这是一篇来自已证抗体库的有关大鼠 TH的综述,是根据81篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TH 抗体。
TH 同义词: The

艾博抗(上海)贸易有限公司
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s7b
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s7b). Front Endocrinol (Lausanne) (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 7d
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 7d). Neurobiol Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1e
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1e). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s1
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化在小鼠样本上 (图 s1). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab6211)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1b). CNS Neurosci Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:750; 图 3b
艾博抗(上海)贸易有限公司 TH抗体(abcam, ab112)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 3b). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2b). Histochem Cell Biol (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4d
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 7a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 5d
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化在大鼠样本上 (图 5d). JCI Insight (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6??s2a
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6??s2a). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化在小鼠样本上 (图 3). Biomed Res Int (2020) ncbi
domestic rabbit 单克隆(EP1533Y)
  • 免疫印迹; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab75875)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 2a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 0.3 ug/ml; 图 4b
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为0.3 ug/ml (图 4b). elife (2020) ncbi
domestic rabbit 单克隆(EP1533Y)
  • 免疫组化; pigs ; 1:200; 图 4f
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab75875)被用于被用于免疫组化在pigs 样本上浓度为1:200 (图 4f). BMC Cardiovasc Disord (2019) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3a). Brain Behav (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s5
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EP1532Y)
  • 免疫印迹; 小鼠; 1:5000; 图 5a
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab137869)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5a). Am J Physiol Endocrinol Metab (2019) ncbi
鸡 多克隆
艾博抗(上海)贸易有限公司 TH抗体(Abcam, AB76442)被用于. J Comp Neurol (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7b). Hum Mol Genet (2017) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 TH抗体(Abcam, AB76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab112)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Diabetes (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Histochem Cell Biol (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 TH抗体(abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:400; 图 1
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400 (图 1). J Neurochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5C-1
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab6211)被用于被用于免疫细胞化学在小鼠样本上 (图 s5C-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EP1532Y)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab137869)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s16
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s16). Nat Commun (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 TH抗体(Abcam, ab76442)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Neuropharmacology (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 TH抗体(Santa Cruz, sc-25269)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Redox Biol (2021) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 大鼠; 1:1000; 图 3a
圣克鲁斯生物技术 TH抗体(Santa Cruz, sc25269)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3a). elife (2020) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠
圣克鲁斯生物技术 TH抗体(Santa Cruz Biotechnology, sc-25269)被用于被用于免疫组化在小鼠样本上. Brain Pathol (2020) ncbi
小鼠 单克隆(F-11)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 2a, 8b
圣克鲁斯生物技术 TH抗体(Santa Cruz, sc-25269)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 2a, 8b). Theranostics (2020) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 TH抗体(Santa Cruz, sc-25269)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Physiol (2019) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 TH抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 TH抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆(F-11)
  • 免疫组化-石蜡切片; 人类; 1:10,000; 图 s9d
圣克鲁斯生物技术 TH抗体(Santa Cruz, sc-25269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (图 s9d). Nat Genet (2017) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 TH抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 TH抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆(A-6)
  • 免疫组化-冰冻切片; 人类; 图 2
圣克鲁斯生物技术 TH抗体(Santa Cruz, sc-374048)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫细胞化学; 人类; 1:500; 图 7
圣克鲁斯生物技术 TH抗体(Santa Cruz Biotechnology, sc-25269)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 TH抗体(Santa Cruz, SC25269)被用于被用于免疫印迹在小鼠样本上 (图 1). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(TOH A1.1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5a
  • 免疫印迹; 大鼠; 1:2000; 图 5c
圣克鲁斯生物技术 TH抗体(Santa Cruz Biotechnology, sc-47708)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5c). Neural Regen Res (2012) ncbi
赛默飞世尔
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 TH抗体(ThermoFisher, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Neurobiol Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
赛默飞世尔 TH抗体(生活技术, P21962)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Neurobiol (2017) ncbi
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2
赛默飞世尔 TH抗体(Thermo Scientific, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 4
赛默飞世尔 TH抗体(生活技术, 36-9900)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 4). Horm Behav (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:25,000; 图 7
赛默飞世尔 TH抗体(Zymed Laboratories, 36-8600)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:25,000 (图 7). J Neuroendocrinol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 TH抗体(Thermo Fisher Scientific, PA1-18315)被用于. PLoS ONE (2015) ncbi
家羊 多克隆
赛默飞世尔 TH抗体(Fisher Emergo BV, PA-14679)被用于. Int J Cardiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 TH抗体(Affinity BioReagents, OPA1-04050)被用于. J Neurochem (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2b
Novus Biologicals TH抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2b). Int J Mol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3
Novus Biologicals TH抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2018) ncbi
家羊 多克隆(6H12)
  • 免疫组化; 小鼠; 1:2000; 图 6b
Novus Biologicals TH抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6b). Science (2017) ncbi
家羊 多克隆(6H12)
  • 免疫组化; 人类; 图 5
  • 免疫组化; 小鼠; 图 5
Novus Biologicals TH抗体(Novus, NB300-110)被用于被用于免疫组化在人类样本上 (图 5) 和 被用于免疫组化在小鼠样本上 (图 5). Cell (2016) ncbi
家羊 多克隆(6H12)
  • 免疫组化; 大鼠; 1:2000; 图 1a
Novus Biologicals TH抗体(Novus Biologicals, NB 300-110)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500-1:1000; 图 1a
Novus Biologicals TH抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500-1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
家羊 多克隆(6H12)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
Novus Biologicals TH抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
Synaptic Systems
豚鼠 多克隆
  • 免疫组化; 小鼠; 图 5a
Synaptic Systems TH抗体(Synaptic Systems, 213104)被用于被用于免疫组化在小鼠样本上 (图 5a). Cell (2018) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
Synaptic Systems TH抗体(SySy, 213104)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3b
Synaptic Systems TH抗体(Synaptic Systems, 213004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3b). Int J Neuropsychopharmacol (2017) ncbi
BioLegend
小鼠 单克隆(2/40/15)
  • 免疫组化; 小鼠; 图 st1
BioLegend TH抗体(BioLegend, 818001)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 TH抗体(Cell Signaling, 2792)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Front Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 TH抗体(Cell Signaling, 2792)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Differ (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 1:4000; 图 2a, 2b
西格玛奥德里奇 TH抗体(Sigma-Aldrich, T1299)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2a, 2b). Aging Cell (2019) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2d
西格玛奥德里奇 TH抗体(Sigma-Aldrich, TH-2)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2d). Peerj (2018) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 1:4000; 图 1
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 图 1b
西格玛奥德里奇 TH抗体(Sigma-Aldrich, T1299)被用于被用于免疫组化在大鼠样本上 (图 1b). Brain Res (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 4
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 4). Reprod Biol Endocrinol (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫印迹; 人类; 1:500; 图 3d
西格玛奥德里奇 TH抗体(Sigma-Aldrich, TH-2)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 TH抗体(Sigma-Aldrich, T1299)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Autophagy (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 s6
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 s6). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1a
西格玛奥德里奇 TH抗体(Sigma, T8700)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Ann Neurol (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-自由浮动切片; 大鼠; 1:70,000; 图 8
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:70,000 (图 8). J Neuroendocrinol (2016) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 大鼠; 图 2
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). J Neurosci (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 人类; 1:200; 图 3
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Cell J (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Neuroscience (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 大鼠; 1:5000
  • 免疫印迹; 大鼠; 1:10000; 图 8
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 和 被用于免疫印迹在大鼠样本上浓度为1:10000 (图 8). Transl Res (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 1:4000; 图 3
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 3). Nat Neurosci (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-石蜡切片; 人类; 1:2000
西格玛奥德里奇 TH抗体(Sigma-Aldrich, T 1299)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(TH-2)
  • 免疫细胞化学; 大鼠; 1:2500
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2500. Neurobiol Dis (2014) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化-冰冻切片; 大鼠
西格玛奥德里奇 TH抗体(Sigma, T1299)被用于被用于免疫组化-冰冻切片在大鼠样本上. Transl Res (2014) ncbi
小鼠 单克隆(TH-2)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 TH抗体(Sigma, 1299)被用于被用于免疫组化在大鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
文章列表
  1. Zhang C, Zhao M, Wang B, Su Z, Guo B, Qin L, et al. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson's disease. Redox Biol. 2021;47:102134 pubmed 出版商
  2. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed 出版商
  3. Albanese F, Mercatelli D, Finetti L, Lamonaca G, Pizzi S, Shimshek D, et al. Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo. Neurobiol Dis. 2021;159:105487 pubmed 出版商
  4. Zuo Y, Xie J, Li X, Li Y, Thirupathi A, Zhang J, et al. Ferritinophagy-Mediated Ferroptosis Involved in Paraquat-Induced Neurotoxicity of Dopaminergic Neurons: Implication for Neurotoxicity in PD. Oxid Med Cell Longev. 2021;2021:9961628 pubmed 出版商
  5. Freitas A, Aroso M, Barros A, Fernández M, Conde Sousa E, Leite M, et al. Characterization of the Striatal Extracellular Matrix in a Mouse Model of Parkinson's Disease. Antioxidants (Basel). 2021;10: pubmed 出版商
  6. Lyu Y, Huang Y, Shi G, Lei X, Li K, Zhou R, et al. Transcriptome profiling of five brain regions in a 6-hydroxydopamine rat model of Parkinson's disease. CNS Neurosci Ther. 2021;27:1289-1299 pubmed 出版商
  7. Ye S, Yang N, Lu T, Wu T, Wang L, Pan Y, et al. Adamts18 modulates the development of the aortic arch and common carotid artery. iScience. 2021;24:102672 pubmed 出版商
  8. Kimura E, Kohda M, Maekawa F, Fujii Kuriyama Y, Tohyama C. Neurons expressing the aryl hydrocarbon receptor in the locus coeruleus and island of Calleja major are novel targets of dioxin in the mouse brain. Histochem Cell Biol. 2021;156:147-163 pubmed 出版商
  9. Scherschel K, Bräuninger H, Mölders A, Erlenhardt N, Amin E, Jungen C, et al. Characterization of the HCN Interaction Partner TRIP8b/PEX5R in the Intracardiac Nervous System of TRIP8b-Deficient and Wild-Type Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  10. Wang L, Yang Y, Chen L, He Z, Bi D, Zhang L, et al. Compound Dihuang Granule Inhibits Nigrostriatal Pathway Apoptosis in Parkinson's Disease by Suppressing the JNK/AP-1 Pathway. Front Pharmacol. 2021;12:621359 pubmed 出版商
  11. Baker L, Tar M, Kramer A, Villegas G, Charafeddine R, Vafaeva O, et al. Fidgetin-like 2 negatively regulates axonal growth and can be targeted to promote functional nerve regeneration. JCI Insight. 2021;6: pubmed 出版商
  12. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  13. Jung D, Ahn S, Pak M, Lee H, Jung Y, Kim K, et al. Therapeutic effects of anodal transcranial direct current stimulation in a rat model of ADHD. elife. 2020;9: pubmed 出版商
  14. Niu H, Wang Q, Zhao W, Liu J, Wang D, Muhammad B, et al. IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-Synuclein pathology in the olfactory bulb, substantia nigra and striatum. Brain Pathol. 2020;30:1102-1118 pubmed 出版商
  15. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  16. Cao S, Li J, Yuan J, Zhang D, Yu T. Fast Localization and Sectioning of Mouse Locus Coeruleus. Biomed Res Int. 2020;2020:4860735 pubmed 出版商
  17. Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z, et al. Src Inhibition Attenuates Neuroinflammation and Protects Dopaminergic Neurons in Parkinson's Disease Models. Front Neurosci. 2020;14:45 pubmed 出版商
  18. Chen X, Lan T, Wang Y, He Y, Wu Z, Tian Y, et al. Entorhinal cortex-based metabolic profiling of chronic restraint stress mice model of depression. Aging (Albany NY). 2020;12:3042-3052 pubmed 出版商
  19. Wang X, Ma M, Zhou L, Jiang X, Hao M, Teng R, et al. Autonomic ganglionic injection of α-synuclein fibrils as a model of pure autonomic failure α-synucleinopathy. Nat Commun. 2020;11:934 pubmed 出版商
  20. Xie K, Wang N, Lin X, Wang Z, Zhao X, Fang P, et al. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. elife. 2020;9: pubmed 出版商
  21. Ham S, Kim H, Yoon J, Kim H, Song B, Choi J, et al. Therapeutic Evaluation of Synthetic Peucedanocoumarin III in an Animal Model of Parkinson's Disease. Int J Mol Sci. 2019;20: pubmed 出版商
  22. Hurr C, Simonyan H, Morgan D, Rahmouni K, Young C. Liver sympathetic denervation reverses obesity-induced hepatic steatosis. J Physiol. 2019;597:4565-4580 pubmed 出版商
  23. Su E, Zhao L, Gao C, Zhao W, Wang X, Qi D, et al. Acute changes in morphology and renal vascular relaxation function after renal denervation using temperature-controlled radiofrequency catheter. BMC Cardiovasc Disord. 2019;19:67 pubmed 出版商
  24. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed 出版商
  25. Lisieski M, Karavidha K, Gheidi A, Garibyan R, Conti A, Morrow J, et al. Divergent effects of repeated cocaine and novel environment exposure on locus coeruleus c-fos expression and brain catecholamine concentrations in rats. Brain Behav. 2019;9:e01222 pubmed 出版商
  26. Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, et al. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun. 2019;10:633 pubmed 出版商
  27. Fischer A, Schlein C, Cannon B, Heeren J, Nedergaard J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am J Physiol Endocrinol Metab. 2019;316:E487-E503 pubmed 出版商
  28. Tarasova T, Lytkina O, Goloborshcheva V, Skuratovskaya L, Antohin A, Ovchinnikov R, et al. Genetic inactivation of alpha-synuclein affects embryonic development of dopaminergic neurons of the substantia nigra, but not the ventral tegmental area, in mouse brain. Peerj. 2018;6:e4779 pubmed 出版商
  29. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser P. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell. 2018;172:706-718.e15 pubmed 出版商
  30. Xiong Y, Neifert S, Karuppagounder S, Liu Q, Stankowski J, Lee B, et al. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A. 2018;115:1635-1640 pubmed 出版商
  31. Johnson E, Westbrook T, Shayesteh R, Chen E, Schumacher J, Fitzpatrick D, et al. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. J Comp Neurol. 2019;527:328-344 pubmed 出版商
  32. Zhang Z, Chu S, Wang S, Jiang Y, Gao Y, Yang P, et al. RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol. 2018;175:590-605 pubmed 出版商
  33. González Cabrera C, Meza R, Ulloa L, Merino Sepúlveda P, Luco V, Sanhueza A, et al. Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons. J Comp Neurol. 2017;525:3529-3542 pubmed 出版商
  34. Furlan A, Dyachuk V, Kastriti M, Calvo Enrique L, Abdo H, Hadjab S, et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357: pubmed 出版商
  35. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  36. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  37. Escobar A, González M, Meza R, Noches V, Henny P, Gysling K, et al. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats. Int J Neuropsychopharmacol. 2017;20:660-669 pubmed 出版商
  38. Parker L, Le S, Wearne T, Hardwick K, Kumar N, Robinson K, et al. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?. J Comp Neurol. 2017;525:2249-2264 pubmed 出版商
  39. Song L, McMackin M, Nguyen A, Cortopassi G. Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism. Neurobiol Dis. 2017;100:30-38 pubmed 出版商
  40. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell. 2016;167:566-580.e19 pubmed 出版商
  41. Arredondo C, Gonzalez M, Andrés M, Gysling K. Opposite effects of acute and chronic amphetamine on Nurr1 and NF-?B p65 in the rat ventral tegmental area. Brain Res. 2016;1652:14-20 pubmed 出版商
  42. Peris J, Macfadyen K, Smith J, de Kloet A, Wang L, Krause E. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol. 2017;525:1094-1108 pubmed 出版商
  43. Fukada M, Nakayama A, Mamiya T, Yao T, Kawaguchi Y. Dopaminergic abnormalities in Hdac6-deficient mice. Neuropharmacology. 2016;110:470-479 pubmed 出版商
  44. Dewanto A, Dudas J, Glueckert R, Mechsner S, Schrott Fischer A, Wildt L, et al. Localization of TrkB and p75 receptors in peritoneal and deep infiltrating endometriosis: an immunohistochemical study. Reprod Biol Endocrinol. 2016;14:43 pubmed 出版商
  45. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  46. Mazzulli J, Zunke F, Tsunemi T, Toker N, Jeon S, Burbulla L, et al. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci. 2016;36:7693-706 pubmed 出版商
  47. Nandi S, Zheng H, Sharma N, Shahshahan H, Patel K, Mishra P. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes. 2016;65:3075-90 pubmed 出版商
  48. Stojakovic A, Paz Filho G, Arcos Burgos M, Licinio J, Wong M, Mastronardi C. Role of the IL-1 Pathway in Dopaminergic Neurodegeneration and Decreased Voluntary Movement. Mol Neurobiol. 2017;54:4486-4495 pubmed 出版商
  49. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  50. Hughes S, Rodgers J, Hickey D, Foster R, Peirson S, Hankins M. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep. 2016;6:28086 pubmed 出版商
  51. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  52. Wei Z, Yuan Y, Jaouen F, Ma M, Hao C, Zhang Z, et al. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation. Autophagy. 2016;12:1168-79 pubmed 出版商
  53. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  54. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed 出版商
  55. Van Audenhove I, Denert M, Boucherie C, Pieters L, Cornelissen M, Gettemans J. Fascin Rigidity and L-plastin Flexibility Cooperate in Cancer Cell Invadopodia and Filopodia. J Biol Chem. 2016;291:9148-60 pubmed 出版商
  56. Rodionova K, Fiedler C, Guenther F, Grouzmann E, Neuhuber W, Fischer M, et al. Complex reinnervation pattern after unilateral renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2016;310:R806-18 pubmed 出版商
  57. Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. elife. 2016;5: pubmed 出版商
  58. van der Keylen P, Garreis F, Steigleder R, Sommer D, Neuhuber W, Wörl J. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus. Histochem Cell Biol. 2016;145:573-85 pubmed 出版商
  59. Naudé J, Tolu S, Dongelmans M, Torquet N, Valverde S, Rodriguez G, et al. Nicotinic receptors in the ventral tegmental area promote uncertainty-seeking. Nat Neurosci. 2016;19:471-8 pubmed 出版商
  60. Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease. Nat Commun. 2016;7:10332 pubmed 出版商
  61. Grafe L, Flanagan Cato L. Differential effects of mineralocorticoid and angiotensin II on incentive and mesolimbic activity. Horm Behav. 2016;79:28-36 pubmed 出版商
  62. Grünewald A, Rygiel K, Hepplewhite P, Morris C, Picard M, Turnbull D. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons. Ann Neurol. 2016;79:366-78 pubmed 出版商
  63. Aquino N, Araujo Lopes R, Batista I, Henriques P, Poletini M, Franci C, et al. Hypothalamic Effects of Tamoxifen on Oestrogen Regulation of Luteinising Hormone and Prolactin Secretion in Female Rats. J Neuroendocrinol. 2016;28: pubmed 出版商
  64. Hajj R, Milet A, Toulorge D, Cholet N, Laffaire J, Foucquier J, et al. Combination of acamprosate and baclofen as a promising therapeutic approach for Parkinson's disease. Sci Rep. 2015;5:16084 pubmed 出版商
  65. Winiecka Klimek M, Smolarz M, Walczak M, Zieba J, Hulas Bigoszewska K, Kmieciak B, et al. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS ONE. 2015;10:e0141688 pubmed 出版商
  66. Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, et al. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542-52 pubmed 出版商
  67. Tuon T, Souza P, Santos M, Pereira F, Pedroso G, Luciano T, et al. Physical Training Regulates Mitochondrial Parameters and Neuroinflammatory Mechanisms in an Experimental Model of Parkinson's Disease. Oxid Med Cell Longev. 2015;2015:261809 pubmed 出版商
  68. Ehrich J, Messinger D, Knakal C, Kuhar J, Schattauer S, Bruchas M, et al. Kappa Opioid Receptor-Induced Aversion Requires p38 MAPK Activation in VTA Dopamine Neurons. J Neurosci. 2015;35:12917-31 pubmed 出版商
  69. De Luca R, Suvorava T, Yang D, Baumgärtel W, Kojda G, Haas H, et al. Identification of histaminergic neurons through histamine 3 receptor-mediated autoinhibition. Neuropharmacology. 2016;106:102-15 pubmed 出版商
  70. Wang X, Guo R, Zhao W. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats. PLoS ONE. 2015;10:e0130822 pubmed 出版商
  71. Karbalaie K, Tanhaei S, Rabiei F, Kiani Esfahani A, Masoudi N, Nasr Esfahani M, et al. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. Cell J. 2015;17:37-48 pubmed
  72. Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne R. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience. 2015;295:23-38 pubmed 出版商
  73. Zhang X, Li Y, Liu C, Fan R, Wang P, Zheng L, et al. Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson's disease rats. Transl Res. 2015;166:152-62 pubmed 出版商
  74. Calkoen E, Vicente Steijn R, Hahurij N, van Munsteren C, Roest A, DeRuiter M, et al. Abnormal sinoatrial node development resulting from disturbed vascular endothelial growth factor signaling. Int J Cardiol. 2015;183:249-57 pubmed 出版商
  75. Koo J, Mazei Robison M, LaPlant Q, Egervári G, Braunscheidel K, Adank D, et al. Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci. 2015;18:415-22 pubmed 出版商
  76. Depboylu C, Rösler T, de Andrade A, Oertel W, Höglinger G. Systemically administered neuregulin-1β1 rescues nigral dopaminergic neurons via the ErbB4 receptor tyrosine kinase in MPTP mouse models of Parkinson's disease. J Neurochem. 2015;133:590-7 pubmed 出版商
  77. Pechriggl E, Bitsche M, Glueckert R, Rask Andersen H, Blumer M, Schrott Fischer A, et al. Development of the innervation of the human inner ear. Dev Neurobiol. 2015;75:683-702 pubmed 出版商
  78. Huang Y, Chang C, Zhang J, Gao X. Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum. Neural Regen Res. 2012;7:2653-62 pubmed 出版商
  79. Büchele F, Döbrössy M, Hackl C, Jiang W, Papazoglou A, Nikkhah G. Two-step grafting significantly enhances the survival of foetal dopaminergic transplants and induces graft-derived vascularisation in a 6-OHDA model of Parkinson's disease. Neurobiol Dis. 2014;68:112-25 pubmed 出版商
  80. Song J, Zheng L, Zhang X, Feng X, Fan R, Sun L, et al. Upregulation of ?1-adrenoceptors is involved in the formation of gastric dysmotility in the 6-hydroxydopamine rat model of Parkinson's disease. Transl Res. 2014;164:22-31 pubmed 出版商
  81. Bérubé Carrière N, Riad M, Dal Bo G, Levesque D, Trudeau L, Descarries L. The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain. J Comp Neurol. 2009;517:873-91 pubmed 出版商