Vision / Thermo Fisher Scientific, SP11)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Neoplasia (2013) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2, 3, 4
赛默飞世尔 Syp抗体(NeoMarkers, SP11)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2, 3, 4). Int J Surg Pathol (2011) ncbi
domestic rabbit 单克隆(SP11)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
  • 免疫组化; 人类; 1:100
赛默飞世尔 Syp抗体(Lab Vision, 9111-S0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1) 和 被用于免疫组化在人类样本上浓度为1:100. Pathol Res Pract (2008) ncbi
Synaptic Systems
小鼠 单克隆(07. Feb)
  • 免疫印迹; 小鼠; 图 1b
Synaptic Systems Syp抗体(Synaptic Systems, 101 011C3)被用于被用于免疫印迹在小鼠样本上 (图 1b). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 e5b
Synaptic Systems Syp抗体(Synaptic Systems, 101 203)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 e5b). EMBO Mol Med (2022) ncbi
小鼠 单克隆(07. Feb)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
Synaptic Systems Syp抗体(Synaptic systems, 7.2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(07. Feb)
  • 免疫印迹; 人类
Synaptic Systems Syp抗体(Synaptic Systems, 7.2)被用于被用于免疫印迹在人类样本上. J Exp Med (2016) ncbi
小鼠 单克隆(07. Feb)
  • 免疫印迹; 人类
  • 免疫印迹; 大鼠
  • 免疫印迹; 犬; 1:3000; 图 7
Synaptic Systems Syp抗体(Synaptic Systems, 101 011C3)被用于被用于免疫印迹在人类样本上, 被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在犬样本上浓度为1:3000 (图 7). J Comp Neurol (2016) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4c
Alomone Labs Syp抗体(Alomone labs, ANR-013)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4c). Exp Neurol (2016) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(7H12)
  • 免疫组化; 小鼠; 1:200; 图 1f, 4b, 4c
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling Technologies, 9020)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1f, 4b, 4c). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 小鼠; 1:20,000; 图 7a
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, 5461S)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 7a). Mol Neurodegener (2022) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Syp抗体(CST, 5461)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signalling Biotechnology, 5461)被用于被用于免疫印迹在大鼠样本上 (图 6a). Front Behav Neurosci (2020) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, 5461)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Front Pharmacol (2020) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, 5461)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Mol Med Rep (2020) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, 5461)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling Technology, 5461)被用于被用于免疫印迹在人类样本上 (图 2a). J Neurosci (2019) ncbi
小鼠 单克隆(7H12)
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling Technology, 7H12)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D40C4)
  • 免疫组化; 大鼠; 1:200; 图 5a
  • 免疫印迹; 大鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, 5467)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5d). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, 4329)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, 5461)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Brain Res (2017) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, D35E4)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫细胞化学; 人类; 1:100; 图 s5d
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling Technology, 5461)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5d). Science (2017) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫细胞化学; 人类; 1:200; 表 1
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, D35E4)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫印迹; 大鼠; 图 4d
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling, 5461)被用于被用于免疫印迹在大鼠样本上 (图 4d). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signalling, 5461)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling Technology, 5461)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6). elife (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫组化; 小鼠; 图 9
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling Technology, D35E4)被用于被用于免疫组化在小鼠样本上 (图 9). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫细胞化学; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司 Syp抗体(Cell signaling, 5461)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D35E4)
  • 免疫细胞化学; 小鼠; 1:400
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Syp抗体(Cell Signaling Technology, 5461)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 和 被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
西格玛奥德里奇
小鼠 单克隆(SVP-38)
  • 免疫细胞化学; 小鼠; 1:1000; 图 6a
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2022) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 大鼠; 1:2000; 图 1e
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1e). elife (2022) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-冰冻切片; 小鼠; 1:40; 图 2f
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:40 (图 2f). J Neurosci (2022) ncbi
小鼠 单克隆(SVP-38)
  • 免疫细胞化学; 人类; 1:250; 图 1f
西格玛奥德里奇 Syp抗体(Sigma, S-5768)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1f). J Cancer (2022) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 小鼠; 图 5d
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, SVP-38)被用于被用于免疫组化在小鼠样本上 (图 5d). Int J Mol Sci (2021) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 小鼠; 1:300; 图 5b
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5b). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 小鼠; 1:500; 图 1a
西格玛奥德里奇 Syp抗体(Sigma Aldrich, S5768)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 人类; 1:500
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, SVP-38)被用于被用于免疫组化在人类样本上浓度为1:500. Nat Commun (2021) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 斑马鱼; 1:200; 图 3e
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 3e). Sci Adv (2021) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 小鼠; 1:500; 图 5a
西格玛奥德里奇 Syp抗体(Sigma, S-5768)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 人类; 1:500; 图 2a
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2a). Science (2020) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 图 5c
西格玛奥德里奇 Syp抗体(Cell Signaling, s5768)被用于被用于免疫印迹在小鼠样本上 (图 5c). elife (2020) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 人类; 1:200; 图 2a
  • 免疫印迹; 人类; 1:800; 图 2b
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:800 (图 2b). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 2
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 2). Int J Mol Sci (2020) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
西格玛奥德里奇 Syp抗体(Sigma, s5768)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Sci Adv (2019) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6c
  • 免疫印迹; 小鼠; 图 5a
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6c) 和 被用于免疫印迹在小鼠样本上 (图 5a). J Neurosci (2020) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 1:2000; 图 4g
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4g). Nat Commun (2019) ncbi
小鼠 单克隆(SVP-38)
  • proximity ligation assay; 小鼠; 1:100; 图 s14e
西格玛奥德里奇 Syp抗体(Sigma, SVP-38)被用于被用于proximity ligation assay在小鼠样本上浓度为1:100 (图 s14e). Mol Syst Biol (2018) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 大鼠; 1:5000; 图 1e
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S-5768)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1e). J Cell Biol (2018) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 小鼠; 1:400; 图 2b
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, s5768)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2b). J Neurosci Res (2017) ncbi
小鼠 单克隆(SVP-38)
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1b). Neural Plast (2017) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). elife (2017) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 图 2d
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在小鼠样本上 (图 2d). Sci Rep (2017) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 人类; 图 2
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化在人类样本上 (图 2). J Comp Neurol (2019) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 小鼠; 1:500; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 1b
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2016) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-石蜡切片; 大鼠; 图 4b
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4b). elife (2016) ncbi
小鼠 单克隆(SVP-38)
  • 免疫细胞化学; 大鼠; 1:1000; 图 2
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 大鼠; 图 5e
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫印迹在大鼠样本上 (图 5e). Cell (2016) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2g
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Comp Neurol (2017) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫印迹在大鼠样本上 (图 3). J Neurosci (2016) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 大鼠; 1:1000; 图 3
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Front Neurosci (2016) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 图 s2a
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(SVP-38)
  • 免疫细胞化学; 人类; 图 2d
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, MS5768)被用于被用于免疫细胞化学在人类样本上 (图 2d). Mol Psychiatry (2017) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 图 11
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在小鼠样本上 (图 11). PLoS ONE (2016) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 图 s6e
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在小鼠样本上 (图 s6e). Cereb Cortex (2017) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 小鼠; 1:1000; 图 s1
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s1). Neuron (2016) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Sci Rep (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 人类; 1:100; 图 7
  • 免疫印迹; 小鼠; 1:1000; 图 7
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化在人类样本上浓度为1:100 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Neurodegener (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 大鼠
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化在大鼠样本上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-自由浮动切片; 家羊; 1:200
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-自由浮动切片在家羊样本上浓度为1:200. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 大鼠; 1:1000; 图 6c
西格玛奥德里奇 Syp抗体(Sigma, SVP-38)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6c). EMBO J (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在人类样本上 (图 3). Mol Psychiatry (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-自由浮动切片; 家羊; 1:200
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-自由浮动切片在家羊样本上浓度为1:200. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 1:500; 图 s2d
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, SVP-38)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2d). Nat Med (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 表 1
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (表 1). Brain Behav Immun (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫细胞化学在小鼠样本上. J Extracell Vesicles (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-自由浮动切片; 大鼠; 1:200
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200. J Neurosci (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Anesthesiology (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. EMBO J (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 1:15,000
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000. Hippocampus (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 大鼠; 1:10,000; 图 4
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 4). Eur J Neurosci (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 小鼠; 1:100; 图 1
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurochem (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Drug Des Devel Ther (2013) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci Res (2014) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(SVP-38)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 Syp抗体(Sigma Aldrich, s5768)被用于被用于免疫细胞化学在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(SVP-38)
  • 免疫细胞化学; 人类; 1:200; 图 2
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Stem Cell Rev (2013) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-石蜡切片; 人类; 1:500
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Comp Neurol (2012) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-石蜡切片; 小鼠; 1:50
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. J Comp Neurol (2011) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-冰冻切片; 小鼠; 1:400
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S-5768)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Comp Neurol (2010) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
西格玛奥德里奇 Syp抗体(Sigma, S-5768)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-冰冻切片; 大鼠; 1:1,000
  • 免疫组化-冰冻切片; 小鼠; 1:1,000
  • 免疫组化-冰冻切片; African green monkey; 1:1,000
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1,000, 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1,000 和 被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 Syp抗体(Sigma, S5768)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(SVP-38)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Syp抗体(Sigma, SVP38)被用于被用于免疫印迹在大鼠样本上. J Comp Neurol (2007) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; 大鼠; 1:1,000
西格玛奥德里奇 Syp抗体(Sigma-Aldrich, S5768)被用于被用于免疫组化在大鼠样本上浓度为1:1,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化; domestic rabbit; 1:250
西格玛奥德里奇 Syp抗体(Sigma, S-5768)被用于被用于免疫组化在domestic rabbit样本上浓度为1:250. J Comp Neurol (2007) ncbi
小鼠 单克隆(SVP-38)
  • 免疫组化-自由浮动切片; 大鼠; 1:800
西格玛奥德里奇 Syp抗体(Sigma, SVP38)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:800. J Comp Neurol (2005) ncbi
碧迪BD
小鼠 单克隆(2/Synaptophysin)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1g
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2d, 3a
碧迪BD Syp抗体(BD, 611880)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1g) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2d, 3a). Cell Prolif (2021) ncbi
小鼠 单克隆(2/Synaptophysin)
  • 免疫组化; 小鼠; 图 3g
  • 免疫印迹; 小鼠; 图 3h
碧迪BD Syp抗体(BD Biosciences, 611880)被用于被用于免疫组化在小鼠样本上 (图 3g) 和 被用于免疫印迹在小鼠样本上 (图 3h). Transl Psychiatry (2020) ncbi
小鼠 单克隆(2/Synaptophysin)
  • 免疫印迹; 小鼠; 1:10,000; 图 3a
碧迪BD Syp抗体(BD Transduction Laboratories, 2)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3a). Neurobiol Aging (2020) ncbi
小鼠 单克隆(2/Synaptophysin)
  • 免疫印迹; 小鼠; 图 1f
碧迪BD Syp抗体(BD Biosciences, 611880)被用于被用于免疫印迹在小鼠样本上 (图 1f). J Exp Med (2019) ncbi
小鼠 单克隆(2/Synaptophysin)
  • 免疫印迹; 小鼠; 1:500; 图 3a
碧迪BD Syp抗体(BD Biosciences, 611880)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Neurosci (2018) ncbi
小鼠 单克隆(2/Synaptophysin)
  • 免疫组化; 大鼠; 1:2000; 图 4
碧迪BD Syp抗体(BD Biosciences, 611880)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 4). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(2/Synaptophysin)
  • 免疫组化; 小鼠; 图 s5a
碧迪BD Syp抗体(BD Biosciences, 611880)被用于被用于免疫组化在小鼠样本上 (图 s5a). Carcinogenesis (2016) ncbi
文章列表
  1. Hyde L, Kong Y, Zhao L, Rao S, Wang J, Stone L, et al. A Dpagt1 Missense Variant Causes Degenerative Retinopathy without Myasthenic Syndrome in Mice. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Kim J, Kang S, Chang K. Effect of cx-DHED on Abnormal Glucose Transporter Expression Induced by AD Pathologies in the 5xFAD Mouse Model. Int J Mol Sci. 2022;23: pubmed 出版商
  3. El Chehadeh S, Han K, Kim D, Jang G, Bakhtiari S, Lim D, et al. SLITRK2 variants associated with neurodevelopmental disorders impair excitatory synaptic function and cognition in mice. Nat Commun. 2022;13:4112 pubmed 出版商
  4. Duan S, Sawyer T, Sontz R, Wieland B, Diaz A, Merchant J. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol. 2022;14:1025-1051 pubmed 出版商
  5. Gao J, Liu J, Yao M, Zhang W, Yang B, Wang G. Panax notoginseng Saponins Stimulates Neurogenesis and Neurological Restoration After Microsphere-Induced Cerebral Embolism in Rats Partially Via mTOR Signaling. Front Pharmacol. 2022;13:889404 pubmed 出版商
  6. Puntambekar S, Moutinho M, Lin P, Jadhav V, Tumbleson Brink D, Balaji A, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Mol Neurodegener. 2022;17:47 pubmed 出版商
  7. Azarnia Tehran D, Kochlamazashvili G, Pampaloni N, Sposini S, Shergill J, Lehmann M, et al. Selective endocytosis of Ca2+-permeable AMPARs by the Alzheimer's disease risk factor CALM bidirectionally controls synaptic plasticity. Sci Adv. 2022;8:eabl5032 pubmed 出版商
  8. Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, et al. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. elife. 2022;11: pubmed 出版商
  9. Marino M, Zhou L, Rincon M, Callaerts Vegh Z, Verhaert J, Wahis J, et al. AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Mol Med. 2022;14:e09824 pubmed 出版商
  10. VITALIANO G, Kim J, Kaufman M, Adam C, Zeballos G, Shanmugavadivu A, et al. Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Commun Biol. 2022;5:236 pubmed 出版商
  11. Matsuura K, Kobayashi S, Konno K, Yamasaki M, Horiuchi T, Senda T, et al. SIPA1L1/SPAR1 Interacts with the Neurabin Family of Proteins and is Involved in GPCR Signaling. J Neurosci. 2022;42:2448-2473 pubmed 出版商
  12. Reifschneider A, Robinson S, van Lengerich B, Gnörich J, Logan T, Heindl S, et al. Loss of TREM2 rescues hyperactivation of microglia, but not lysosomal deficits and neurotoxicity in models of progranulin deficiency. EMBO J. 2022;41:e109108 pubmed 出版商
  13. Zhao Y, Wang Q, Zeng Y, Xie Y, Zhou J. Gastrin/CCK-B Receptor Signaling Promotes Cell Invasion and Metastasis by Upregulating MMP-2 and VEGF Expression in Gastric Cancer. J Cancer. 2022;13:134-145 pubmed 出版商
  14. Ong P xe5 lsson E, Njavro J, Wilson Y, Pigoni M, Schmidt A, M xfc ller S, et al. The β-Secretase Substrate Seizure 6-Like Protein (SEZ6L) Controls Motor Functions in Mice. Mol Neurobiol. 2022;59:1183-1198 pubmed 出版商
  15. Peng W, Liao M, Huang W, Liu P, Levi S, Tseng Y, et al. Conditional Deletion of Activating Rearranged During Transfection Receptor Tyrosine Kinase Leads to Impairment of Photoreceptor Ribbon Synapses and Disrupted Visual Function in Mice. Front Neurosci. 2021;15:728905 pubmed 出版商
  16. Campagno K, Lu W, Jassim A, Albalawi F, Cenaj A, Tso H, et al. Rapid morphologic changes to microglial cells and upregulation of mixed microglial activation state markers induced by P2X7 receptor stimulation and increased intraocular pressure. J Neuroinflammation. 2021;18:217 pubmed 出版商
  17. Umeda T, Hatanaka Y, Sakai A, Tomiyama T. Nasal Rifampicin Improves Cognition in a Mouse Model of Dementia with Lewy Bodies by Reducing α-Synuclein Oligomers. Int J Mol Sci. 2021;22: pubmed 出版商
  18. Lee S, Yang H, Sung Y, Kim Y, Park S. Region-Specific Differences in the Apoe4-dependent Response to Focal Brain Injury. Exp Neurobiol. 2021;30:285-293 pubmed 出版商
  19. Ebke L, Sinha S, Pauer G, Hagstrom S. Photoreceptor Compartment-Specific TULP1 Interactomes. Int J Mol Sci. 2021;22: pubmed 出版商
  20. Sinha A, Kushwaha R, Molesworth K, Mychko O, Makarava N, Baskakov I. Phagocytic Activities of Reactive Microglia and Astrocytes Associated with Prion Diseases Are Dysregulated in Opposite Directions. Cells. 2021;10: pubmed 出版商
  21. Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu X, Raveendra B, et al. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep. 2021;36:109369 pubmed 出版商
  22. Liu K, Jing N, Wang D, Xu P, Wang J, Chen X, et al. A novel mouse model for liver metastasis of prostate cancer reveals dynamic tumour-immune cell communication. Cell Prolif. 2021;54:e13056 pubmed 出版商
  23. Scekic Zahirovic J, Sanjuan Ruiz I, Kan V, Megat S, de Rossi P, Dieterlé S, et al. Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nat Commun. 2021;12:3028 pubmed 出版商
  24. Olsen R, Ireland A, Kastner D, Groves S, Spainhower K, Pozo K, et al. ASCL1 represses a SOX9+ neural crest stem-like state in small cell lung cancer. Genes Dev. 2021;35:847-869 pubmed 出版商
  25. Völkner M, Kurth T, Schor J, Ebner L, Bardtke L, Kavak C, et al. Mouse Retinal Organoid Growth and Maintenance in Longer-Term Culture. Front Cell Dev Biol. 2021;9:645704 pubmed 出版商
  26. Gribaudo S, Saraulli D, Nato G, Bonzano S, Gambarotta G, Luzzati F, et al. Neurogranin Regulates Adult-Born Olfactory Granule Cell Spine Density and Odor-Reward Associative Memory in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  27. Garcia Mesa Y, Xu H, Vance P, Gruenewald A, Garza R, Midkiff C, et al. Dimethyl Fumarate, an Approved Multiple Sclerosis Treatment, Reduces Brain Oxidative Stress in SIV-Infected Rhesus Macaques: Potential Therapeutic Repurposing for HIV Neuroprotection. Antioxidants (Basel). 2021;10: pubmed 出版商
  28. Inak G, Rybak Wolf A, Lisowski P, Pentimalli T, Jüttner R, Glažar P, et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun. 2021;12:1929 pubmed 出版商
  29. Niu M, Zhao F, Bondelid K, Siedlak S, Torres S, Fujioka H, et al. VPS35 D620N knockin mice recapitulate cardinal features of Parkinson's disease. Aging Cell. 2021;20:e13347 pubmed 出版商
  30. Almeida M, Piehler T, Carstens K, Zhao M, Samadi M, Dudek S, et al. Distinct and dementia-related synaptopathy in the hippocampus after military blast exposures. Brain Pathol. 2021;31:e12936 pubmed 出版商
  31. Sahasrabudhe A, Begum F, Guevara C, Morrison C, Hsiao K, Kezunovic N, et al. Cyfip1 Regulates SynGAP1 at Hippocampal Synapses. Front Synaptic Neurosci. 2020;12:581714 pubmed 出版商
  32. Batista A, Rody T, Forny Germano L, Cerdeiro S, Bellio M, Ferreira S, et al. Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. J Neuroinflammation. 2021;18:54 pubmed 出版商
  33. Golan M, Boulanger Weill J, Pinot A, Fontanaud P, Faucherre A, Gajbhiye D, et al. Synaptic communication mediates the assembly of a self-organizing circuit that controls reproduction. Sci Adv. 2021;7: pubmed 出版商
  34. Maximova O, Sturdevant D, Kash J, Kanakabandi K, Xiao Y, Minai M, et al. Virus infection of the CNS disrupts the immune-neural-synaptic axis via induction of pleiotropic gene regulation of host responses. elife. 2021;10: pubmed 出版商
  35. Lira M, Zamorano P, Cerpa W. Exo70 intracellular redistribution after repeated mild traumatic brain injury. Biol Res. 2021;54:5 pubmed 出版商
  36. Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed 出版商
  37. Okawa E, Gupta M, Kahraman S, Goli P, Sakaguchi M, Hu J, et al. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab. 2021;47:101164 pubmed 出版商
  38. Stojakovic A, Trushin S, Sheu A, Khalili L, Chang S, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4:61 pubmed 出版商
  39. Cuevas E, Holder D, Alshehri A, Tr xe9 guier J, Lakowski J, Sowden J. NRL-/- gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells. 2021;39:414-428 pubmed 出版商
  40. O Grady B, Balotin K, Bosworth A, McClatchey P, Weinstein R, Gupta M, et al. Development of an N-Cadherin Biofunctionalized Hydrogel to Support the Formation of Synaptically Connected Neural Networks. ACS Biomater Sci Eng. 2020;6:5811-5822 pubmed 出版商
  41. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. Sci Adv. 2020;6: pubmed 出版商
  42. Griffin P, Sheehan P, Dimitry J, Guo C, Kanan M, Lee J, et al. REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. elife. 2020;9: pubmed 出版商
  43. Lin L, Petralia R, Lake R, Wang Y, Hoffman D. A novel structure associated with aging is augmented in the DPP6-KO mouse brain. Acta Neuropathol Commun. 2020;8:197 pubmed 出版商
  44. Gulyassy P, Puska G, Györffy B, Todorov Völgyi K, Juhasz G, Drahos L, et al. Proteomic comparison of different synaptosome preparation procedures. Amino Acids. 2020;52:1529-1543 pubmed 出版商
  45. Hughes G, Lones M, Bedder M, Currie P, Smith S, Pownall M. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson's disease. Dis Model Mech. 2020;13: pubmed 出版商
  46. Suzuki K, Elegheert J, Song I, Sasakura H, Senkov O, Matsuda K, et al. A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science. 2020;369: pubmed 出版商
  47. Lackie R, Marques Lopes J, Ostapchenko V, Good S, Choy W, van Oosten Hawle P, et al. Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2020;8:143 pubmed 出版商
  48. Garcia Mesa Y, Garza R, Diaz Ortiz M, Gruenewald A, Bastien B, Lobrovich R, et al. Regional Brain Recovery from Acute Synaptic Injury in Simian Immunodeficiency Virus-Infected Rhesus Macaques Associates with Heme Oxygenase Isoform Expression. J Virol. 2020;94: pubmed 出版商
  49. Kukharsky M, Ninkina N, An H, Telezhkin V, Wei W, Meritens C, et al. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry. 2020;10:171 pubmed 出版商
  50. Bruyère J, Abada Y, Vitet H, Fontaine G, Deloulme J, Ces A, et al. Presynaptic APP levels and synaptic homeostasis are regulated by Akt phosphorylation of huntingtin. elife. 2020;9: pubmed 出版商
  51. Sanna F, Bratzu J, Serra M, Leo D, Quartu M, Boi M, et al. Altered Sexual Behavior in Dopamine Transporter (DAT) Knockout Male Rats: A Behavioral, Neurochemical and Intracerebral Microdialysis Study. Front Behav Neurosci. 2020;14:58 pubmed 出版商
  52. LeBlang C, Medalla M, Nicoletti N, Hays E, Zhao J, Shattuck J, et al. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci. 2020;14:285 pubmed 出版商
  53. Xu Z, Kim G, Tan J, Riso A, Sun Y, Xu E, et al. Elevated protein synthesis in microglia causes autism-like synaptic and behavioral aberrations. Nat Commun. 2020;11:1797 pubmed 出版商
  54. Ninkina N, Tarasova T, Chaprov K, Roman A, Kukharsky M, Kolik L, et al. Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice. Neurobiol Aging. 2020;91:76-87 pubmed 出版商
  55. Dong Y, Li Y, Liu R, Li Y, Zhang H, Liu H, et al. Secretagogin, a marker for neuroendocrine cells, is more sensitive and specific in large cell neuroendocrine carcinoma compared with the markers CD56, CgA, Syn and Napsin A. Oncol Lett. 2020;19:2223-2230 pubmed 出版商
  56. Liu D, Bai X, Ma W, Xin D, Chu X, Yuan H, et al. Purmorphamine Attenuates Neuro-Inflammation and Synaptic Impairments After Hypoxic-Ischemic Injury in Neonatal Mice via Shh Signaling. Front Pharmacol. 2020;11:204 pubmed 出版商
  57. Pilozzi A, Yu Z, Carreras I, Cormier K, Hartley D, Rogers J, et al. A Preliminary Study of Cu Exposure Effects upon Alzheimer's Amyloid Pathology. Biomolecules. 2020;10: pubmed 出版商
  58. Zhong X, Harris G, Smirnova L, Zufferey V, Sá R, Baldino Russo F, et al. Antidepressant Paroxetine Exerts Developmental Neurotoxicity in an iPSC-Derived 3D Human Brain Model. Front Cell Neurosci. 2020;14:25 pubmed 出版商
  59. Kim K, Shin W, Kang M, Lee S, Kim D, Kang R, et al. Presynaptic PTPσ regulates postsynaptic NMDA receptor function through direct adhesion-independent mechanisms. elife. 2020;9: pubmed 出版商
  60. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  61. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  62. Liu S, Liu Z, Chen F, Xu W, Yuan G. Adrenocorticotropic Hormone-Producing Paraganglioma With Low Plasma ACTH Level: A Case Report and Review of the Literature. Front Endocrinol (Lausanne). 2019;10:936 pubmed 出版商
  63. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  64. Linker K, Elabd M, Tawadrous P, Cano M, Green K, Wood M, et al. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun. 2020;11:306 pubmed 出版商
  65. Kamar S, Howlett M, Klooster J, Graaff W, Csikós T, Rabelink M, et al. Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated. Int J Mol Sci. 2020;21: pubmed 出版商
  66. Zhu Q, Zhang N, Hu N, Jiang R, Lu H, Xuan A, et al. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer's disease. Mol Med Rep. 2020;21:1172-1180 pubmed 出版商
  67. Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn Ng I, et al. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv. 2019;5:eaax2705 pubmed 出版商
  68. Fan Q, He W, Gayen M, Benoit M, Luo X, Hu X, et al. Activated CX3CL1/Smad2 Signals Prevent Neuronal Loss and Alzheimer's Tau Pathology-Mediated Cognitive Dysfunction. J Neurosci. 2020;40:1133-1144 pubmed 出版商
  69. McCann M, Fisher K, Ahloy Dallaire J, Darian Smith C. Somatosensory corticospinal tract axons sprout within the cervical cord following a dorsal root/dorsal column spinal injury in the rat. J Comp Neurol. 2019;: pubmed 出版商
  70. Datta P, Hendrickson B, Brendalen S, Ruffcorn A, Seo S. The myosin-tail homology domain of centrosomal protein 290 is essential for protein confinement between the inner and outer segments in photoreceptors. J Biol Chem. 2019;294:19119-19136 pubmed 出版商
  71. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  72. di Meco A, Pratico D. Early-life exposure to high-fat diet influences brain health in aging mice. Aging Cell. 2019;18:e13040 pubmed 出版商
  73. Yao W, Tambini M, Liu X, D ADAMIO L. Tuning of glutamate, but not GABA, release by an intra-synaptic vesicles APP domain whose function can be modulated by β- or α-secretase cleavage. J Neurosci. 2019;: pubmed 出版商
  74. Donadoni M, Cicalese S, Sarkar D, Chang S, Sariyer I. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis. 2019;10:447 pubmed 出版商
  75. Smith A, Duan T, Verkman A. Aquaporin-4 reduces neuropathology in a mouse model of Alzheimer's disease by remodeling peri-plaque astrocyte structure. Acta Neuropathol Commun. 2019;7:74 pubmed 出版商
  76. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  77. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  78. Ling S, Dastidar S, Tokunaga S, Ho W, Lim K, Ilieva H, et al. Overriding FUS autoregulation in mice triggers gain-of-toxic dysfunctions in RNA metabolism and autophagy-lysosome axis. elife. 2019;8: pubmed 出版商
  79. Poltavski D, Colombier P, Hu J, Duron A, Black B, Makita T. Venous endothelin modulates responsiveness of cardiac sympathetic axons to arterial semaphorin. elife. 2019;8: pubmed 出版商
  80. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  81. Andrew R, de Rossi P, Nguyen P, Kowalski H, Recupero A, Guerbette T, et al. Reduction of the expression of the late-onset Alzheimer's disease (AD) risk-factor BIN1 does not affect amyloid pathology in an AD mouse model. J Biol Chem. 2019;294:4477-4487 pubmed 出版商
  82. Silverman J, Christy D, Shyu C, Moon K, Fernando S, Gidden Z, et al. CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)G93A ALS mice originate from astrocytes and neurons and carry misfolded SOD1. J Biol Chem. 2019;294:3744-3759 pubmed 出版商
  83. Trepte P, Kruse S, Kostova S, Hoffmann S, Buntru A, Tempelmeier A, et al. LuTHy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells. Mol Syst Biol. 2018;14:e8071 pubmed 出版商
  84. Baglietto Vargas D, Prieto G, Limon A, Forner S, Rodriguez Ortiz C, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell. 2018;17:e12791 pubmed 出版商
  85. Rubio Fernández M, Uribe M, Vicente Tejedor J, Germain F, Susín Lara C, Quereda C, et al. Impairment of photoreceptor ribbon synapses in a novel Pomt1 conditional knockout mouse model of dystroglycanopathy. Sci Rep. 2018;8:8543 pubmed 出版商
  86. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  87. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  88. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  89. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  90. Jung Y, Cackowski F, Yumoto K, Decker A, Wang J, Kim J, et al. CXCL12γ Promotes Metastatic Castration-Resistant Prostate Cancer by Inducing Cancer Stem Cell and Neuroendocrine Phenotypes. Cancer Res. 2018;78:2026-2039 pubmed 出版商
  91. Sun Q, Xie C, Niu Z, Su L, Wang X, Fang Z, et al. Diagnosis and treatment of a carotid body tumor: A case report of a rare bilateral tumor. Oncol Lett. 2017;14:6417-6420 pubmed 出版商
  92. Wigerius M, Quinn D, Diab A, Clattenburg L, Kolar A, Qi J, et al. The polarity protein Angiomotin p130 controls dendritic spine maturation. J Cell Biol. 2018;217:715-730 pubmed 出版商
  93. Brown I, Gulbransen B. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. Am J Physiol Gastrointest Liver Physiol. 2018;314:G39-G52 pubmed 出版商
  94. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  95. Getz A, Xu F, Visser F, Persson R, Syed N. Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons. Sci Rep. 2017;7:1768 pubmed 出版商
  96. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  97. Li Y, Hao H, Swerdel M, Cho H, Lee K, Hart R, et al. Top2b is involved in the formation of outer segment and synapse during late-stage photoreceptor differentiation by controlling key genes of photoreceptor transcriptional regulatory network. J Neurosci Res. 2017;95:1951-1964 pubmed 出版商
  98. Biggi S, Buccarello L, Sclip A, Lippiello P, Tonna N, Rumio C, et al. Evidence of Presynaptic Localization and Function of the c-Jun N-Terminal Kinase. Neural Plast. 2017;2017:6468356 pubmed 出版商
  99. Latina V, Caioli S, Zona C, Ciotti M, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci. 2017;11:68 pubmed 出版商
  100. Savier E, Eglen S, Bathélémy A, Perraut M, Pfrieger F, Lemke G, et al. A molecular mechanism for the topographic alignment of convergent neural maps. elife. 2017;6: pubmed 出版商
  101. Loss O, Stephenson F. Developmental changes in trak-mediated mitochondrial transport in neurons. Mol Cell Neurosci. 2017;80:134-147 pubmed 出版商
  102. Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, et al. Microglia-derived IL-1? contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation. 2017;14:52 pubmed 出版商
  103. Wiesmann M, Zinnhardt B, Reinhardt D, Eligehausen S, Wachsmuth L, Hermann S, et al. A specific dietary intervention to restore brain structure and function after ischemic stroke. Theranostics. 2017;7:493-512 pubmed 出版商
  104. Zhu Y, Zhang Q, Zhang W, Li N, Dai Y, Tu J, et al. Protective Effect of 17β-Estradiol Upon Hippocampal Spine Density and Cognitive Function in an Animal Model of Vascular Dementia. Sci Rep. 2017;7:42660 pubmed 出版商
  105. Zhang Q, Esrafilzadeh D, Crook J, Kapsa R, Stewart E, Tomaskovic Crook E, et al. Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth of Primary Prefrontal Cortical Neurons from NRG1-KO and DISC1-LI Mice. Sci Rep. 2017;7:42525 pubmed 出版商
  106. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  107. Mooney C, Jimenez Mateos E, Engel T, Mooney C, Diviney M, Venø M, et al. RNA sequencing of synaptic and cytoplasmic Upf1-bound transcripts supports contribution of nonsense-mediated decay to epileptogenesis. Sci Rep. 2017;7:41517 pubmed 出版商
  108. Liu H, Ho P, Leung G, Lam C, Pang S, Li L, et al. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson's disease. Sci Rep. 2017;7:40887 pubmed 出版商
  109. Hendrickson A, Zhang C. Development of cone photoreceptors and their synapses in the human and monkey fovea. J Comp Neurol. 2019;527:38-51 pubmed 出版商
  110. Mu P, Zhang Z, Benelli M, Karthaus W, Hoover E, Chen C, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84-88 pubmed 出版商
  111. Ku S, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich Z, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355:78-83 pubmed 出版商
  112. Sabanov V, Braat S, D Andrea L, Willemsen R, Zeidler S, Rooms L, et al. Impaired GABAergic inhibition in the hippocampus of Fmr1 knockout mice. Neuropharmacology. 2017;116:71-81 pubmed 出版商
  113. Bodrikov V, Pauschert A, Kochlamazashvili G, Stuermer C. Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons. Exp Neurol. 2017;289:31-45 pubmed 出版商
  114. Perland E, Hellsten S, Lekholm E, Eriksson M, Arapi V, Fredriksson R. The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake. J Mol Neurosci. 2017;61:199-214 pubmed 出版商
  115. De Luca Johnson J, Zenali M. A Previously Undescribed Presentation of Mixed Adenoneuroendocrine Carcinoma. Case Rep Pathol. 2016;2016:9063634 pubmed
  116. Johnson Chacko L, Pechriggl E, Fritsch H, Rask Andersen H, Blumer M, Schrott Fischer A, et al. Neurosensory Differentiation and Innervation Patterning in the Human Fetal Vestibular End Organs between the Gestational Weeks 8-12. Front Neuroanat. 2016;10:111 pubmed
  117. Marco E, Ballesta J, Irala C, Hernández M, Serrano M, Mela V, et al. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav. 2017;152:68-80 pubmed 出版商
  118. Park J, Kim S, Yoo J, Jang J, Lee A, Oh J, et al. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Mol Neurobiol. 2017;54:7706-7721 pubmed 出版商
  119. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  120. Fröhlich D, Suchowerska A, Spencer Z, von Jonquieres G, Klugmann C, Bongers A, et al. In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiol Dis. 2017;97:24-35 pubmed 出版商
  121. Laclair K, Donde A, Ling J, Jeong Y, Chhabra R, Martin L, et al. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol. 2016;132:859-873 pubmed
  122. Hinckelmann M, Virlogeux A, Niehage C, Poujol C, Choquet D, Hoflack B, et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nat Commun. 2016;7:13233 pubmed 出版商
  123. Massumi M, Pourasgari F, Nalla A, Batchuluun B, Nagy K, Neely E, et al. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS ONE. 2016;11:e0164457 pubmed 出版商
  124. Shapiro L, Parsons R, Koleske A, Gourley S. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res. 2017;95:1123-1143 pubmed 出版商
  125. Correia S, McGrath A, Lee A, Graybiel A, Goosens K. Amygdala-ventral striatum circuit activation decreases long-term fear. elife. 2016;5: pubmed 出版商
  126. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  127. Hu H, Umemori H, Hsueh Y. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Sci Rep. 2016;6:33592 pubmed 出版商
  128. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel A, et al. Genomic Amplification of CD274 (PD-L1) in Small-Cell Lung Cancer. Clin Cancer Res. 2017;23:1220-1226 pubmed 出版商
  129. Spendiff S, Vuda M, Gouspillou G, Aare S, Pérez A, Morais J, et al. Denervation drives mitochondrial dysfunction in skeletal muscle of octogenarians. J Physiol. 2016;594:7361-7379 pubmed 出版商
  130. Loh K, Stawski P, Draycott A, Udeshi N, Lehrman E, Wilton D, et al. Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts. Cell. 2016;166:1295-1307.e21 pubmed 出版商
  131. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  132. Wang D, Mitchell E. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides. PLoS ONE. 2016;11:e0160159 pubmed 出版商
  133. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  134. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  135. Borromeo M, Savage T, Kollipara R, He M, Augustyn A, Osborne J, et al. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep. 2016;16:1259-1272 pubmed 出版商
  136. Torres Vega E, Duran Moreno M, Sánchez del Pino M, Yañez Y, Canete A, Castel V, et al. Immunoproteomic studies on paediatric opsoclonus-myoclonus associated with neuroblastoma. J Neuroimmunol. 2016;297:98-102 pubmed 出版商
  137. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  138. Sclip A, Bacaj T, Giam L, Sudhof T. Extended Synaptotagmin (ESyt) Triple Knock-Out Mice Are Viable and Fertile without Obvious Endoplasmic Reticulum Dysfunction. PLoS ONE. 2016;11:e0158295 pubmed 出版商
  139. Yoo S, Motari M, Schnaar R. Agenesis of the corpus callosum in Nogo receptor deficient mice. J Comp Neurol. 2017;525:291-301 pubmed 出版商
  140. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  141. Liu W, Meng Z, Liu H, Li W, Wu Q, Zhang X, et al. Hepatic epithelioid angiomyolipoma is a rare and potentially severe but treatable tumor: A report of three cases and review of the literature. Oncol Lett. 2016;11:3669-3675 pubmed
  142. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 Depalmitoylating Enzymes. J Neurosci. 2016;36:6431-44 pubmed 出版商
  143. Sun X, Li L, Liu F, Huang Z, Bean J, Jiao H, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010-8 pubmed 出版商
  144. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed 出版商
  145. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  146. Lazarczyk M, Kemmler J, Eyford B, Short J, Varghese M, Sowa A, et al. Major Histocompatibility Complex class I proteins are critical for maintaining neuronal structural complexity in the aging brain. Sci Rep. 2016;6:26199 pubmed 出版商
  147. Zhao T, Li C, Wei W, Zhang H, Ma D, Song X, et al. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep. 2016;6:26865 pubmed 出版商
  148. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  149. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  150. Broadhead M, Horrocks M, Zhu F, Muresan L, Benavides Piccione R, DeFelipe J, et al. PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits. Sci Rep. 2016;6:24626 pubmed 出版商
  151. Vasilev D, Dubrovskaya N, Tumanova N, Zhuravin I. Prenatal Hypoxia in Different Periods of Embryogenesis Differentially Affects Cell Migration, Neuronal Plasticity, and Rat Behavior in Postnatal Ontogenesis. Front Neurosci. 2016;10:126 pubmed 出版商
  152. Györffy B, Gulyassy P, Gellén B, Völgyi K, Madarasi D, Kis V, et al. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats. Brain Behav Immun. 2016;56:289-309 pubmed 出版商
  153. Bahia El Idrissi N, Bosch S, Ramaglia V, Aronica E, Baas F, Troost D. Complement activation at the motor end-plates in amyotrophic lateral sclerosis. J Neuroinflammation. 2016;13:72 pubmed 出版商
  154. Seneviratne U, Nott A, Bhat V, Ravindra K, Wishnok J, Tsai L, et al. S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:4152-7 pubmed 出版商
  155. Fuente Martín E, García Cáceres C, Argente Arizón P, Diaz F, Granado M, Freire Regatillo A, et al. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep. 2016;6:23673 pubmed 出版商
  156. Vicidomini C, Ponzoni L, Lim D, Schmeisser M, Reim D, Morello N, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22:689-702 pubmed 出版商
  157. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  158. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  159. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  160. Kim J, He X, Orr B, Wutz G, Hill V, Peters J, et al. Intact Cohesion, Anaphase, and Chromosome Segregation in Human Cells Harboring Tumor-Derived Mutations in STAG2. PLoS Genet. 2016;12:e1005865 pubmed 出版商
  161. Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. elife. 2016;5: pubmed 出版商
  162. Nakagawa A, Adams C, Huang Y, Hamarneh S, Liu W, Von Alt K, et al. Selective and reversible suppression of intestinal stem cell differentiation by pharmacological inhibition of BET bromodomains. Sci Rep. 2016;6:20390 pubmed 出版商
  163. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed 出版商
  164. Kayser E, Sedensky M, Morgan P. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO) Mouse Brain. PLoS ONE. 2016;11:e0148219 pubmed 出版商
  165. Al Onaizi M, Parfitt G, Kolisnyk B, Law C, Guzman M, Barros D, et al. Regulation of Cognitive Processing by Hippocampal Cholinergic Tone. Cereb Cortex. 2017;27:1615-1628 pubmed 出版商
  166. Jiang T, Zhang Y, Chen Q, Gao Q, Zhu X, Zhou J, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196-206 pubmed 出版商
  167. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  168. Bolier R, Tolenaars D, Kremer A, Saris J, Pares A, Verheij J, et al. Enteroendocrine cells are a potential source of serum autotaxin in men. Biochim Biophys Acta. 2016;1862:696-704 pubmed 出版商
  169. Foltz S, Modi J, Melick G, Abousaud M, Luan J, Fortunato M, et al. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice. PLoS ONE. 2016;11:e0147049 pubmed 出版商
  170. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  171. Grant E, Hoerder Suabedissen A, Molnár Z. The Regulation of Corticofugal Fiber Targeting by Retinal Inputs. Cereb Cortex. 2016;26:1336-1348 pubmed 出版商
  172. Böger C, Haag J, Egberts J, Röcken C. Complex APC germline mutation associated metaplasia and intraepithelial neoplasia (CAM-IEN) of the gallbladder. Pathol Res Pract. 2016;212:54-8 pubmed 出版商
  173. Jimenez Mateos E, Arribas Blázquez M, Sanz Rodriguez A, Concannon C, Olivos Ore L, Reschke C, et al. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep. 2015;5:17486 pubmed 出版商
  174. Gururajan M, Cavassani K, Sievert M, Duan P, Lichterman J, Huang J, et al. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget. 2015;6:44072-83 pubmed 出版商
  175. Benítez B, Cairns N, Schmidt R, Morris J, Norton J, Cruchaga C, et al. Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathol Commun. 2015;3:73 pubmed 出版商
  176. Kim E, Woo M, Qin L, Ma T, Beltran C, Bao Y, et al. Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke. J Neurosci. 2015;35:15113-26 pubmed 出版商
  177. Adesina A, Veo B, Courteau G, Mehta V, Wu X, Pang K, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol. 2015;46:1859-71 pubmed 出版商
  178. Pellett S, Schwartz M, Tepp W, Josephson R, Scherf J, Pier C, et al. Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin. Sci Rep. 2015;5:14566 pubmed 出版商
  179. Zhou J, Liu Z, Yu J, Han X, Fan S, Shao W, et al. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  180. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  181. Tadavarty R, Hwang J, Rajput P, Soja P, Kumar U, Sastry B. Are presynaptic GABA-Cρ2 receptors involved in anti-nociception?. Neurosci Lett. 2015;606:145-50 pubmed 出版商
  182. Rijpma A, Jansen D, Arnoldussen I, Fang X, Wiesmann M, Mutsaers M, et al. Sex Differences in Presynaptic Density and Neurogenesis in Middle-Aged ApoE4 and ApoE Knockout Mice. J Neurodegener Dis. 2013;2013:531326 pubmed 出版商
  183. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  184. Seo M, Lee C, Cho H, You Y, Lee B, Lee J, et al. Effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats subjected to immobilization stress. Psychiatry Res. 2015;229:968-74 pubmed 出版商
  185. Smolek T, Madari A, Farbáková J, Kandrac O, Jadhav S, Cente M, et al. Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol. 2016;524:874-95 pubmed 出版商
  186. Newell Litwa K, Badoual M, Asmussen H, Patel H, Whitmore L, Horwitz A. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity. J Cell Biol. 2015;210:225-42 pubmed 出版商
  187. López Gallardo M, Antón Fernández A, Llorente R, Mela V, Llorente Berzal A, Prada C, et al. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation. J Neuroendocrinol. 2015;27:658-69 pubmed 出版商
  188. Merkley C, Coolen L, Goodman R, Lehman M. Evidence for Changes in Numbers of Synaptic Inputs onto KNDy and GnRH Neurones during the Preovulatory LH Surge in the Ewe. J Neuroendocrinol. 2015;27:624-35 pubmed 出版商
  189. Samhan Arias A, López Sánchez C, Marques da Silva D, Lagoa R, García López V, García Martínez V, et al. High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain. Brain Struct Funct. 2016;221:2147-62 pubmed 出版商
  190. Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti M, Natale F, et al. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet. 2015;24:3058-81 pubmed 出版商
  191. Curcio M, Salazar I, Inácio A, Duarte E, Canzoniero L, Duarte C. Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons. Cell Death Dis. 2015;6:e1645 pubmed 出版商
  192. Betzer C, Movius A, Shi M, Gai W, Zhang J, Jensen P. Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS ONE. 2015;10:e0116473 pubmed 出版商
  193. Ivanova D, Dirks A, Montenegro Venegas C, Schöne C, Altrock W, Marini C, et al. Synaptic activity controls localization and function of CtBP1 via binding to Bassoon and Piccolo. EMBO J. 2015;34:1056-77 pubmed 出版商
  194. Bavamian S, Mellios N, Lalonde J, Fass D, Wang J, Sheridan S, et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry. 2015;20:573-84 pubmed 出版商
  195. Sinclair L, Tayler H, Love S. Synaptic protein levels altered in vascular dementia. Neuropathol Appl Neurobiol. 2015;41:533-43 pubmed 出版商
  196. Ahn T, Fergani C, Coolen L, Padmanabhan V, Lehman M. Prenatal testosterone excess decreases neurokinin 3 receptor immunoreactivity within the arcuate nucleus KNDy cell population. J Neuroendocrinol. 2015;27:100-10 pubmed 出版商
  197. Yokoi N, Fukata Y, Kase D, Miyazaki T, Jaegle M, Ohkawa T, et al. Chemical corrector treatment ameliorates increased seizure susceptibility in a mouse model of familial epilepsy. Nat Med. 2015;21:19-26 pubmed 出版商
  198. Almolda B, de Labra C, Barrera I, Gruart A, Delgado Garcia J, Villacampa N, et al. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun. 2015;45:80-97 pubmed 出版商
  199. Chivet M, Javalet C, Laulagnier K, Blot B, Hemming F, Sadoul R. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles. 2014;3:24722 pubmed 出版商
  200. Pechriggl E, Bitsche M, Glueckert R, Rask Andersen H, Blumer M, Schrott Fischer A, et al. Development of the innervation of the human inner ear. Dev Neurobiol. 2015;75:683-702 pubmed 出版商
  201. Park S, Lee J, Seo M, Cho H, Lee C, Lee J, et al. Effects of mood-stabilizing drugs on dendritic outgrowth and synaptic protein levels in primary hippocampal neurons. Bipolar Disord. 2015;17:278-90 pubmed 出版商
  202. Forny Germano L, Lyra e Silva N, Batista A, Brito Moreira J, Gralle M, Boehnke S, et al. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci. 2014;34:13629-43 pubmed 出版商
  203. Projetti F, Serrano E, Vergez S, Bissainthe A, Delisle M, Uro Coste E. Is neuroendocrine differentiation useful to discriminate primary sinonasal intestinal-type adenocarcinomas from metastatic colorectal adenocarcinomas?. J Clin Pathol. 2015;68:79-82 pubmed 出版商
  204. Wang X, Wu Y, Yang X, Miao Y, Zhang C, Dong L, et al. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina. Brain Struct Funct. 2016;221:301-16 pubmed 出版商
  205. Modi H, Cornu M, Thorens B. Glutamine stimulates biosynthesis and secretion of insulin-like growth factor 2 (IGF2), an autocrine regulator of beta cell mass and function. J Biol Chem. 2014;289:31972-82 pubmed 出版商
  206. Sánchez Pérez A, Arnal Vicente I, Santos F, Pereira C, ElMlili N, Sanjuan J, et al. Septal projections to nucleus incertus in the rat: bidirectional pathways for modulation of hippocampal function. J Comp Neurol. 2015;523:565-88 pubmed 出版商
  207. Jebelli J, Hooper C, Pocock J. Microglial p53 activation is detrimental to neuronal synapses during activation-induced inflammation: Implications for neurodegeneration. Neurosci Lett. 2014;583:92-7 pubmed 出版商
  208. Hijioka S, Hosoda W, Mizuno N, Hara K, Imaoka H, Bhatia V, et al. Does the WHO 2010 classification of pancreatic neuroendocrine neoplasms accurately characterize pancreatic neuroendocrine carcinomas?. J Gastroenterol. 2015;50:564-72 pubmed 出版商
  209. Tajerian M, Leu D, Zou Y, Sahbaie P, Li W, Khan H, et al. Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology. 2014;121:852-65 pubmed 出版商
  210. Stilling R, Rönicke R, Benito E, Urbanke H, Capece V, Burkhardt S, et al. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. EMBO J. 2014;33:1912-27 pubmed 出版商
  211. Aligny C, Roux C, Dourmap N, Ramdani Y, do Rego J, Jegou S, et al. Ketamine alters cortical integration of GABAergic interneurons and induces long-term sex-dependent impairments in transgenic Gad67-GFP mice. Cell Death Dis. 2014;5:e1311 pubmed 出版商
  212. Milione M, Gasparini P, Sozzi G, Mazzaferro V, Ferrari A, Casali P, et al. Ewing sarcoma of the small bowel: a study of seven cases, including one with the uncommonly reported EWSR1-FEV translocation. Histopathology. 2014;64:1014-26 pubmed 出版商
  213. Altinay S, Kusaslan R. Gastrointestinal autonomic nerve tumour of jejunum presenting as a perforated mass. J Pak Med Assoc. 2014;64:461-4 pubmed
  214. Cho S, Jeon J, Chun D, Yeo S, Kim I. Anoctamin 1 expression in the mouse auditory brainstem. Cell Tissue Res. 2014;357:563-9 pubmed 出版商
  215. Verstegen A, Tagliatti E, Lignani G, Marte A, Stolero T, Atias M, et al. Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. J Neurosci. 2014;34:7266-80 pubmed 出版商
  216. Stein L, Wozniak D, Dearborn J, Kubota S, Apte R, Izumi Y, et al. Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function. J Neurosci. 2014;34:5800-15 pubmed 出版商
  217. Nikitczuk J, Patil S, Matikainen Ankney B, Scarpa J, Shapiro M, Benson D, et al. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus. 2014;24:943-962 pubmed 出版商
  218. Lussier M, Gu X, Lu W, Roche K. Casein kinase 2 phosphorylates GluA1 and regulates its surface expression. Eur J Neurosci. 2014;39:1148-58 pubmed 出版商
  219. Stanic D, Dubois S, Chua H, Tonge B, Rinehart N, Horne M, et al. Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors ? and ?, and androgen receptors. PLoS ONE. 2014;9:e90451 pubmed 出版商
  220. Gladding C, Fan J, Zhang L, Wang L, Xu J, Li E, et al. Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model. J Neurochem. 2014;130:145-59 pubmed 出版商
  221. Udvardi P, Fohr K, Henes C, Liebau S, Dreyhaupt J, Boeckers T, et al. Atomoxetine affects transcription/translation of the NMDA receptor and the norepinephrine transporter in the rat brain--an in vivo study. Drug Des Devel Ther. 2013;7:1433-46 pubmed 出版商
  222. Beitnere U, van Groen T, Kumar A, Jansone B, Klusa V, Kadish I. Mildronate improves cognition and reduces amyloid-? pathology in transgenic Alzheimer's disease mice. J Neurosci Res. 2014;92:338-46 pubmed 出版商
  223. Huang Y, Dai L, Gaines D, Droz Rosario R, Lu H, Liu J, et al. BCCIP suppresses tumor initiation but is required for tumor progression. Cancer Res. 2013;73:7122-33 pubmed 出版商
  224. Trotter J, Lee G, Kazdoba T, Crowell B, Domogauer J, Mahoney H, et al. Dab1 is required for synaptic plasticity and associative learning. J Neurosci. 2013;33:15652-68 pubmed 出版商
  225. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  226. Seese R, Chen L, Cox C, Schulz D, Babayan A, Bunney W, et al. Synaptic abnormalities in the infralimbic cortex of a model of congenital depression. J Neurosci. 2013;33:13441-8 pubmed 出版商
  227. Zhang Y, Seo S, Bhattarai S, Bugge K, Searby C, Zhang Q, et al. BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Hum Mol Genet. 2014;23:40-51 pubmed 出版商
  228. Megill A, Lee T, Dibattista A, Song J, Spitzer M, Rubinshtein M, et al. A tetra(ethylene glycol) derivative of benzothiazole aniline enhances Ras-mediated spinogenesis. J Neurosci. 2013;33:9306-18 pubmed 出版商
  229. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  230. Busse B, Smith S. Automated analysis of a diverse synapse population. PLoS Comput Biol. 2013;9:e1002976 pubmed 出版商
  231. Semerdjieva S, Abdul Razak H, Salim S, Yáñez Muñoz R, Chen P, Tarabykin V, et al. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors. Mol Cell Biol. 2013;33:1442-55 pubmed 出版商
  232. Mosquera J, Beltran H, Park K, MacDonald T, Robinson B, Tagawa S, et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia. 2013;15:1-10 pubmed
  233. Zhang H, Zhang X, Wang W, Xue Q, Lu H, Huang J, et al. Increased synaptophysin is involved in inflammation-induced heat hyperalgesia mediated by cyclin-dependent kinase 5 in rats. PLoS ONE. 2012;7:e46666 pubmed 出版商
  234. Desilva T, Borenstein N, Volpe J, Kinney H, Rosenberg P. Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol. 2012;520:3912-32 pubmed 出版商
  235. Olucha Bordonau F, Otero García M, Sánchez Pérez A, Nunez A, Ma S, Gundlach A. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol. 2012;520:1903-39 pubmed 出版商
  236. Flores Otero J, Davis R. Synaptic proteins are tonotopically graded in postnatal and adult type I and type II spiral ganglion neurons. J Comp Neurol. 2011;519:1455-75 pubmed 出版商
  237. Baydar D, Kulac I, Gurel B, De Marzo A. A case of prostatic adenocarcinoma with aberrant p63 expression: presentation with detailed immunohistochemical study and FISH analysis. Int J Surg Pathol. 2011;19:131-6 pubmed 出版商
  238. Enjin A, Rabe N, Nakanishi S, Vallstedt A, Gezelius H, Memic F, et al. Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as markers for fast motor neurons and partition cells. J Comp Neurol. 2010;518:2284-304 pubmed 出版商
  239. Ramer M. Anatomical and functional characterization of neuropil in the gracile fasciculus. J Comp Neurol. 2008;510:283-96 pubmed 出版商
  240. Eisenthal A, Trejo L, Shtabsky A, Bedny F, Brazowski E. A novel assessment of the quality of immunohistostaining overcomes the limitations of current methods. Pathol Res Pract. 2008;204:323-8 pubmed 出版商
  241. Glavas M, Grayson B, Allen S, Copp D, Smith M, Cowley M, et al. Characterization of brainstem peptide YY (PYY) neurons. J Comp Neurol. 2008;506:194-210 pubmed
  242. Caminos E, Garcia Pino E, Martinez Galan J, Juiz J. The potassium channel KCNQ5/Kv7.5 is localized in synaptic endings of auditory brainstem nuclei of the rat. J Comp Neurol. 2007;505:363-78 pubmed
  243. Petralia R, Yao P. AP180 and CALM in the developing hippocampus: expression at the nascent synapse and localization to trafficking organelles. J Comp Neurol. 2007;504:314-27 pubmed
  244. Schneider S, Walker T. Morphology and electrophysiological properties of hamster spinal dorsal horn neurons that express VGLUT2 and enkephalin. J Comp Neurol. 2007;501:790-809 pubmed
  245. Pan F, Massey S. Rod and cone input to horizontal cells in the rabbit retina. J Comp Neurol. 2007;500:815-31 pubmed
  246. Melone M, Burette A, Weinberg R. Light microscopic identification and immunocytochemical characterization of glutamatergic synapses in brain sections. J Comp Neurol. 2005;492:495-509 pubmed