这是一篇来自已证抗体库的有关大鼠 TH的综述,是根据329篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TH 抗体。
TH 同义词: The; tyrosine 3-monooxygenase; tyrosine 3-hydroxylase

艾博抗(上海)贸易有限公司
鸡 多克隆
  • 免疫组化; scFv; 1:1000; 图 6m
艾博抗(上海)贸易有限公司 TH抗体(Abcam, AB76442)被用于被用于免疫组化在scFv样本上浓度为1:1000 (图 6m). J Comp Neurol (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7b). Hum Mol Genet (2017) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 TH抗体(Abcam, AB76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Diabetes (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Histochem Cell Biol (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 TH抗体(abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:400; 图 1
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400 (图 1). J Neurochem (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 s5C-1
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab6211)被用于被用于免疫细胞化学在小鼠样本上 (图 s5C-1). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(EP1532Y)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab137869)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s16
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s16). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). Eur J Histochem (2015) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 TH抗体(Abcam, 76442)被用于被用于免疫组化在小鼠样本上 (图 1c). elife (2015) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Neuropharmacology (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 TH抗体(Abcam, Ab112)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2e). Parkinsonism Relat Disord (2015) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Oncogene (2015) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Invest Ophthalmol Vis Sci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:50
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab6211)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50. Neuroreport (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab6211)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab6211)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 猪; 1:400
  • 免疫印迹; 猪; 1:400
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab6211)被用于被用于免疫细胞化学在猪样本上浓度为1:400 和 被用于免疫印迹在猪样本上浓度为1:400. J Cell Biochem (2014) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 TH抗体(Abcam, AB76442)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Neurosci Methods (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:700
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:700. J Bone Miner Res (2013) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:500
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Biochem Biophys Res Commun (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab6211)被用于被用于免疫组化在大鼠样本上浓度为1:500. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:750
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:750. Exp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. J Comp Neurol (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 TH抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 TH抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆(F-11)
  • 免疫组化-石蜡切片; 人类; 1:10,000; 图 s9d
圣克鲁斯生物技术 TH抗体(Santa Cruz, sc-25269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (图 s9d). Nat Genet (2017) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 TH抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 TH抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆(A-6)
  • 免疫组化-冰冻切片; 人类; 图 2
圣克鲁斯生物技术 TH抗体(Santa Cruz, sc-374048)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫细胞化学; 人类; 1:500; 图 7
圣克鲁斯生物技术 TH抗体(Santa Cruz Biotechnology, sc-25269)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 TH抗体(Santa Cruz, SC25269)被用于被用于免疫印迹在小鼠样本上 (图 1). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(TOH A1.1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5a
  • 免疫印迹; 大鼠; 1:2000; 图 5c
圣克鲁斯生物技术 TH抗体(Santa Cruz Biotechnology, sc-47708)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5c). Neural Regen Res (2012) ncbi
赛默飞世尔
羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 TH抗体(ThermoFisher, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Neurobiol Dis (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
赛默飞世尔 TH抗体(生活技术, P21962)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Neurobiol (2017) ncbi
羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2
赛默飞世尔 TH抗体(Thermo Scientific, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 4
赛默飞世尔 TH抗体(生活技术, 36-9900)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 4). Horm Behav (2016) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:25,000; 图 7
赛默飞世尔 TH抗体(Zymed Laboratories, 36-8600)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:25,000 (图 7). J Neuroendocrinol (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500; 图 5
赛默飞世尔 TH抗体(Thermo Fisher Scientific, PA1-18315)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
羊 多克隆
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 TH抗体(Fisher Emergo BV, PA-14679)被用于被用于免疫组化在小鼠样本上浓度为1:500. Int J Cardiol (2015) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500
赛默飞世尔 TH抗体(Affinity BioReagents, OPA1-04050)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. J Neurochem (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400
赛默飞世尔 TH抗体(Affinity BioReagents, OPA1-04050)被用于被用于免疫组化在小鼠样本上浓度为1:400. J Chem Neuroanat (2014) ncbi
兔 多克隆
赛默飞世尔 TH抗体(Zymed Laboratories-Invitrogen, 36-9900)被用于. Neuropsychopharmacology (2008) ncbi
Novus Biologicals
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3
Novus Biologicals TH抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2018) ncbi
羊 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 6b
Novus Biologicals TH抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6b). Science (2017) ncbi
羊 多克隆
  • 免疫组化; 小鼠; 图 5
  • 免疫组化; 人类; 图 5
Novus Biologicals TH抗体(Novus, NB300-110)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫组化在人类样本上 (图 5). Cell (2016) ncbi
羊 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 1a
Novus Biologicals TH抗体(Novus Biologicals, NB 300-110)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
Novus Biologicals TH抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500-1:1000; 图 1a
Novus Biologicals TH抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500-1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 图 5a
Synaptic Systems TH抗体(Synaptic Systems, 213104)被用于被用于免疫组化在小鼠样本上 (图 5a). Cell (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:1000; 表 1
Synaptic Systems TH抗体(SySy, 213104)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
豚鼠 多克隆(/)
  • 免疫细胞化学; 大鼠; 1:1000; 图 3b
Synaptic Systems TH抗体(Synaptic Systems, 213004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3b). Int J Neuropsychopharmacol (2017) ncbi
BioLegend
小鼠 单克隆(2/40/15)
  • 免疫组化; 小鼠; 图 st1
BioLegend TH抗体(BioLegend, 818001)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2d
西格玛奥德里奇 TH抗体(Sigma-Aldrich, TH-2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2d). Peerj (2018) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化; 小鼠; 1:2000; 图 6b
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6b). Science (2017) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 1:4000; 图 1
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 3a
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). PLoS ONE (2017) ncbi
小鼠 单克隆(TH-16)
  • 免疫印迹; 大鼠; 图 6a
西格玛奥德里奇 TH抗体(Sigma Aldrich, T2928)被用于被用于免疫印迹在大鼠样本上 (图 6a). J Nutr Biochem (2017) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化; 人类; 图 5
  • 免疫组化; 小鼠; 图 5
西格玛奥德里奇 TH抗体(Sigma-Aldrich, T2928)被用于被用于免疫组化在人类样本上 (图 5) 和 被用于免疫组化在小鼠样本上 (图 5). Cell (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 图 1b
西格玛奥德里奇 TH抗体(Sigma-Aldrich, T1299)被用于被用于免疫组化在大鼠样本上 (图 1b). Brain Res (2016) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化-冰冻切片; 大鼠; 图 2a
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 2a). Mol Neurobiol (2017) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 4
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 4). Reprod Biol Endocrinol (2016) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 8
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 8). EMBO J (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫印迹; 人类; 1:500; 图 3d
西格玛奥德里奇 TH抗体(Sigma-Aldrich, TH-2)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(TH-16)
  • 免疫细胞化学; 小鼠; 1:8000; 图 5a
  • 免疫印迹; 小鼠; 1:8000; 图 6a
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫细胞化学在小鼠样本上浓度为1:8000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:8000 (图 6a). Mol Med Rep (2016) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化-自由浮动切片; 大鼠; 1:12,000; 图 1
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:12,000 (图 1). J Neurochem (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 TH抗体(Sigma-Aldrich, T1299)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Autophagy (2016) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化; 大鼠; 图 9
  • 免疫印迹; 大鼠; 图 5
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化在大鼠样本上 (图 9) 和 被用于免疫印迹在大鼠样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化; 大鼠; 1:500; 图 5b
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5b). Biol Psychiatry (2016) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化; 大鼠; 1:2000; 图 s1
西格玛奥德里奇 TH抗体(Sigma, T-2928)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 s1). Front Neural Circuits (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s6
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s6). Nat Neurosci (2016) ncbi
小鼠 单克隆(TH-16)
  • 免疫印迹; 大鼠; 1:8000; 图 4
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫印迹在大鼠样本上浓度为1:8000 (图 4). Horm Behav (2016) ncbi
小鼠 单克隆(TH-16)
  • 免疫印迹; 大鼠; 1:1000; 图 4
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Mar Drugs (2015) ncbi
小鼠 单克隆(TH-16)
  • 免疫细胞化学; 人类; 1:1000; 图 s1
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s1). Cell Death Dis (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-自由浮动切片; 大鼠; 1:70,000; 图 8
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:70,000 (图 8). J Neuroendocrinol (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 大鼠; 图 2
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化; 小鼠; 1:2000; 图 6b
  • 免疫印迹; 小鼠; 1:4000; 图 1e
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6b) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1e). Sci Rep (2015) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化; 小鼠; 1:100; 图 s1
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1). Science (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). J Neurosci (2015) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 TH抗体(Sigma Aldrich, T2928)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 人类; 1:200; 图 3
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Cell J (2015) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化-冰冻切片; 大鼠; 1:5000
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000. J Neurosci (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Neuroscience (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 大鼠; 1:5000
  • 免疫印迹; 大鼠; 1:10000; 图 8
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 和 被用于免疫印迹在大鼠样本上浓度为1:10000 (图 8). Transl Res (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 1:4000; 图 3
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 3). Nat Neurosci (2015) ncbi
小鼠 单克隆(TH-16)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 TH抗体(Sigma-Aldrich, T2928)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇 TH抗体(Sigma-Aldrich, T 1299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(TH-16)
  • 免疫印迹; 大鼠; 1:8000
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫印迹在大鼠样本上浓度为1:8000. Behav Brain Res (2015) ncbi
小鼠 单克隆(TH-16)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
  • 免疫印迹; 大鼠
西格玛奥德里奇 TH抗体(Sigma, T2928)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上. J Parkinsons Dis (2014) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 大鼠; 1:2500
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2500. Neurobiol Dis (2014) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 大鼠
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在大鼠样本上. Transl Res (2014) ncbi
小鼠 单克隆(TH-16)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 TH抗体(SIGMA, T2928)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Psychopharmacology (Berl) (2012) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 TH抗体(Sigma, 1299)被用于被用于免疫组化在大鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 TH抗体(Cell Signaling, 2792)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Differ (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 TH抗体(Cell Signaling, 2791)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 10
赛信通(上海)生物试剂有限公司 TH抗体(Cell signaling, 2792)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 10). Dev Biol (2015) ncbi
默克密理博中国
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 住房乌鸦; 1:200; 图 17a
  • 免疫组化; 住房乌鸦; 1:200; 图 18a
  • 免疫印迹; 住房乌鸦; 1:5000; 图 4
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在住房乌鸦样本上浓度为1:200 (图 17a), 被用于免疫组化在住房乌鸦样本上浓度为1:200 (图 18a) 和 被用于免疫印迹在住房乌鸦样本上浓度为1:5000 (图 4). J Comp Neurol (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; scFv; 1:400; 图 10c
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在scFv样本上浓度为1:400 (图 10c). J Comp Neurol (2019) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1d
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1d). elife (2018) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图 1d
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1d). J Comp Neurol (2019) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1b
默克密理博中国 TH抗体(Abcam, ab152)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). Science (2018) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 图 1c
  • 免疫印迹; 大鼠; 图 1a
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上 (图 1c) 和 被用于免疫印迹在大鼠样本上 (图 1a). Brain Sci (2018) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 2d
默克密理博中国 TH抗体(Calbiochem, 657012)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2d). Sci Rep (2018) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3b
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3b). PLoS ONE (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Brain Res (2019) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2d
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2d). J Comp Neurol (2018) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图 2d
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于被用于免疫组化在大鼠样本上 (图 2d). Addict Biol (2018) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 6a
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 6a). J Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; sea lamprey; 1:1000; 图 7b
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在sea lamprey样本上浓度为1:1000 (图 7b). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 表 1
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 1
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; scFv; 1:1000; 图 8i
默克密理博中国 TH抗体(Millipore, AB318)被用于被用于免疫组化-自由浮动切片在scFv样本上浓度为1:1000 (图 8i). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:4000; 图 1b
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:4000 (图 1b). J Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 果蝇; 1:200; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 4
默克密理博中国 TH抗体(Millipore, LNC1)被用于被用于免疫细胞化学在果蝇样本上浓度为1:200 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Hum Mol Genet (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 图 4c
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上 (图 4c). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:500; 表 2
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500 (表 2). Dev Biol (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3a
默克密理博中国 TH抗体(Cell Signaling, AB152)被用于被用于免疫细胞化学在人类样本上 (图 3a). Science (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:5000
  • 免疫细胞化学; 人类; 1:5000; 图 e1b
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:5000 和 被用于免疫细胞化学在人类样本上浓度为1:5000 (图 e1b). Nature (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8a
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8a). J Pineal Res (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; common platanna; 1:500; 图 1c
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在common platanna样本上浓度为1:500 (图 1c). J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Acta Neuropathol Commun (2017) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2a
  • 免疫印迹; 小鼠; 1:2000; 图 9a
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9a). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6c
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6c). Mol Ther (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 st15
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 st15). J Toxicol Pathol (2017) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 s6c
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 s6c). PLoS ONE (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000; 表 1
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:1000; 表 1
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
默克密理博中国 TH抗体(Millipore, AB 152)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; fish; 1:1000; 图 2a
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在fish样本上浓度为1:1000 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
  • 免疫印迹; 小鼠; 1:2000
默克密理博中国 TH抗体(Millipore, AB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000. Sci Rep (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 斑马鱼; 图 2-s2a
默克密理博中国 TH抗体(Milipore, MAB318)被用于被用于免疫细胞化学在斑马鱼样本上 (图 2-s2a). elife (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000; 图 1a
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 1a). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 5
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 5). Brain Struct Funct (2017) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4a
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4a). J Neuroendocrinol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st1
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st1). Mov Disord (2017) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; African green monkey; 1:5000; 图 2A
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:5000 (图 2A). PLoS ONE (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000; 图 1c
  • 免疫组化; 小鼠; 1:10,000
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000 (图 1c) 和 被用于免疫组化在小鼠样本上浓度为1:10,000. J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
默克密理博中国 TH抗体(Abcam, ab152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; African green monkey; 1:400; 图 5
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在African green monkey样本上浓度为1:400 (图 5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500-1:1000; 图 1b
默克密理博中国 TH抗体(Millipore, 657012)被用于被用于免疫组化在小鼠样本上浓度为1:500-1:1000 (图 1b). J Assoc Res Otolaryngol (2017) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s1a
  • 免疫印迹; 小鼠; 1:1000; 图 7b
默克密理博中国 TH抗体(Milipore, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Nat Commun (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7t
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7t). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:500; 图 4b
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). Exp Neurol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:100; 图 1b
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Cell (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 s4
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 s4). Stem Cell Res (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 2d
默克密理博中国 TH抗体(Millipore, MAB 318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 2d
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2d). J Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 1a
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). J Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5000; 图 5c
默克密理博中国 TH抗体(Millipore, AB318)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 5c). J Comp Neurol (2017) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3e
默克密理博中国 TH抗体(Merck Millipore, 657012)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 5d
  • 免疫印迹; 小鼠; 1:2000; 图 6a
默克密理博中国 TH抗体(EMD Millipore, AB 152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Toxicol Sci (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Mol Vis (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:250; 图 1
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 斑马鱼; 1:100; 图 5f
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 5f). J Neurosci Res (2016) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3e
默克密理博中国 TH抗体(Abcam, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3e). Front Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 7
默克密理博中国 TH抗体(millipore, AB152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 7). Neuron (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫印迹在人类样本上 (图 2). Mol Brain (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2b
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2b). Nat Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 6c
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 6c). Mol Ther Methods Clin Dev (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250; 图 2
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 兔; 1:400; 图 3
默克密理博中国 TH抗体(chemicon, MAB318)被用于被用于免疫细胞化学在兔样本上浓度为1:400 (图 3). Ann Anat (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
默克密理博中国 TH抗体(Millipore, AB 152)被用于被用于免疫印迹在大鼠样本上 (图 1), 被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4
默克密理博中国 TH抗体(Calbiochem, 657012)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 人类; 图 1
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Stem Cell Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 s3
默克密理博中国 TH抗体(EMD, AB152)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
默克密理博中国 TH抗体(Milipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. BMC Cell Biol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 猕猴; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:1000. Gene Ther (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1k
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1k). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图 1c
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化在人类样本上 (图 1c). J Orthop Surg Res (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 图 1
默克密理博中国 TH抗体(Millipore, LNC1)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
  • 免疫印迹; 小鼠; 1:100; 图 3
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 1
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 3a
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上 (图 3a). Synapse (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1j
  • 免疫组化; 人类; 1:200; 图 1p
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1j) 和 被用于免疫组化在人类样本上浓度为1:200 (图 1p). Nat Commun (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:500; 图 1f
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1f). Pharmacol Res (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 2
  • 免疫印迹; 人类; 1:5000; 图 2
默克密理博中国 TH抗体(Merck-Millipore, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Cell Death Dis (2015) ncbi
兔 多克隆
默克密理博中国 TH抗体(Millipore, AB152)被用于. Physiol Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Dev Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 2
默克密理博中国 TH抗体(Calbiochem, AB152)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). Dev Neurobiol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000; 图 4
默克密理博中国 TH抗体(Millipore Corporation, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4). Prog Neuropsychopharmacol Biol Psychiatry (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:500. Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:800
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:800. Nat Commun (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:1000; 图 4
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 4). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 TH抗体(Merck, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7). ASN Neuro (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:10,000; 图 3a
默克密理博中国 TH抗体(Chemicon, MAB 318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10,000 (图 3a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:10,000; 图 3a
默克密理博中国 TH抗体(Abcam, ab152)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10,000 (图 3a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图 7
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上 (图 7). Neural Dev (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 表 1
  • 免疫组化; 小鼠; 1:1000; 表 1
  • 免疫印迹; 小鼠; 1:2000; 表 1
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (表 1), 被用于免疫组化在小鼠样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (表 1). J Neurosci Res (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1f
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). Autophagy (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 小鼠; 图 8b
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫印迹在小鼠样本上 (图 8b). Sci Rep (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 6
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 6). Schizophr Res (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 人类; 图 3
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫细胞化学在人类样本上 (图 3). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5000; 图 3
  • 免疫组化; 大鼠; 1:5000; 图 1
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 3) 和 被用于免疫组化在大鼠样本上浓度为1:5000 (图 1). Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7f
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7f). PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:40000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:40000. Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:400
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:100
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:100. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 6
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 6). Nature (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1000
默克密理博中国 TH抗体(MerckMillipore, AB152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Hum Gene Ther Methods (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:600
  • 免疫细胞化学; 小鼠; 1:600
默克密理博中国 TH抗体(MerckMillipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 和 被用于免疫细胞化学在小鼠样本上浓度为1:600. Hum Gene Ther Methods (2015) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 1
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 1). Mol Neurodegener (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
默克密理博中国 TH抗体(Merck Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
默克密理博中国 TH抗体(Millipore, AB-152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:150
默克密理博中国 TH抗体(Merck Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:150. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
默克密理博中国 TH抗体(Millipore, ab152)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Mol Brain (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 乙型肝炎病毒; 1:500
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在乙型肝炎病毒样本上浓度为1:500. Endocrinology (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:400; 图 5
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
  • 免疫组化-冰冻切片; 兔; 1:1000
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Merck Millipore Ltd, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000, 被用于免疫组化-冰冻切片在兔样本上浓度为1:1000 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:500; 图 S7
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 S7). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:1500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
默克密理博中国 TH抗体(Merck Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1500
默克密理博中国 TH抗体(Millipore, ab152)被用于被用于免疫组化在小鼠样本上浓度为1:1500. Eur J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000
  • 免疫细胞化学; 小鼠; 1:2000
默克密理博中国 TH抗体(Millipore Bioscience Research Reagents, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 和 被用于免疫细胞化学在小鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; medaka; 1:1000; 图 2
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在medaka样本上浓度为1:1000 (图 2). PLoS Genet (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:500. Brain Struct Funct (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Brain Behav Immun (2015) ncbi
兔 多克隆
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于. Nat Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 TH抗体(EMD Millipore, MAB318)被用于. Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 1
  • 免疫细胞化学; 小鼠; 1:500; 图 2
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2). J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:500; 图 2
  • 免疫细胞化学; 大鼠; 1:500; 图 1
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2) 和 被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1). J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000
默克密理博中国 TH抗体(Millipore, ab152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000. Cell Rep (2014) ncbi
兔 多克隆
  • 免疫组化; fancy carp; 1:5000; 图 12
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于被用于免疫组化在fancy carp样本上浓度为1:5000 (图 12). J Comp Neurol (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:4000
默克密理博中国 TH抗体(Millipore, Ab152)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Dev Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 4f
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 4f). Neuroscience (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 小鼠; 图 7
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫印迹在小鼠样本上 (图 7). FASEB J (2015) ncbi
兔 多克隆
  • 免疫组化; 果蝇; 1:100
默克密理博中国 TH抗体(Millipore, ab152)被用于被用于免疫组化在果蝇样本上浓度为1:100. PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Clin Invest (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 5a
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 5a). Brain Struct Funct (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 猪; 1:500
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫细胞化学在猪样本上浓度为1:500. Ann Anat (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 羊; 1:500
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫细胞化学在羊样本上浓度为1:500. Ann Anat (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 果蝇; 1:200; 图 s5
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在果蝇样本上浓度为1:200 (图 s5). Nat Neurosci (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5,000
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:5,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:5000
默克密理博中国 TH抗体(Merck Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:5000. Acta Histochem Cytochem (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Pain (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Mol Cell Cardiol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 8
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 8). J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2,000
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:2,000. J Comp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:10000. J Neurosci (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:400
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:400. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:500. Am J Physiol Renal Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
默克密理博中国 TH抗体(Millipore, ab152)被用于被用于免疫印迹在小鼠样本上. J Proteomics (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. ScientificWorldJournal (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:500. Toxicology (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 七鳃鳗目; 1:600
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在七鳃鳗目样本上浓度为1:600. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1h
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1h). Brain Struct Funct (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在小鼠样本上. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:300
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:300. World J Stem Cells (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; scFv; 1:1000
默克密理博中国 TH抗体(Millipore / Chemicon, MAB318)被用于被用于免疫组化在scFv样本上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Genome Biol Evol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:10000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫印迹在大鼠样本上浓度为1:10000. Brain Struct Funct (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Hum Gene Ther (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; African green monkey; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在African green monkey样本上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; African green monkey; 1:500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在African green monkey样本上浓度为1:500. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Endocrinology (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:2000
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000. Neuroscience (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1500
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:1500. J Neurosci (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. J Virol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:3000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:3000. Eur J Neurosci (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000. CNS Neurosci Ther (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:200
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Genesis (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. Brain Struct Funct (2015) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; common platanna; 1:1000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在common platanna样本上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫印迹在小鼠样本上 (图 3). Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
默克密理博中国 TH抗体(EMD Millipore, ab152)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Alzheimers Dis (2014) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国 TH抗体(Millipore, AB 152)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Neurosci Methods (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:10000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫印迹在大鼠样本上浓度为1:10000. Addict Biol (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:500
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Invest Ophthalmol Vis Sci (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; smaller spotted catshark; 1:500
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在smaller spotted catshark样本上浓度为1:500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; Spanish newt; 1:1,000
默克密理博中国 TH抗体(Chemicon International, AB152)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2,000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:200
默克密理博中国 TH抗体(Chemicon / Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. Dev Biol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
默克密理博中国 TH抗体(EMD Millipore, AB152)被用于被用于免疫印迹在人类样本上浓度为1:2000. J Neurochem (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:500. Br J Pharmacol (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. Hum Gene Ther (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 猪; 1:80
默克密理博中国 TH抗体(Chemicon, MAB 318)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:80. J Mol Neurosci (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:2000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000. Brain Behav (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-冰冻切片; 人类
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-冰冻切片在人类样本上. Endocrinol Metab Clin North Am (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国 TH抗体(Chemicon, Mab318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Genesis (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1,000
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Neuroscience (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:100. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; Spanish newt; 1:1,000
  • 免疫印迹; Spanish newt
  • 免疫印迹; 大鼠
默克密理博中国 TH抗体(Chemicon International, AB152)被用于被用于免疫组化-自由浮动切片在Spanish newt样本上浓度为1:1,000, 被用于免疫印迹在Spanish newt样本上 和 被用于免疫印迹在大鼠样本上. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:2000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上浓度为1:2000. Gene Ther (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 人类
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫细胞化学在人类样本上. Stem Cell Rev (2012) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; common platanna; 1:1000
  • 免疫印迹; common platanna
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在common platanna样本上浓度为1:1000 和 被用于免疫印迹在common platanna样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:1000
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
兔 多克隆
  • 免疫组化; common platanna; 1:1000
默克密理博中国 TH抗体(Chemicon International, AB152)被用于被用于免疫组化在common platanna样本上浓度为1:1000. J Comp Neurol (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; European river lamprey; 1:600
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在European river lamprey样本上浓度为1:600. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:400
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:400. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2500
默克密理博中国 TH抗体(Chemicon International, AB152)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2500. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2011) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 猕猴; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:40000
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:40000. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化; red-eared slider; 1:1000
默克密理博中国 TH抗体(Chemicon International, AB152)被用于被用于免疫组化在red-eared slider样本上浓度为1:1000. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1,000
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:1,000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
默克密理博中国 TH抗体(Millipore-Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 TH抗体(Millipore-Chemicon, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:100
默克密理博中国 TH抗体(Millipore, LNC1)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2011) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 猕猴; 1:100
  • 免疫组化-石蜡切片; 人类; 1:100
默克密理博中国 TH抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:100 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 猕猴; 1:100
  • 免疫组化-石蜡切片; 人类; 1:100
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:100 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 斑马鱼; 1:1000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:200 - 1:500
默克密理博中国 TH抗体(Chemicon International Inc., MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:200 - 1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:200
默克密理博中国 TH抗体(Millipore, AB 152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 TH抗体(Chemicon International, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:5000
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000
默克密理博中国 TH抗体(Chemicon, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
  • 免疫细胞化学; 大鼠; 1:4000
默克密理博中国 TH抗体(Millipore-Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000 和 被用于免疫细胞化学在大鼠样本上浓度为1:4000. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; common platanna; 1:100
  • 免疫印迹; common platanna; 1:200
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在common platanna样本上浓度为1:100 和 被用于免疫印迹在common platanna样本上浓度为1:200. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; smaller spotted catshark; 1:2,500
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在smaller spotted catshark样本上浓度为1:2,500. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 TH抗体(Chemicon / Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:400
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
默克密理博中国 TH抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1,000
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:1,000
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
默克密理博中国 TH抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2005) ncbi
文章列表
  1. Sen S, Parishar P, Pundir A, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol. 2019;527:1801-1836 pubmed 出版商
  2. Kawaguchi M, Hagio H, Yamamoto N, Matsumoto K, Nakayama K, Akazome Y, et al. Atlas of the telencephalon based on cytoarchitecture, neurochemical markers, and gene expressions in Rhinogobius flumineus [Mizuno, 1960]. J Comp Neurol. 2019;527:874-900 pubmed 出版商
  3. Munteanu T, Noronha K, Leung A, Pan S, Lucas J, Schmidt T. Light-dependent pathways for dopaminergic amacrine cell development and function. elife. 2018;7: pubmed 出版商
  4. Breton J, Charbit A, Snyder B, Fong P, Dias E, Himmels P, et al. Relative contributions and mapping of ventral tegmental area dopamine and GABA neurons by projection target in the rat. J Comp Neurol. 2019;527:916-941 pubmed 出版商
  5. Luo S, Huang J, Li Q, Mohammad H, Lee C, Krishna K, et al. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science. 2018;361:76-81 pubmed 出版商
  6. Tarasova T, Lytkina O, Goloborshcheva V, Skuratovskaya L, Antohin A, Ovchinnikov R, et al. Genetic inactivation of alpha-synuclein affects embryonic development of dopaminergic neurons of the substantia nigra, but not the ventral tegmental area, in mouse brain. Peerj. 2018;6:e4779 pubmed 出版商
  7. Balan I, Warnock K, Puche A, GONDRE LEWIS M, JUNE H, Aurelian L. The GABAA Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse. Brain Sci. 2018;8: pubmed 出版商
  8. Sato S, Uchihara T, Fukuda T, Noda S, Kondo H, Saiki S, et al. Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci Rep. 2018;8:2813 pubmed 出版商
  9. Lin Y, Kuo K, Chen S, Huang H. RBFOX3/NeuN is dispensable for visual function. PLoS ONE. 2018;13:e0192355 pubmed 出版商
  10. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser P. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell. 2018;172:706-718.e15 pubmed 出版商
  11. Xiong Y, Neifert S, Karuppagounder S, Liu Q, Stankowski J, Lee B, et al. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A. 2018;115:1635-1640 pubmed 出版商
  12. Dunn A, Hoffman C, Stout K, Ozawa M, Dhamsania R, Miller G. Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain. Brain Res. 2019;1702:85-95 pubmed 出版商
  13. Johnson E, Westbrook T, Shayesteh R, Chen E, Schumacher J, Fitzpatrick D, et al. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. J Comp Neurol. 2019;527:328-344 pubmed 出版商
  14. Parmhans N, Sajgo S, Niu J, Luo W, Badea T. Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J Comp Neurol. 2018;526:742-766 pubmed 出版商
  15. Zhang Z, Chu S, Wang S, Jiang Y, Gao Y, Yang P, et al. RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol. 2018;175:590-605 pubmed 出版商
  16. Bernstein D, Badve P, Barson J, Bass C, Espana R. Hypocretin receptor 1 knockdown in the ventral tegmental area attenuates mesolimbic dopamine signaling and reduces motivation for cocaine. Addict Biol. 2018;23:1032-1045 pubmed 出版商
  17. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  18. Barreiro Iglesias A, Fernández López B, Sobrido Cameán D, Anadón R. Organization of alpha-transducin immunoreactive system in the brain and retina of larval and young adult Sea Lamprey (Petromyzon marinus), and their relationship with other neural systems. J Comp Neurol. 2017;525:3683-3704 pubmed 出版商
  19. González Cabrera C, Meza R, Ulloa L, Merino Sepúlveda P, Luco V, Sanhueza A, et al. Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons. J Comp Neurol. 2017;525:3529-3542 pubmed 出版商
  20. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed 出版商
  21. Furlan A, Dyachuk V, Kastriti M, Calvo Enrique L, Abdo H, Hadjab S, et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357: pubmed 出版商
  22. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  23. López J, González A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J Comp Neurol. 2017;525:3083-3109 pubmed 出版商
  24. Fischer D, Kemp C, Cole Strauss A, Polinski N, Paumier K, Lipton J, et al. Subthalamic Nucleus Deep Brain Stimulation Employs trkB Signaling for Neuroprotection and Functional Restoration. J Neurosci. 2017;37:6786-6796 pubmed 出版商
  25. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  26. Escobar A, González M, Meza R, Noches V, Henny P, Gysling K, et al. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats. Int J Neuropsychopharmacol. 2017;20:660-669 pubmed 出版商
  27. Watson C, Shimogori T, Puelles L. Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol. 2017;525:2782-2799 pubmed 出版商
  28. Solek C, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol. 2017;427:131-147 pubmed 出版商
  29. Takahashi Y, Wu J, Suzuki K, Martínez Redondo P, Li M, Liao H, et al. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science. 2017;356:503-508 pubmed 出版商
  30. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  31. Mendivil Perez M, Soto Mercado V, Guerra Librero A, Fernandez Gil B, Florido J, Shen Y, et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. 2017;63: pubmed 出版商
  32. Parker L, Le S, Wearne T, Hardwick K, Kumar N, Robinson K, et al. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?. J Comp Neurol. 2017;525:2249-2264 pubmed 出版商
  33. Xavier A, Fontaine R, Bloch S, Affaticati P, Jenett A, Demarque M, et al. Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates). J Comp Neurol. 2017;525:2265-2283 pubmed 出版商
  34. Longo F, Mercatelli D, Novello S, Arcuri L, Brugnoli A, Vincenzi F, et al. Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathol Commun. 2017;5:22 pubmed 出版商
  35. Shan M, Lin S, Li S, Du Y, Zhao H, Hong H, et al. TIR-Domain-Containing Adapter-Inducing Interferon-? (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Front Cell Neurosci. 2017;11:35 pubmed 出版商
  36. Williams C, Uytingco C, Green W, McIntyre J, Ukhanov K, Zimmerman A, et al. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther. 2017;25:904-916 pubmed 出版商
  37. Zhao F, Wang W, Wang C, Siedlak S, Fujioka H, Tang B, et al. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson's disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1359-1370 pubmed 出版商
  38. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  39. Roberts H, Schneider B, Brown D. α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP. PLoS ONE. 2017;12:e0171925 pubmed 出版商
  40. Goodings L, He J, Wood A, Harris W, Currie P, Jusuf P. In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish Tg(nr4a2a:eGFP) transgenics. J Comp Neurol. 2017;525:1962-1979 pubmed 出版商
  41. Hannibal J, Christiansen A, Heegaard S, Fahrenkrug J, Kiilgaard J. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol. 2017;525:1934-1961 pubmed 出版商
  42. Green H, Zhang X, Tiklová K, Volakakis N, Brodin L, Berg L, et al. Alterations of p11 in brain tissue and peripheral blood leukocytes in Parkinson's disease. Proc Natl Acad Sci U S A. 2017;114:2735-2740 pubmed 出版商
  43. Stayte S, Rentsch P, Tröscher A, Bamberger M, Li K, Vissel B. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo. PLoS ONE. 2017;12:e0167211 pubmed 出版商
  44. Perelmuter J, Forlano P. Connectivity and ultrastructure of dopaminergic innervation of the inner ear and auditory efferent system of a vocal fish. J Comp Neurol. 2017;525:2090-2108 pubmed 出版商
  45. Liu H, Ho P, Leung G, Lam C, Pang S, Li L, et al. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson's disease. Sci Rep. 2017;7:40887 pubmed 出版商
  46. Wircer E, Blechman J, Borodovsky N, Tsoory M, Nunes A, Oliveira R, et al. Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behavior. elife. 2017;6: pubmed 出版商
  47. Song L, McMackin M, Nguyen A, Cortopassi G. Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism. Neurobiol Dis. 2017;100:30-38 pubmed 出版商
  48. Fasoli A, Dang J, Johnson J, Gouw A, Fogli Iseppe A, Ishida A. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol. 2017;525:1707-1730 pubmed 出版商
  49. Oh Y, Karube F, Takahashi S, Kobayashi K, Takada M, Uchigashima M, et al. Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct Funct. 2017;222:2359-2378 pubmed 出版商
  50. Higo S, Iijima N, Ozawa H. Characterisation of Kiss1r (Gpr54)-Expressing Neurones in the Arcuate Nucleus of the Female Rat Hypothalamus. J Neuroendocrinol. 2017;29: pubmed 出版商
  51. Dzamko N, Gysbers A, Bandopadhyay R, Bolliger M, Uchino A, Zhao Y, et al. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Mov Disord. 2017;32:423-432 pubmed 出版商
  52. Koprich J, Johnston T, Reyes G, Omana V, Brotchie J. Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson's Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque. PLoS ONE. 2016;11:e0167235 pubmed 出版商
  53. Kiyokage E, Kobayashi K, Toida K. Spatial distribution of synapses on tyrosine hydroxylase-expressing juxtaglomerular cells in the mouse olfactory glomerulus. J Comp Neurol. 2017;525:1059-1074 pubmed 出版商
  54. Conceição E, Moura E, Oliveira E, Guarda D, Figueiredo M, Quitete F, et al. Dietary calcium supplementation in adult rats reverts brown adipose tissue dysfunction programmed by postnatal early overfeeding. J Nutr Biochem. 2017;39:117-125 pubmed 出版商
  55. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  56. He J, Xiang Z, Zhu X, Ai Z, Shen J, Huang T, et al. Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys. Sci Rep. 2016;6:34339 pubmed 出版商
  57. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell. 2016;167:566-580.e19 pubmed 出版商
  58. Vyas P, Wu J, Zimmerman A, Fuchs P, Glowatzki E. Tyrosine Hydroxylase Expression in Type II Cochlear Afferents in Mice. J Assoc Res Otolaryngol. 2017;18:139-151 pubmed 出版商
  59. Arredondo C, Gonzalez M, Andrés M, Gysling K. Opposite effects of acute and chronic amphetamine on Nurr1 and NF-?B p65 in the rat ventral tegmental area. Brain Res. 2016;1652:14-20 pubmed 出版商
  60. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  61. Cóppola Segovia V, Cavarsan C, Maia F, Ferraz A, Nakao L, Lima M, et al. ER Stress Induced by Tunicamycin Triggers ?-Synuclein Oligomerization, Dopaminergic Neurons Death and Locomotor Impairment: a New Model of Parkinson's Disease. Mol Neurobiol. 2017;54:5798-5806 pubmed 出版商
  62. Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn M, et al. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol. 2017;525:1155-1175 pubmed 出版商
  63. Wu Q, Yang X, Zhang Y, Zhang L, Feng L. Chronic mild stress accelerates the progression of Parkinson's disease in A53T ?-synuclein transgenic mice. Exp Neurol. 2016;285:61-71 pubmed 出版商
  64. Peris J, Macfadyen K, Smith J, de Kloet A, Wang L, Krause E. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol. 2017;525:1094-1108 pubmed 出版商
  65. Stauffer W, Lak A, Yang A, Borel M, Paulsen O, Boyden E, et al. Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques. Cell. 2016;166:1564-1571.e6 pubmed 出版商
  66. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  67. Brown R, Kokay I, Phillipps H, Yip S, Gustafson P, Wyatt A, et al. Conditional Deletion of the Prolactin Receptor Reveals Functional Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus. J Neurosci. 2016;36:9173-85 pubmed 出版商
  68. Ztaou S, Maurice N, Camon J, Guiraudie Capraz G, Kerkerian Le Goff L, Beurrier C, et al. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease. J Neurosci. 2016;36:9161-72 pubmed 出版商
  69. Fukada M, Nakayama A, Mamiya T, Yao T, Kawaguchi Y. Dopaminergic abnormalities in Hdac6-deficient mice. Neuropharmacology. 2016;110:470-479 pubmed 出版商
  70. Dewanto A, Dudas J, Glueckert R, Mechsner S, Schrott Fischer A, Wildt L, et al. Localization of TrkB and p75 receptors in peritoneal and deep infiltrating endometriosis: an immunohistochemical study. Reprod Biol Endocrinol. 2016;14:43 pubmed 出版商
  71. Vingill S, Brockelt D, Lancelin C, Tatenhorst L, Dontcheva G, Preisinger C, et al. Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice. EMBO J. 2016;35:2008-25 pubmed 出版商
  72. Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2017;525:574-591 pubmed 出版商
  73. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  74. Mazzulli J, Zunke F, Tsunemi T, Toker N, Jeon S, Burbulla L, et al. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci. 2016;36:7693-706 pubmed 出版商
  75. Ding Y, Zhang Z, Ma J, Xia H, Wang Y, Liu Y, et al. Directed differentiation of postnatal hippocampal neural stem cells generates nuclear receptor related?1 protein? and tyrosine hydroxylase?expressing cells. Mol Med Rep. 2016;14:1993-9 pubmed 出版商
  76. Cholanians A, Phan A, Ditzel E, Camenisch T, Lau S, Monks T. From the Cover: Arsenic Induces Accumulation of α-Synuclein: Implications for Synucleinopathies and Neurodegeneration. Toxicol Sci. 2016;153:271-81 pubmed 出版商
  77. Nandi S, Zheng H, Sharma N, Shahshahan H, Patel K, Mishra P. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes. 2016;65:3075-90 pubmed 出版商
  78. Simmons A, Bloomsburg S, Billingslea S, Merrill M, Li S, Thomas M, et al. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers. Mol Vis. 2016;22:705-17 pubmed
  79. Sommer A, Fadler T, Dorfmeister E, Hoffmann A, Xiang W, Winner B, et al. Infiltrating T lymphocytes reduce myeloid phagocytosis activity in synucleinopathy model. J Neuroinflammation. 2016;13:174 pubmed 出版商
  80. Stojakovic A, Paz Filho G, Arcos Burgos M, Licinio J, Wong M, Mastronardi C. Role of the IL-1 Pathway in Dopaminergic Neurodegeneration and Decreased Voluntary Movement. Mol Neurobiol. 2017;54:4486-4495 pubmed 出版商
  81. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  82. Hughes S, Rodgers J, Hickey D, Foster R, Peirson S, Hankins M. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep. 2016;6:28086 pubmed 出版商
  83. Prabhudesai S, Bensabeur F, Abdullah R, Basak I, Baez S, Alves G, et al. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J Neurosci Res. 2016;94:717-35 pubmed 出版商
  84. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  85. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  86. Wei Z, Yuan Y, Jaouen F, Ma M, Hao C, Zhang Z, et al. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation. Autophagy. 2016;12:1168-79 pubmed 出版商
  87. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  88. Aldrin Kirk P, Heuer A, Wang G, Mattsson B, Lundblad M, Parmar M, et al. DREADD Modulation of Transplanted DA Neurons Reveals a Novel Parkinsonian Dyskinesia Mechanism Mediated by the Serotonin 5-HT6 Receptor. Neuron. 2016;90:955-68 pubmed 出版商
  89. Gao J, Kang X, Sun S, Li L, Zhang B, Li Y, et al. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression. Cell Death Dis. 2016;7:e2217 pubmed 出版商
  90. Kim H, Oh J, Choi S, Nam Y, Jo A, Kwon A, et al. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons. Mol Brain. 2016;9:45 pubmed 出版商
  91. Kasper J, McCue D, Milton A, Szwed A, Sampson C, Huang M, et al. Gamma-Aminobutyric Acidergic Projections From the Dorsal Raphe to the Nucleus Accumbens Are Regulated by Neuromedin U. Biol Psychiatry. 2016;80:878-887 pubmed 出版商
  92. Ueno M, Ueno Nakamura Y, Niehaus J, Popovich P, Yoshida Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci. 2016;19:784-7 pubmed 出版商
  93. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed 出版商
  94. Chtarto A, Humbert Claude M, Bockstael O, Das A, Boutry S, Breger L, et al. A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. Mol Ther Methods Clin Dev. 2016;5:16027 pubmed 出版商
  95. Zhang L, Hernandez V, Vázquez Juárez E, Chay F, Barrio R. Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway?. Front Neural Circuits. 2016;10:13 pubmed 出版商
  96. Gómez López S, Martínez Silva A, Montiel T, Osorio Gómez D, Bermudez Rattoni F, Massieu L, et al. Neural ablation of the PARK10 candidate Plpp3 leads to dopaminergic transmission deficits without neurodegeneration. Sci Rep. 2016;6:24028 pubmed 出版商
  97. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  98. Inokaitis H, Pauziene N, Rysevaite Kyguoliene K, Pauza D. Innervation of sinoatrial nodal cells in the rabbit. Ann Anat. 2016;205:113-21 pubmed 出版商
  99. Kumar A, Jagadeeshan S, Subramanian A, Chidambaram S, Surabhi R, Singhal M, et al. Molecular Mechanism of Regulation of MTA1 Expression by Granulocyte Colony-stimulating Factor. J Biol Chem. 2016;291:12310-21 pubmed 出版商
  100. Rossi M, Li H, Lu D, Kim I, Bartholomew R, Gaidis E, et al. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat Neurosci. 2016;19:742-748 pubmed 出版商
  101. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  102. González Burguera I, Ricobaraza A, Aretxabala X, Barrondo S, Garcia del Caño G, López de Jesús M, et al. Highly efficient generation of glutamatergic/cholinergic NT2-derived postmitotic human neurons by short-term treatment with the nucleoside analogue cytosine ?-D-arabinofuranoside. Stem Cell Res. 2016;16:541-51 pubmed 出版商
  103. Wang Y, Jones Tabah J, Chakravarty P, Stewart A, Muotri A, Laposa R, et al. Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation. Cell Rep. 2016;14:2554-61 pubmed 出版商
  104. Boggild S, Molgaard S, Glerup S, Nyengaard J. Spatiotemporal patterns of sortilin and SorCS2 localization during organ development. BMC Cell Biol. 2016;17:8 pubmed 出版商
  105. Green F, Samaranch L, Zhang H, Manning Bog A, Meyer K, Forsayeth J, et al. Axonal transport of AAV9 in nonhuman primate brain. Gene Ther. 2016;23:520-6 pubmed 出版商
  106. Van Audenhove I, Denert M, Boucherie C, Pieters L, Cornelissen M, Gettemans J. Fascin Rigidity and L-plastin Flexibility Cooperate in Cancer Cell Invadopodia and Filopodia. J Biol Chem. 2016;291:9148-60 pubmed 出版商
  107. Roy A, Rangasamy S, Kundu M, Pahan K. BPOZ-2 Gene Delivery Ameliorates Alpha-Synucleinopathy in A53T Transgenic Mouse Model of Parkinson's Disease. Sci Rep. 2016;6:22067 pubmed 出版商
  108. Rodionova K, Fiedler C, Guenther F, Grouzmann E, Neuhuber W, Fischer M, et al. Complex reinnervation pattern after unilateral renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2016;310:R806-18 pubmed 出版商
  109. Koeck F, Schmitt M, Baier C, Stangl H, Beckmann J, Grifka J, et al. Predominance of synovial sensory nerve fibers in arthrofibrosis following total knee arthroplasty compared to osteoarthritis of the knee. J Orthop Surg Res. 2016;11:25 pubmed 出版商
  110. Liu Z, Brown A, Fisher D, Wu Y, Warren J, Cui X. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons. PLoS ONE. 2016;11:e0149379 pubmed 出版商
  111. Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease. Transl Psychiatry. 2016;6:e733 pubmed 出版商
  112. Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. elife. 2016;5: pubmed 出版商
  113. Pandit R, Omrani A, Luijendijk M, de Vrind V, van Rozen A, Ophuis R, et al. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward. Neuropsychopharmacology. 2016;41:2241-51 pubmed 出版商
  114. van der Keylen P, Garreis F, Steigleder R, Sommer D, Neuhuber W, Wörl J. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus. Histochem Cell Biol. 2016;145:573-85 pubmed 出版商
  115. Naudé J, Tolu S, Dongelmans M, Torquet N, Valverde S, Rodriguez G, et al. Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking. Nat Neurosci. 2016;19:471-8 pubmed 出版商
  116. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  117. Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease. Nat Commun. 2016;7:10332 pubmed 出版商
  118. Grafe L, Flanagan Cato L. Differential effects of mineralocorticoid and angiotensin II on incentive and mesolimbic activity. Horm Behav. 2016;79:28-36 pubmed 出版商
  119. Schmitt M, Dehay B, Bezard E, Garcia Ladona F. Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse. 2016;70:71-86 pubmed 出版商
  120. Hjørnevik L, Frøyset A, Grønset T, Rungruangsak Torrissen K, Fladmark K. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry. Mar Drugs. 2015;13:7390-402 pubmed 出版商
  121. Patel A, Yamashita N, Ascano M, Bodmer D, Boehm E, Bodkin Clarke C, et al. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat Commun. 2015;6:10119 pubmed 出版商
  122. Pinho B, Reis S, Guedes Dias P, Leitão Rocha A, Quintas C, Valentão P, et al. Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson's disease. Pharmacol Res. 2016;103:328-39 pubmed 出版商
  123. Oliveira L, Falomir Lockhart L, Botelho M, Lin K, Wales P, Koch J, et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis. 2015;6:e1994 pubmed 出版商
  124. Miller J, Hafzalla G, Burkett Z, Fox C, White S. Reduced vocal variability in a zebra finch model of dopamine depletion: implications for Parkinson disease. Physiol Rep. 2015;3: pubmed 出版商
  125. Aquino N, Araujo Lopes R, Batista I, Henriques P, Poletini M, Franci C, et al. Hypothalamic Effects of Tamoxifen on Oestrogen Regulation of Luteinising Hormone and Prolactin Secretion in Female Rats. J Neuroendocrinol. 2016;28: pubmed 出版商
  126. Hajj R, Milet A, Toulorge D, Cholet N, Laffaire J, Foucquier J, et al. Combination of acamprosate and baclofen as a promising therapeutic approach for Parkinson's disease. Sci Rep. 2015;5:16084 pubmed 出版商
  127. Gazea M, Tasouri E, Tolve M, Bosch V, Kabanova A, Gojak C, et al. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain. Dev Biol. 2016;409:55-71 pubmed 出版商
  128. Romano López A, Méndez Díaz M, García F, Regalado Santiago C, Ruiz Contreras A, Prospero Garcia O. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats. Dev Neurobiol. 2016;76:819-31 pubmed 出版商
  129. Winiecka Klimek M, Smolarz M, Walczak M, Zieba J, Hulas Bigoszewska K, Kmieciak B, et al. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS ONE. 2015;10:e0141688 pubmed 出版商
  130. Knowles M, de la Tremblaye P, Azogu I, Plamondon H. Endocannabinoid CB1 receptor activation upon global ischemia adversely impact recovery of reward and stress signaling molecules, neuronal survival and behavioral impulsivity. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:8-21 pubmed 出版商
  131. Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, et al. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542-52 pubmed 出版商
  132. Stouffer M, Woods C, Patel J, Lee C, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun. 2015;6:8543 pubmed 出版商
  133. Liu J, Huang D, Xu J, Tong J, Wang Z, Huang L, et al. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation. Sci Rep. 2015;5:15720 pubmed 出版商
  134. Podlasz P, Jakimiuk A, Chmielewska Krzesinska M, Kasica N, Nowik N, Kaleczyc J. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol. 2016;145:105-17 pubmed 出版商
  135. Hayashi Y, Kashiwagi M, Yasuda K, Ando R, Kanuka M, Sakai K, et al. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science. 2015;350:957-61 pubmed 出版商
  136. Tuon T, Souza P, Santos M, Pereira F, Pedroso G, Luciano T, et al. Physical Training Regulates Mitochondrial Parameters and Neuroinflammatory Mechanisms in an Experimental Model of Parkinson's Disease. Oxid Med Cell Longev. 2015;2015:261809 pubmed 出版商
  137. Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G. Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in Drosophila. J Neurosci. 2015;35:13784-99 pubmed 出版商
  138. Suarez Mier G, Buckwalter M. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung. ASN Neuro. 2015;7: pubmed 出版商
  139. Van Kampen J, Baranowski D, Robertson H, Shaw C, Kay D. The Progressive BSSG Rat Model of Parkinson's: Recapitulating Multiple Key Features of the Human Disease. PLoS ONE. 2015;10:e0139694 pubmed 出版商
  140. Korzhevskii D, Sukhorukova E, Kirik O, Grigorev I. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur J Histochem. 2015;59:2530 pubmed 出版商
  141. Hua Z, Emiliani F, Nathans J. Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Dev. 2015;10:21 pubmed 出版商
  142. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed 出版商
  143. Ehrich J, Messinger D, Knakal C, Kuhar J, Schattauer S, Bruchas M, et al. Kappa Opioid Receptor-Induced Aversion Requires p38 MAPK Activation in VTA Dopamine Neurons. J Neurosci. 2015;35:12917-31 pubmed 出版商
  144. Menegas W, Bergan J, Ogawa S, Isogai Y, Umadevi Venkataraju K, Osten P, et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. elife. 2015;4:e10032 pubmed 出版商
  145. De Luca R, Suvorava T, Yang D, Baumgärtel W, Kojda G, Haas H, et al. Identification of histaminergic neurons through histamine 3 receptor-mediated autoinhibition. Neuropharmacology. 2016;106:102-15 pubmed 出版商
  146. Volta M, Cataldi S, Beccano Kelly D, Munsie L, Tatarnikov I, Chou P, et al. Chronic and acute LRRK2 silencing has no long-term behavioral effects, whereas wild-type and mutant LRRK2 overexpression induce motor and cognitive deficits and altered regulation of dopamine release. Parkinsonism Relat Disord. 2015;21:1156-63 pubmed 出版商
  147. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  148. Dearborn J, Harmon S, Fowler S, O Malley K, Taylor G, Sands M, et al. Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Sci Rep. 2015;5:12752 pubmed 出版商
  149. Morris R, Purves Tyson T, Weickert C, Rothmond D, Lenroot R, Weickert T. Testosterone and reward prediction-errors in healthy men and men with schizophrenia. Schizophr Res. 2015;168:649-60 pubmed 出版商
  150. Jiang Y, Jiang P, Yang J, Ma D, Lin H, Su W, et al. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation. PLoS ONE. 2015;10:e0133971 pubmed 出版商
  151. Aimé P, Sun X, Zareen N, Rao A, Berman Z, Volpicelli Daley L, et al. Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models. J Neurosci. 2015;35:10731-49 pubmed 出版商
  152. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  153. Bourdenx M, Dovero S, Engeln M, Bido S, Bastide M, Dutheil N, et al. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathol Commun. 2015;3:46 pubmed 出版商
  154. Kaufling J, Aston Jones G. Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal. J Neurosci. 2015;35:10290-303 pubmed 出版商
  155. Johnson V, Xiang M, Chen Z, Junge H. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS ONE. 2015;10:e0132013 pubmed 出版商
  156. Hryhorczuk C, Florea M, Rodaros D, Poirier I, Daneault C, Des Rosiers C, et al. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsychopharmacology. 2016;41:811-21 pubmed 出版商
  157. Beckman D, Santos L, Americo T, Ledo J, de Mello F, Linden R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J Biol Chem. 2015;290:20488-98 pubmed 出版商
  158. Latgé C, Cabral K, de Oliveira G, Raymundo D, Freitas J, Johanson L, et al. The Solution Structure and Dynamics of Full-length Human Cerebral Dopamine Neurotrophic Factor and Its Neuroprotective Role against α-Synuclein Oligomers. J Biol Chem. 2015;290:20527-40 pubmed 出版商
  159. Schwarz L, Miyamichi K, Gao X, BEIER K, Weissbourd B, DeLoach K, et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature. 2015;524:88-92 pubmed 出版商
  160. Theodorou M, Rauser B, Zhang J, Prakash N, Wurst W, Schick J. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. Hum Gene Ther Methods. 2015;26:107-22 pubmed 出版商
  161. Van Rompuy A, Oliveras Salvá M, Van der Perren A, Corti O, Van den Haute C, Baekelandt V. Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration. Mol Neurodegener. 2015;10:23 pubmed 出版商
  162. Wang X, Guo R, Zhao W. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats. PLoS ONE. 2015;10:e0130822 pubmed 出版商
  163. Requejo C, Ruiz Ortega J, Bengoetxea H, Garcia Blanco A, Herrán E, Aristieta A, et al. Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease--Effects of Nanoencapsulated Neurotrophic Factors Administration. Mol Neurobiol. 2015;52:846-58 pubmed 出版商
  164. Wende C, Zoubaa S, Blak A, Echevarria D, Martinez S, Guillemot F, et al. Hairy/Enhancer-of-Split MEGANE and Proneural MASH1 Factors Cooperate Synergistically in Midbrain GABAergic Neurogenesis. PLoS ONE. 2015;10:e0127681 pubmed 出版商
  165. Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M. Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain. 2015;8:28 pubmed 出版商
  166. Fontaine R, Affaticati P, Bureau C, Colin I, Demarque M, Dufour S, et al. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish. Endocrinology. 2015;156:2934-48 pubmed 出版商
  167. Schreglmann S, Regensburger M, Rockenstein E, Masliah E, Xiang W, Winkler J, et al. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice. PLoS ONE. 2015;10:e0126261 pubmed 出版商
  168. Debertin G, Kántor O, Kovács Öller T, Balogh L, Szabó Meleg E, Orbán J, et al. Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina. J Neurochem. 2015;134:416-28 pubmed 出版商
  169. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  170. Xenias H, Ibáñez Sandoval O, Koós T, Tepper J. Are striatal tyrosine hydroxylase interneurons dopaminergic?. J Neurosci. 2015;35:6584-99 pubmed 出版商
  171. Stayte S, Rentsch P, Li K, Vissel B. Activin A protects midbrain neurons in the 6-hydroxydopamine mouse model of Parkinson's disease. PLoS ONE. 2015;10:e0124325 pubmed 出版商
  172. Karbalaie K, Tanhaei S, Rabiei F, Kiani Esfahani A, Masoudi N, Nasr Esfahani M, et al. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. Cell J. 2015;17:37-48 pubmed
  173. Faust T, Assous M, Shah F, Tepper J, Koós T. Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. Eur J Neurosci. 2015;42:1764-74 pubmed 出版商
  174. Salganik M, Sergeyev V, Shinde V, Meyers C, Gorbatyuk M, Lin J, et al. The loss of glucose-regulated protein 78 (GRP78) during normal aging or from siRNA knockdown augments human alpha-synuclein (α-syn) toxicity to rat nigral neurons. Neurobiol Aging. 2015;36:2213-23 pubmed 出版商
  175. Pan J, Li H, Zhang B, Xiong R, Zhang Y, Kang W, et al. Small peptide inhibitor of JNK3 protects dopaminergic neurons from MPTP induced injury via inhibiting the ASK1-JNK3 signaling pathway. PLoS ONE. 2015;10:e0119204 pubmed 出版商
  176. Kett L, Stiller B, Bernath M, Tasset I, Blesa J, Jackson Lewis V, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724-42 pubmed 出版商
  177. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  178. Sun Y, Florer J, Mayhew C, Jia Z, Zhao Z, Xu K, et al. Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology. PLoS ONE. 2015;10:e0118771 pubmed 出版商
  179. Leung B, Balleine B. Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer. J Neurosci. 2015;35:4953-64 pubmed 出版商
  180. Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne R. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience. 2015;295:23-38 pubmed 出版商
  181. Aoto K, Sandell L, Butler Tjaden N, Yuen K, Watt K, Black B, et al. Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells. Dev Biol. 2015;402:3-16 pubmed 出版商
  182. Zheng H, Rinaman L. Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Struct Funct. 2016;221:2375-83 pubmed 出版商
  183. Zhang X, Li Y, Liu C, Fan R, Wang P, Zheng L, et al. Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson's disease rats. Transl Res. 2015;166:152-62 pubmed 出版商
  184. Briffaud V, Williams P, Courty J, Broberger C. Excitation of tuberoinfundibular dopamine neurons by oxytocin: crosstalk in the control of lactation. J Neurosci. 2015;35:4229-37 pubmed 出版商
  185. Stangl H, Springorum H, Muschter D, Grässel S, Straub R. Catecholaminergic-to-cholinergic transition of sympathetic nerve fibers is stimulated under healthy but not under inflammatory arthritic conditions. Brain Behav Immun. 2015;46:180-91 pubmed 出版商
  186. Calkoen E, Vicente Steijn R, Hahurij N, van Munsteren C, Roest A, DeRuiter M, et al. Abnormal sinoatrial node development resulting from disturbed vascular endothelial growth factor signaling. Int J Cardiol. 2015;183:249-57 pubmed 出版商
  187. Zhang S, Qi J, Li X, Wang H, Britt J, Hoffman A, et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat Neurosci. 2015;18:386-92 pubmed 出版商
  188. Koo J, Mazei Robison M, LaPlant Q, Egervári G, Braunscheidel K, Adank D, et al. Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci. 2015;18:415-22 pubmed 出版商
  189. Chand A, Galliano E, Chesters R, Grubb M. A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment. J Neurosci. 2015;35:1573-90 pubmed 出版商
  190. Depboylu C, Rösler T, de Andrade A, Oertel W, Höglinger G. Systemically administered neuregulin-1β1 rescues nigral dopaminergic neurons via the ErbB4 receptor tyrosine kinase in MPTP mouse models of Parkinson's disease. J Neurochem. 2015;133:590-7 pubmed 出版商
  191. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  192. Brust R, Corcoran A, Richerson G, Nattie E, Dymecki S. Functional and developmental identification of a molecular subtype of brain serotonergic neuron specialized to regulate breathing dynamics. Cell Rep. 2014;9:2152-65 pubmed 出版商
  193. Vaccaro R, Toni M, Casini A, Vivacqua G, Yu S, D Este L, et al. Localization of α-synuclein in teleost central nervous system: immunohistochemical and Western blot evidence by 3D5 monoclonal antibody in the common carp, Cyprinus carpio. J Comp Neurol. 2015;523:1095-124 pubmed 出版商
  194. Polinski N, Gombash S, Manfredsson F, Lipton J, Kemp C, Cole Strauss A, et al. Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain. Neurobiol Aging. 2015;36:1110-20 pubmed 出版商
  195. Depboylu C, Klietz M, Maurer L, Oertel W, Kobayashi K, Weihe E, et al. Transcriptional and structural plasticity of tyrosine hydroxylase expressing neurons in both striatum and nucleus accumbens following dopaminergic denervation. J Chem Neuroanat. 2014;61-62:169-75 pubmed 出版商
  196. Colman J, Laureano D, Reis T, Krolow R, Dalmaz C, Benetti C, et al. Variations in the neonatal environment modulate adult behavioral and brain responses to palatable food withdrawal in adult female rats. Int J Dev Neurosci. 2015;40:70-5 pubmed 出版商
  197. Vergaño Vera E, Diaz Guerra E, Rodríguez Traver E, Méndez Gómez H, Solis O, Pignatelli J, et al. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol. 2015;75:823-41 pubmed 出版商
  198. Darvas M, Palmiter R. Specific contributions of N-methyl-D-aspartate receptors in the dorsal striatum to cognitive flexibility. Neuroscience. 2015;284:934-42 pubmed 出版商
  199. Sharaf A, Rahhal B, Spittau B, Roussa E. Localization of reelin signaling pathway components in murine midbrain and striatum. Cell Tissue Res. 2015;359:393-407 pubmed 出版商
  200. Lee Y, Petkova A, Konkar A, Granneman J. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 2015;29:286-99 pubmed 出版商
  201. Pechriggl E, Bitsche M, Glueckert R, Rask Andersen H, Blumer M, Schrott Fischer A, et al. Development of the innervation of the human inner ear. Dev Neurobiol. 2015;75:683-702 pubmed 出版商
  202. Bou Dib P, Gnägi B, Daly F, Sabado V, Tas D, Glauser D, et al. A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress. PLoS Genet. 2014;10:e1004718 pubmed 出版商
  203. Huang Y, Chang C, Zhang J, Gao X. Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum. Neural Regen Res. 2012;7:2653-62 pubmed 出版商
  204. Kim E, Shekhar A, Lu J, Lin X, Liu F, Zhang J, et al. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest. 2014;124:5027-36 pubmed 出版商
  205. Sobieraj J, Kim A, Fannon M, Mandyam C. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons. Brain Struct Funct. 2016;221:261-76 pubmed 出版商
  206. Portella A, Silveira P, Laureano D, Cardoso S, Bittencourt V, Noschang C, et al. Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats. Behav Brain Res. 2015;278:66-73 pubmed 出版商
  207. Pauza D, Rysevaite Kyguoliene K, Vismantaite J, Brack K, Inokaitis H, Pauza A, et al. A combined acetylcholinesterase and immunohistochemical method for precise anatomical analysis of intrinsic cardiac neural structures. Ann Anat. 2014;196:430-40 pubmed 出版商
  208. Lin S, Owald D, Chandra V, Talbot C, Huetteroth W, Waddell S. Neural correlates of water reward in thirsty Drosophila. Nat Neurosci. 2014;17:1536-42 pubmed 出版商
  209. Suzuki Y, Kiyokage E, Sohn J, Hioki H, Toida K. Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2015;523:262-80 pubmed 出版商
  210. Masuda C, Takeuchi S, J Bisem N, R Vincent S, Tooyama I. Immunohistochemical Localization of an Isoform of TRK-Fused Gene-Like Protein in the Rat Retina. Acta Histochem Cytochem. 2014;47:75-83 pubmed 出版商
  211. Chartier S, Thompson M, Longo G, Fealk M, Majuta L, Mantyh P. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain. 2014;155:2323-36 pubmed 出版商
  212. Althoff K, Beckers A, Bell E, Nortmeyer M, Thor T, Sprüssel A, et al. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene. 2015;34:3357-68 pubmed 出版商
  213. Sousa J, Vieira Rocha M, Sá C, Ferreirinha F, Correia de Sá P, Fresco P, et al. Lack of endogenous adenosine tonus on sympathetic neurotransmission in spontaneously hypertensive rat mesenteric artery. PLoS ONE. 2014;9:e105540 pubmed 出版商
  214. Pauza D, Rysevaite K, Inokaitis H, Jokubauskas M, Pauza A, Brack K, et al. Innervation of sinoatrial nodal cardiomyocytes in mouse. A combined approach using immunofluorescent and electron microscopy. J Mol Cell Cardiol. 2014;75:188-97 pubmed 出版商
  215. Pinheiro P, Jansen A, de Wit H, Tawfik B, Madsen K, Verhage M, et al. The BAR domain protein PICK1 controls vesicle number and size in adrenal chromaffin cells. J Neurosci. 2014;34:10688-700 pubmed 出版商
  216. Quina L, Tempest L, Ng L, Harris J, Ferguson S, Jhou T, et al. Efferent pathways of the mouse lateral habenula. J Comp Neurol. 2015;523:32-60 pubmed 出版商
  217. Forrest S, Osborne P, Keast J. Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations. J Comp Neurol. 2014;522:3900-27 pubmed 出版商
  218. Mastwal S, Ye Y, Ren M, Jimenez D, Martinowich K, Gerfen C, et al. Phasic dopamine neuron activity elicits unique mesofrontal plasticity in adolescence. J Neurosci. 2014;34:9484-96 pubmed 出版商
  219. Bai Q, Parris R, Burton E. Different mechanisms regulate expression of zebrafish myelin protein zero (P0) in myelinating oligodendrocytes and its induction following axonal injury. J Biol Chem. 2014;289:24114-28 pubmed 出版商
  220. Obeidat M, Li L, Ballermann B. TIMAP promotes angiogenesis by suppressing PTEN-mediated Akt inhibition in human glomerular endothelial cells. Am J Physiol Renal Physiol. 2014;307:F623-33 pubmed 出版商
  221. Walker M, Volta M, Cataldi S, Dinelle K, Beccano Kelly D, Munsie L, et al. Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis. 2014;4:483-98 pubmed 出版商
  222. Zeng H, Rao X, Zhang L, Zhao X, Zhang W, Wang J, et al. Quantitative proteomics reveals olfactory input-dependent alterations in the mouse olfactory bulb proteome. J Proteomics. 2014;109:125-42 pubmed 出版商
  223. Bricker Anthony C, Hines Beard J, Rex T. Molecular changes and vision loss in a mouse model of closed-globe blast trauma. Invest Ophthalmol Vis Sci. 2014;55:4853-62 pubmed 出版商
  224. Oh S, Park H, Hwang I, Park H, Choi K, Jeong H, et al. Efficient reprogramming of mouse fibroblasts to neuronal cells including dopaminergic neurons. ScientificWorldJournal. 2014;2014:957548 pubmed 出版商
  225. Lotan D, Cunningham M, Joel D. Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen. PLoS ONE. 2014;9:e101257 pubmed 出版商
  226. Shivers K, Nikolopoulou A, Machlovi S, Vallabhajosula S, Figueiredo Pereira M. PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim Biophys Acta. 2014;1842:1707-19 pubmed 出版商
  227. Komada M, Itoh S, Kawachi K, Kagawa N, Ikeda Y, Nagao T. Newborn mice exposed prenatally to bisphenol A show hyperactivity and defective neocortical development. Toxicology. 2014;323:51-60 pubmed 出版商
  228. Pérez Fernández J, Stephenson Jones M, Suryanarayana S, Robertson B, Grillner S. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression. J Comp Neurol. 2014;522:3775-94 pubmed 出版商
  229. Nordenankar K, Smith Anttila C, Schweizer N, Viereckel T, Birgner C, Mejía Toiber J, et al. Increased hippocampal excitability and impaired spatial memory function in mice lacking VGLUT2 selectively in neurons defined by tyrosine hydroxylase promoter activity. Brain Struct Funct. 2015;220:2171-90 pubmed 出版商
  230. Montgomery T, Steinkellner T, Sucic S, Koban F, Schüchner S, Ogris E, et al. Axonal targeting of the serotonin transporter in cultured rat dorsal raphe neurons is specified by SEC24C-dependent export from the endoplasmic reticulum. J Neurosci. 2014;34:6344-6351 pubmed 出版商
  231. Büchele F, Döbrössy M, Hackl C, Jiang W, Papazoglou A, Nikkhah G. Two-step grafting significantly enhances the survival of foetal dopaminergic transplants and induces graft-derived vascularisation in a 6-OHDA model of Parkinson's disease. Neurobiol Dis. 2014;68:112-25 pubmed 出版商
  232. Liao M, Diaconu M, Monecke S, Collombat P, Timaeus C, Kuhlmann T, et al. Embryonic stem cell-derived neural progenitors as non-tumorigenic source for dopaminergic neurons. World J Stem Cells. 2014;6:248-55 pubmed 出版商
  233. Cebrián C, Zucca F, Mauri P, Steinbeck J, Studer L, Scherzer C, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633 pubmed 出版商
  234. Taylor S, Badurek S, DiLeone R, Nashmi R, Minichiello L, Picciotto M. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol. 2014;522:3308-34 pubmed 出版商
  235. Forlano P, Kim S, Krzyminska Z, Sisneros J. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus. J Comp Neurol. 2014;522:2887-927 pubmed 出版商
  236. Nasu M, Yada S, Igarashi A, Sutoo D, Akiyama K, Ito M, et al. Mammalian-specific sequences in pou3f2 contribute to maternal behavior. Genome Biol Evol. 2014;6:1145-56 pubmed 出版商
  237. García Pérez D, López Bellido R, Rodriguez R, Laorden M, Nunez C, Milanes M. Dysregulation of dopaminergic regulatory mechanisms in the mesolimbic pathway induced by morphine and morphine withdrawal. Brain Struct Funct. 2015;220:1901-19 pubmed 出版商
  238. Zhao L, Jiao Q, Huang C, Hou N, Chen X, Zhang J, et al. mGluR5 promotes the differentiation of rat neural progenitor cells into cholinergic neurons and activation of extracellular signal-related protein kinases. Neuroreport. 2014;25:427-34 pubmed 出版商
  239. Lu Nguyen N, Broadstock M, Schliesser M, Bartholomae C, von Kalle C, Schmidt M, et al. Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease. Hum Gene Ther. 2014;25:631-41 pubmed 出版商
  240. Bloch J, Brunet J, McEntire C, Redmond D. Primate adult brain cell autotransplantation produces behavioral and biological recovery in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian St. Kitts monkeys. J Comp Neurol. 2014;522:2729-40 pubmed 出版商
  241. Lippert R, Ellacott K, Cone R. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology. 2014;155:1718-27 pubmed 出版商
  242. Peng X, Liu T, Shi C, Zhang L, Wang Y, Zhao W, et al. Germline transmission of an embryonic stem cell line derived from BALB/c cataract mice. PLoS ONE. 2014;9:e90707 pubmed 出版商
  243. O Brien E, Greferath U, Fletcher E. The effect of photoreceptor degeneration on ganglion cell morphology. J Comp Neurol. 2014;522:1155-70 pubmed 出版商
  244. Amemiya S, Noji T, Kubota N, Nishijima T, Kita I. Noradrenergic modulation of vicarious trial-and-error behavior during a spatial decision-making task in rats. Neuroscience. 2014;265:291-301 pubmed 出版商
  245. Song J, Zheng L, Zhang X, Feng X, Fan R, Sun L, et al. Upregulation of ?1-adrenoceptors is involved in the formation of gastric dysmotility in the 6-hydroxydopamine rat model of Parkinson's disease. Transl Res. 2014;164:22-31 pubmed 出版商
  246. Ilango A, Kesner A, Keller K, Stuber G, Bonci A, Ikemoto S. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci. 2014;34:817-22 pubmed 出版商
  247. Trabalza A, Eleftheriadou I, Sgourou A, Liao T, Patsali P, Lee H, et al. Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol. 2014;88:2877-90 pubmed 出版商
  248. Notter T, Panzanelli P, PFISTER S, Mircsof D, Fritschy J. A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur J Neurosci. 2014;39:165-75 pubmed 出版商
  249. Tapias V, Cannon J, Greenamyre J. Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Neurobiol Aging. 2014;35:1162-76 pubmed 出版商
  250. Deng X, Liang Y, Lu H, Yang Z, Liu R, Wang J, et al. Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson's disease. PLoS ONE. 2013;8:e80880 pubmed 出版商
  251. Moloney T, Hyland R, O Toole D, Paucard A, Kirik D, O Doherty A, et al. Heat shock protein 70 reduces ?-synuclein-induced predegenerative neuronal dystrophy in the ?-synuclein viral gene transfer rat model of Parkinson's disease. CNS Neurosci Ther. 2014;20:50-8 pubmed 出版商
  252. Nishizaki Y, Takagi T, Matsui F, Higashi Y. SIP1 expression patterns in brain investigated by generating a SIP1-EGFP reporter knock-in mouse. Genesis. 2014;52:56-67 pubmed 出版商
  253. Kao F, Su S, Carlson G, Liao W. MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Struct Funct. 2015;220:419-34 pubmed 出版商
  254. Zhang F, Song G, Li X, Gu W, Shen Y, Chen M, et al. Transplantation of iPSc ameliorates neural remodeling and reduces ventricular arrhythmias in a post-infarcted swine model. J Cell Biochem. 2014;115:531-9 pubmed 出版商
  255. Dominguez L, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions. J Comp Neurol. 2014;522:1102-31 pubmed 出版商
  256. Taylor T, Potgieter D, Anwar S, Senior S, Janezic S, Threlfell S, et al. Region-specific deficits in dopamine, but not norepinephrine, signaling in a novel A30P α-synuclein BAC transgenic mouse. Neurobiol Dis. 2014;62:193-207 pubmed 出版商
  257. Nelson A, Kolasa K, McMahon L. Noradrenergic sympathetic sprouting and cholinergic reinnervation maintains non-amyloidogenic processing of A?PP. J Alzheimers Dis. 2014;38:867-79 pubmed 出版商
  258. Freeman K, Tao W, Sun H, Soonpaa M, Rubart M. In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging. J Neurosci Methods. 2014;221:48-61 pubmed 出版商
  259. García Pérez D, López Bellido R, Hidalgo J, Rodriguez R, Laorden M, Nunez C, et al. Morphine regulates Argonaute 2 and TH expression and activity but not miR-133b in midbrain dopaminergic neurons. Addict Biol. 2015;20:104-19 pubmed 出版商
  260. Bergami M, Vignoli B, Motori E, Pifferi S, Zuccaro E, Menini A, et al. TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb. J Neurosci. 2013;33:11464-78 pubmed 出版商
  261. Pang J, Paul D, Wu S. Survey on amacrine cells coupling to retrograde-identified ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci. 2013;54:5151-62 pubmed 出版商
  262. Pose Méndez S, Candal E, Adrio F, Rodriguez Moldes I. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol. 2014;522:131-68 pubmed 出版商
  263. Joven A, Morona R, González A, Moreno N. Spatiotemporal patterns of Pax3, Pax6, and Pax7 expression in the developing brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:3913-53 pubmed 出版商
  264. Gautron L, Rutkowski J, Burton M, Wei W, Wan Y, Elmquist J. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol. 2013;521:3741-67 pubmed 出版商
  265. Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol. 2013;521:3832-46 pubmed 出版商
  266. Lewis A, Vasudevan H, O Neill A, Soriano P, Bush J. The widely used Wnt1-Cre transgene causes developmental phenotypes by ectopic activation of Wnt signaling. Dev Biol. 2013;379:229-34 pubmed 出版商
  267. Kao C, Hsu Y, Liu J, Lee D, Chung Y, Chiu I. The mood stabilizer valproate activates human FGF1 gene promoter through inhibiting HDAC and GSK-3 activities. J Neurochem. 2013;126:4-18 pubmed 出版商
  268. Medrano M, Gerrikagoitia I, Martinez Millan L, Mendiguren A, Pineda J. Functional and morphological characterization of glutamate transporters in the rat locus coeruleus. Br J Pharmacol. 2013;169:1781-94 pubmed 出版商
  269. Bourque S, Kuny S, Reyes L, Davidge S, Sauve Y. Prenatal hypoxia is associated with long-term retinal dysfunction in rats. PLoS ONE. 2013;8:e61861 pubmed 出版商
  270. Löw K, Aebischer P, Schneider B. Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles. Hum Gene Ther. 2013;24:613-29 pubmed 出版商
  271. Motyl K, Bishop K, DeMambro V, Bornstein S, Le P, Kawai M, et al. Altered thermogenesis and impaired bone remodeling in Misty mice. J Bone Miner Res. 2013;28:1885-97 pubmed 出版商
  272. Wojtkiewicz J, Równiak M, Crayton R, Gonkowski S, Robak A, Zalecki M, et al. Axotomy-induced changes in the chemical coding pattern of colon projecting calbindin-positive neurons in the inferior mesenteric ganglia of the pig. J Mol Neurosci. 2013;51:99-108 pubmed 出版商
  273. Bäck S, Peranen J, Galli E, Pulkkila P, Lonka Nevalaita L, Tamminen T, et al. Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease. Brain Behav. 2013;3:75-88 pubmed 出版商
  274. Rodriguez Diaz R, Caicedo A. Novel approaches to studying the role of innervation in the biology of pancreatic islets. Endocrinol Metab Clin North Am. 2013;42:39-56 pubmed 出版商
  275. Ohtsuka N, Badurek S, Busslinger M, Benes F, Minichiello L, Rudolph U. GABAergic neurons regulate lateral ventricular development via transcription factor Pax5. Genesis. 2013;51:234-45 pubmed 出版商
  276. Nivison Smith L, Sun D, Fletcher E, Marc R, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol. 2013;521:2416-38 pubmed 出版商
  277. Peng X, Gao H, Wang Y, Yang B, Liu T, Sun Y, et al. Conversion of rat embryonic stem cells into neural precursors in chemical-defined medium. Biochem Biophys Res Commun. 2013;431:783-7 pubmed 出版商
  278. BEIER K, Borghuis B, El Danaf R, Huberman A, Demb J, Cepko C. Transsynaptic tracing with vesicular stomatitis virus reveals novel retinal circuitry. J Neurosci. 2013;33:35-51 pubmed 出版商
  279. Lonskaya I, Hebron M, Algarzae N, Desforges N, Moussa C. Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson's disease. Neuroscience. 2013;232:90-105 pubmed 出版商
  280. Kishida S, Mu P, Miyakawa S, Fujiwara M, Abe T, Sakamoto K, et al. Midkine promotes neuroblastoma through Notch2 signaling. Cancer Res. 2013;73:1318-27 pubmed 出版商
  281. Joven A, Morona R, González A, Moreno N. Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol. 2013;521:2088-124 pubmed 出版商
  282. Hellwig S, Hack I, Zucker B, Brunne B, Junghans D. Reelin together with ApoER2 regulates interneuron migration in the olfactory bulb. PLoS ONE. 2012;7:e50646 pubmed 出版商
  283. Robison G, Zakharova T, Fu S, Jiang W, Fulper R, BARREA R, et al. X-ray fluorescence imaging: a new tool for studying manganese neurotoxicity. PLoS ONE. 2012;7:e48899 pubmed 出版商
  284. Trabalza A, Georgiadis C, Eleftheriadou I, Hislop J, Ellison S, Karavassilis M, et al. Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther. 2013;20:723-32 pubmed 出版商
  285. Liu J, Githinji J, McLaughlin B, Wilczek K, Nolta J. Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem Cell Rev. 2012;8:1129-37 pubmed 出版商
  286. Dominguez L, Morona R, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. J Comp Neurol. 2013;521:725-59 pubmed 出版商
  287. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  288. Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol. 2013;521:79-108 pubmed 出版商
  289. Stephenson Jones M, Ericsson J, Robertson B, Grillner S. Evolution of the basal ganglia: dual-output pathways conserved throughout vertebrate phylogeny. J Comp Neurol. 2012;520:2957-73 pubmed 出版商
  290. Lindsey B, Darabie A, Tropepe V. The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain. J Comp Neurol. 2012;520:2275-316 pubmed 出版商
  291. Sevigny C, Bassi J, Williams D, Anderson C, Thomas W, Allen A. Efferent projections of C3 adrenergic neurons in the rat central nervous system. J Comp Neurol. 2012;520:2352-68 pubmed 出版商
  292. Jost K, Rottach A, Milden M, Bertulat B, Becker A, Wolf P, et al. Generation and characterization of rat and mouse monoclonal antibodies specific for MeCP2 and their use in X-inactivation studies. PLoS ONE. 2011;6:e26499 pubmed 出版商
  293. Espana A, Clotman F. Onecut transcription factors are required for the second phase of development of the A13 dopaminergic nucleus in the mouse. J Comp Neurol. 2012;520:1424-41 pubmed 出版商
  294. Laux A, Delalande F, Mouheiche J, Stuber D, Van Dorsselaer A, Bianchi E, et al. Localization of endogenous morphine-like compounds in the mouse spinal cord. J Comp Neurol. 2012;520:1547-61 pubmed 出版商
  295. Puthussery T, Gayet Primo J, Taylor W, Haverkamp S. Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. J Comp Neurol. 2011;519:3640-56 pubmed 出版商
  296. Sapsford T, Kokay I, Ostberg L, Bridges R, Grattan D. Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol. 2012;520:1062-77 pubmed 出版商
  297. Moreno N, Dominguez L, Morona R, González A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol. 2012;520:453-78 pubmed 出版商
  298. Blanco E, Bilbao A, Luque Rojas M, Palomino A, Bermudez Silva F, Suarez J, et al. Attenuation of cocaine-induced conditioned locomotion is associated with altered expression of hippocampal glutamate receptors in mice lacking LPA1 receptors. Psychopharmacology (Berl). 2012;220:27-42 pubmed 出版商
  299. Jaerve A, Schiwy N, Schmitz C, Mueller H. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury. Exp Neurol. 2011;231:284-94 pubmed 出版商
  300. Bupesh M, Abellan A, Medina L. Genetic and experimental evidence supports the continuum of the central extended amygdala and a mutiple embryonic origin of its principal neurons. J Comp Neurol. 2011;519:3507-31 pubmed 出版商
  301. Hayes L, Zhang Z, Albert P, Zervas M, Ahn S. Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J Comp Neurol. 2011;519:3001-18 pubmed 出版商
  302. Goemaere J, Knoops B. Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. J Comp Neurol. 2012;520:258-80 pubmed 出版商
  303. Rohn T, Catlin L. Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson's disease brain. PLoS ONE. 2011;6:e20495 pubmed 出版商
  304. Noorian A, Taylor G, Annerino D, Greene J. Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J Comp Neurol. 2011;519:3387-401 pubmed 出版商
  305. Laux A, Muller A, Miehe M, Dirrig Grosch S, Deloulme J, Delalande F, et al. Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells. J Comp Neurol. 2011;519:2390-416 pubmed 出版商
  306. Liu X, Zeng J, Zhou A, Theodorsson E, Fahrenkrug J, Reinscheid R. Molecular fingerprint of neuropeptide S-producing neurons in the mouse brain. J Comp Neurol. 2011;519:1847-66 pubmed 出版商
  307. Bøttger P, Tracz Z, Heuck A, Nissen P, Romero Ramos M, Lykke Hartmann K. Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain. J Comp Neurol. 2011;519:376-404 pubmed 出版商
  308. Gayoso J, Castro A, Anadón R, Manso M. Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J Comp Neurol. 2011;519:247-76 pubmed 出版商
  309. Uyttebroek L, Shepherd I, Harrisson F, Hubens G, Blust R, Timmermans J, et al. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol. 2010;518:4419-38 pubmed 出版商
  310. Bullmann T, Hartig W, Holzer M, Arendt T. Expression of the embryonal isoform (0N/3R) of the microtubule-associated protein tau in the adult rat central nervous system. J Comp Neurol. 2010;518:2538-53 pubmed 出版商
  311. Phillips M, Otteson D, Sherry D. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-89 pubmed 出版商
  312. Lepousez G, Csaba Z, Bernard V, Loudes C, Videau C, Lacombe J, et al. Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. J Comp Neurol. 2010;518:1976-94 pubmed 出版商
  313. Ampatzis K, Dermon C. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol. 2010;518:1418-41 pubmed 出版商
  314. Geerling J, Shin J, Chimenti P, Loewy A. Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol. 2010;518:1460-99 pubmed 出版商
  315. Kotani T, Murata Y, Ohnishi H, Mori M, Kusakari S, Saito Y, et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb. J Comp Neurol. 2010;518:119-36 pubmed 出版商
  316. Gautron L, Lee C, Funahashi H, Friedman J, Lee S, Elmquist J. Melanocortin-4 receptor expression in a vago-vagal circuitry involved in postprandial functions. J Comp Neurol. 2010;518:6-24 pubmed 出版商
  317. Bérubé Carrière N, Riad M, Dal Bo G, Levesque D, Trudeau L, Descarries L. The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. J Comp Neurol. 2009;517:873-91 pubmed 出版商
  318. Madhavan L, Daley B, Paumier K, Collier T. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson's disease. J Comp Neurol. 2009;515:102-15 pubmed 出版商
  319. Jhou T, Geisler S, Marinelli M, Degarmo B, Zahm D. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol. 2009;513:566-96 pubmed 出版商
  320. Nakano M, Goris R, Atobe Y, Kadota T, Funakoshi K. Mediolateral and rostrocaudal topographic organization of the sympathetic preganglionic cell pool in the spinal cord of Xenopus laevis. J Comp Neurol. 2009;513:292-314 pubmed 出版商
  321. Carrera I, Molist P, Anadón R, Rodriguez Moldes I. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula. J Comp Neurol. 2008;511:804-31 pubmed 出版商
  322. Chung E, Chen L, Chan Y, Yung K. Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol. 2008;511:421-37 pubmed 出版商
  323. Yang Z, You Y, Levison S. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol. 2008;511:19-33 pubmed 出版商
  324. Luuk H, Koks S, Plaas M, Hannibal J, Rehfeld J, Vasar E. Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome. J Comp Neurol. 2008;509:642-60 pubmed 出版商
  325. Ampatzis K, Kentouri M, Dermon C. Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain. J Comp Neurol. 2008;508:72-93 pubmed 出版商
  326. Schroeder F, Penta K, Matevossian A, Jones S, Konradi C, Tapper A, et al. Drug-induced activation of dopamine D(1) receptor signaling and inhibition of class I/II histone deacetylase induce chromatin remodeling in reward circuitry and modulate cocaine-related behaviors. Neuropsychopharmacology. 2008;33:2981-92 pubmed 出版商
  327. Tagliaferro P, Morales M. Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J Comp Neurol. 2008;506:616-26 pubmed
  328. Nickerson Poulin A, Guerci A, El Mestikawy S, Semba K. Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. J Comp Neurol. 2006;498:690-711 pubmed
  329. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed