这是一篇来自已证抗体库的有关大鼠 Thy1的综述,是根据132篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Thy1 抗体。
Thy1 同义词: CD7

赛默飞世尔
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 s1l
赛默飞世尔 Thy1抗体(eBioscience, 48-0900-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1l). Cell Rep (2022) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Thy1抗体(ThermoFisher, 47-0900)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Thy1抗体(eBiosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2d). BMC Res Notes (2021) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBiosciences, OX-7)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2021) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 1:1000; 图 s6-1
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s6-1). elife (2020) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, 17-0900-82)被用于被用于流式细胞仪在小鼠样本上. Cell (2020) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Thy1抗体(eBioscience, His51)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Sci Immunol (2020) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 ex1d
赛默飞世尔 Thy1抗体(eBioscience, 11-0900-85)被用于被用于流式细胞仪在小鼠样本上 (图 ex1d). Nature (2019) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2019) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔 Thy1抗体(eBiosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 4h). Nat Commun (2018) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Thy1抗体(eBioscience, H1S51)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
赛默飞世尔 Thy1抗体(Affymetrix/eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). J Clin Invest (2018) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Thy1抗体(eBiosciences, OX7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2018) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Oncoimmunology (2018) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). PLoS Pathog (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Thy1抗体(eBioscience, 17-0900-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nature (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Thy1抗体(Thermo Fisher Scientific, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Thy1抗体(eBiosciences, HLS51)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 图 1a
赛默飞世尔 Thy1抗体(eBioscience, 12-0900-81)被用于被用于流式细胞仪在大鼠样本上 (图 1a). Int J Mol Med (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Thy1抗体(eBiosciences, HI551)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cancer Res (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Clin Invest (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(His51)
  • 免疫组化-冰冻切片; 小鼠; 图 8c
赛默飞世尔 Thy1抗体(eBiosciences, HIS51)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8c). J Exp Med (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; domestic rabbit; 图 s1
赛默飞世尔 Thy1抗体(Thermo, MA1-80648)被用于被用于流式细胞仪在domestic rabbit样本上 (图 s1). J Biomed Mater Res B Appl Biomater (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 图 2
赛默飞世尔 Thy1抗体(eBioscience, 12-0900-81)被用于被用于流式细胞仪在大鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Thy1抗体(eBiosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Science (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 4, 5
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 图 2
赛默飞世尔 Thy1抗体(eBioscience, 11-0900)被用于被用于流式细胞仪在大鼠样本上 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Thy1抗体(eBiosciences, HIs51)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Immunol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Thy1抗体(ebioscience, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Immunity (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(OX-7)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Thy1抗体(Thermo Fisher Scientific Inc., MA1-21469)被用于被用于免疫细胞化学在小鼠样本上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 图 s1
赛默飞世尔 Thy1抗体(eBioscience, 11?C0900)被用于被用于流式细胞仪在大鼠样本上 (图 s1). Cell Tissue Res (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nat Commun (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 1:1000; 图 3
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. Biomed Res Int (2013) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, His-51)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Thy1抗体(eBioscience, H1S51)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2010) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2010) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, 13-0900)被用于被用于流式细胞仪在小鼠样本上. Nat Protoc (2009) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2008) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔 Thy1抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2006) ncbi
小鼠 单克隆(OX-7)
  • 免疫组化-冰冻切片; 大鼠; 图 5
赛默飞世尔 Thy1抗体(noco, OX7)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5). J Histochem Cytochem (1991) ncbi
BioLegend
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:200; 图 s6c
BioLegend Thy1抗体(Biolegend, 202503)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6c). J Immunother Cancer (2022) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:300
BioLegend Thy1抗体(Biolegend, 202533)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. Nat Commun (2021) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:100; 图 s21
BioLegend Thy1抗体(BioLegend, 202526)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s21). elife (2021) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:1000
BioLegend Thy1抗体(BioLegend, 202520)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Nature (2021) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Thy1抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Immunol (2020) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:200; 图 s6a
BioLegend Thy1抗体(Biolegend, 202537)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6a). Nat Commun (2020) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:100; 图 4c, 4d
BioLegend Thy1抗体(Biolegend, 202501)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4c, 4d). Nat Commun (2020) ncbi
小鼠 单克隆(OX-7)
  • mass cytometry; 小鼠; 1:200; 图 3, s2
BioLegend Thy1抗体(Biolegend, 202524)被用于被用于mass cytometry在小鼠样本上浓度为1:200 (图 3, s2). Science (2019) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2019) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 ex4a
BioLegend Thy1抗体(Biolegend, 202539)被用于被用于流式细胞仪在小鼠样本上 (图 ex4a). Nature (2019) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Thy1抗体(Biolegend, 202508)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Cell Rep (2019) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 9b
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 9b). J Immunol (2018) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 1f
BioLegend Thy1抗体(BioLegend, OX7)被用于被用于流式细胞仪在大鼠样本上 (图 1f). Eur J Immunol (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegend Thy1抗体(BioLegend, 202508)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:200; 表 s2
BioLegend Thy1抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 s2). Nat Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Thy1抗体(BioLegend, 202533)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Thy1抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). elife (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend Thy1抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Mucosal Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3h
BioLegend Thy1抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Immunol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
小鼠 单克隆(KW322)
  • 流式细胞仪; 大鼠; 图 1
BioLegend Thy1抗体(BioLegend, 205903)被用于被用于流式细胞仪在大鼠样本上 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠
BioLegend Thy1抗体(Biolegend, 202506)被用于被用于流式细胞仪在大鼠样本上. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Thy1抗体(Biolegend, 202520)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegend Thy1抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegend Thy1抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(7E1B11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab181469)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a). Bone Joint Res (2022) ncbi
小鼠 单克隆(7E1B11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab181469)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(7E1B11)
  • 免疫组化; 人类; 图 1g
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, Ab181469)被用于被用于免疫组化在人类样本上 (图 1g). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(MRC OX-7)
  • 流式细胞仪; 国内马; 1:100; 图 1c
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, MRC OX-7)被用于被用于流式细胞仪在国内马样本上浓度为1:100 (图 1c). Animals (Basel) (2020) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab225)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫细胞化学; 大鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab92574)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3d). J Inflamm (Lond) (2020) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫印迹; 人类; 1:1000; 图 5e
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab92574)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Biosci Rep (2019) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫组化; domestic rabbit; 图 4
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab225)被用于被用于免疫组化在domestic rabbit样本上 (图 4). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫组化-石蜡切片; 人类; 图 s4
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab92574)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s4). J Clin Invest (2017) ncbi
小鼠 单克隆(MRC OX-7)
  • 流式细胞仪; 马; 图 1
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab225)被用于被用于流式细胞仪在马样本上 (图 1). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫组化-石蜡切片; 人类; 图 2b
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, EPR3132)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab92574)被用于被用于免疫印迹在人类样本上 (图 4). World J Surg Oncol (2016) ncbi
小鼠 单克隆(MRC OX-7)
  • 流式细胞仪; 大鼠; 图 1c
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab33694)被用于被用于流式细胞仪在大鼠样本上 (图 1c). Acta Biomater (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫印迹; domestic rabbit; 1:1000; 图 7
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab92574)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 7). Cytotechnology (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • 流式细胞仪; 大鼠; 图 1
  • 流式细胞仪; domestic rabbit; 图 1
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab92574)被用于被用于流式细胞仪在大鼠样本上 (图 1) 和 被用于流式细胞仪在domestic rabbit样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3132)
  • proximity ligation assay; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, EPR3132)被用于被用于proximity ligation assay在人类样本上浓度为1:1000 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫细胞化学; African green monkey; 1:100; 图 1c
  • 免疫细胞化学; 人类; 1:100; 图 1h
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab225)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:100 (图 1c) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1h). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫细胞化学; 家羊; 图 4
艾博抗(上海)贸易有限公司 Thy1抗体(abcam, ab225)被用于被用于免疫细胞化学在家羊样本上 (图 4). Cell Tissue Bank (2016) ncbi
小鼠 单克隆(MRC OX-7)
  • 流式细胞仪; 国内马; 图 4
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab225)被用于被用于流式细胞仪在国内马样本上 (图 4). J Orthop Res (2015) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫组化-石蜡切片; 人类; 1:1000
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab225)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. J Biomed Mater Res A (2015) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫印迹; 人类; 1:250; 图 s3
艾博抗(上海)贸易有限公司 Thy1抗体(abcam, ab92574)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 s3). Stem Cells Dev (2015) ncbi
domestic rabbit 单克隆(EPR3132)
  • 免疫组化-石蜡切片; 人类; 1:250
  • 免疫组化; 人类; 1:250
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, EPR3132)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 和 被用于免疫组化在人类样本上浓度为1:250. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(EPR3132)
  • 流式细胞仪; 人类; 1:100
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 Thy1抗体(Abcam, ab92574)被用于被用于流式细胞仪在人类样本上浓度为1:100 和 被用于免疫细胞化学在人类样本上浓度为1:100. Int Endod J (2014) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 1:500; 图 1c
伯乐(Bio-Rad)公司 Thy1抗体(Serotec, MCA47R)被用于被用于流式细胞仪在大鼠样本上浓度为1:500 (图 1c). Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(T11D7e)
  • 免疫沉淀; 大鼠; 1:500; 图 2B
伯乐(Bio-Rad)公司 Thy1抗体(Serotec, MCA04G)被用于被用于免疫沉淀在大鼠样本上浓度为1:500 (图 2B). Int J Mol Sci (2015) ncbi
小鼠 单克隆(T11D7e)
  • 免疫细胞化学; 大鼠
伯乐(Bio-Rad)公司 Thy1抗体(Serotec, MCA04G)被用于被用于免疫细胞化学在大鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 1:100; 表 2
伯乐(Bio-Rad)公司 Thy1抗体(AbD Serotec, MCA47PE)被用于被用于流式细胞仪在大鼠样本上浓度为1:100 (表 2). Mol Med Rep (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(aTHy-1A1)
  • 免疫组化; 小鼠; 1:100; 图 2a
圣克鲁斯生物技术 Thy1抗体(Santa Cruz Bio, sc-53456)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). elife (2021) ncbi
小鼠 单克隆(OX7)
  • 免疫组化; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 图 3a
圣克鲁斯生物技术 Thy1抗体(Santa Cruz Biotechnology, sc-53116)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 3a). Am J Pathol (2017) ncbi
小鼠 单克隆(His51)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 Thy1抗体(Santa Cruz, sc-19614)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(aTHy-1A1)
  • 流式细胞仪; 人类; 图 1c
圣克鲁斯生物技术 Thy1抗体(Santa Cruz, sc-53456)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell Biol Int (2015) ncbi
Novus Biologicals
小鼠 单克隆(OX-7)
  • 免疫细胞化学; black ferret; 1:5; 图 2
Novus Biologicals Thy1抗体(Novus Biological, NB100-65543)被用于被用于免疫细胞化学在black ferret样本上浓度为1:5 (图 2). J Endod (2016) ncbi
碧迪BD
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:400; 图 3a, 3b
碧迪BD Thy1抗体(BD optibuild, OX7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a, 3b). Science (2019) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Thy1抗体(BD, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). EBioMedicine (2018) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BD Thy1抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Mucosal Immunol (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD Thy1抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 1:200; 图 1b
碧迪BD Thy1抗体(BD Biosciences, 554898)被用于被用于流式细胞仪在大鼠样本上浓度为1:200 (图 1b). Exp Ther Med (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 3b
碧迪BD Thy1抗体(BD, 554898)被用于被用于流式细胞仪在大鼠样本上 (图 3b). Sci Rep (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 1c
碧迪BD Thy1抗体(BD Biosciences, 554898)被用于被用于流式细胞仪在大鼠样本上 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s7a
碧迪BD Thy1抗体(BD Biosciences, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s7a). J Clin Invest (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 s4
碧迪BD Thy1抗体(BD Biosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 1
碧迪BD Thy1抗体(BD Pharmingen, 554897)被用于被用于流式细胞仪在大鼠样本上 (图 1). Front Endocrinol (Lausanne) (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 1:200; 图 1
碧迪BD Thy1抗体(BD Biosciences, 554897)被用于被用于流式细胞仪在大鼠样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BD Thy1抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上. Cell Rep (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; domestic rabbit; 图 s1
碧迪BD Thy1抗体(BD Biosciences, 554895)被用于被用于流式细胞仪在domestic rabbit样本上 (图 s1). J Biomed Mater Res B Appl Biomater (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BD Thy1抗体(BD, OX-7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 鸡; 图 3
碧迪BD Thy1抗体(BD Pharmingen, 561409)被用于被用于流式细胞仪在鸡样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 2
碧迪BD Thy1抗体(BD Biosciences, 551401)被用于被用于流式细胞仪在大鼠样本上 (图 2). J Mater Sci Mater Med (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 1:50; 图 2
碧迪BD Thy1抗体(BD Biosciences, 554894)被用于被用于流式细胞仪在大鼠样本上浓度为1:50 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Thy1抗体(BD Biosciences, 554894)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 1
碧迪BD Thy1抗体(BD Pharmingen, 551401)被用于被用于流式细胞仪在大鼠样本上 (图 1). Int J Mol Med (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Thy1抗体(BD Bioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BD Thy1抗体(BD, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD Thy1抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2014) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BD Thy1抗体(BD Biosciences, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BD Thy1抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
碧迪BD Thy1抗体(BD Biosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 1:100
碧迪BD Thy1抗体(BD Biosciences, 554895)被用于被用于流式细胞仪在大鼠样本上浓度为1:100. J Tissue Eng Regen Med (2014) ncbi
文章列表
  1. Zou Y, Zhang X, Liang J, Peng L, Qin J, Zhou F, et al. Mucin 1 aggravates synovitis and joint damage of rheumatoid arthritis by regulating inflammation and aggression of fibroblast-like synoviocytes. Bone Joint Res. 2022;11:639-651 pubmed 出版商
  2. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  3. Zhang Y, Huo F, Cao Q, Jia R, Huang Q, Wang Z, et al. FimH confers mannose-targeting ability to Bacillus Calmette-Guerin for improved immunotherapy in bladder cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  4. Wu T, Zhang X, Zhang Q, Zou Y, Ma J, Chen L, et al. Gasdermin-E Mediated Pyroptosis-A Novel Mechanism Regulating Migration, Invasion and Release of Inflammatory Cytokines in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Front Cell Dev Biol. 2021;9:810635 pubmed 出版商
  5. Ambrosi T, Sinha R, Steininger H, Hoover M, Murphy M, Koepke L, et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. elife. 2021;10: pubmed 出版商
  6. Shen Y, Shami A, Moritz L, Larose H, Manske G, Ma Q, et al. TCF21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice. Nat Commun. 2021;12:3876 pubmed 出版商
  7. Wei Y, Sun H, Gui T, Yao L, Zhong L, Yu W, et al. The critical role of Hedgehog-responsive mesenchymal progenitors in meniscus development and injury repair. elife. 2021;10: pubmed 出版商
  8. Ichinohe N, Ishii M, Tanimizu N, Mizuguchi T, Yoshioka Y, Ochiya T, et al. Extracellular vesicles containing miR-146a-5p secreted by bone marrow mesenchymal cells activate hepatocytic progenitors in regenerating rat livers. Stem Cell Res Ther. 2021;12:312 pubmed 出版商
  9. Chen Q, Liu X, Wang D, Zheng J, Chen L, Xie Q, et al. Periodontal Inflammation-Triggered by Periodontal Ligament Stem Cell Pyroptosis Exacerbates Periodontitis. Front Cell Dev Biol. 2021;9:663037 pubmed 出版商
  10. Datta M, Staszewski O. Hdac1 and Hdac2 are essential for physiological maturation of a Cx3cr1 expressing subset of T-lymphocytes. BMC Res Notes. 2021;14:135 pubmed 出版商
  11. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  12. Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, et al. Targeting age-specific changes in CD4+ T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell. 2021;20:e13299 pubmed 出版商
  13. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  14. Kim K, Park T, Cho B, Kim T. Nanoparticles from Equine Fetal Bone Marrow-Derived Cells Enhance the Survival of Injured Chondrocytes. Animals (Basel). 2020;10: pubmed 出版商
  15. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  16. Harbour S, DiToro D, Witte S, Zindl C, Gao M, Schoeb T, et al. TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol. 2020;5: pubmed 出版商
  17. Kim J, Yang Y, Park K, Ge X, Xu R, Li N, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun. 2020;11:2289 pubmed 出版商
  18. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  19. Parisi G, Saco J, Salazar F, Tsoi J, Krystofinski P, Puig Saus C, et al. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat Commun. 2020;11:660 pubmed 出版商
  20. Wang G, Huang T, Hu Y, Wang K, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. J Inflamm (Lond). 2020;17:2 pubmed 出版商
  21. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  22. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  23. Wu K, Zou J, Lin C, Jie Z. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep. 2019;: pubmed 出版商
  24. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  25. Chen J, López Moyado I, Seo H, Lio C, Hempleman L, Sekiya T, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019;567:530-534 pubmed 出版商
  26. Garg G, Muschaweckh A, Moreno H, Vasanthakumar A, Floess S, Lepennetier G, et al. Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Rep. 2019;26:1854-1868.e5 pubmed 出版商
  27. Yamamoto T, Lee P, Vodnala S, Gurusamy D, Kishton R, Yu Z, et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J Clin Invest. 2019;129:1551-1565 pubmed 出版商
  28. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  29. Chen Y, Qin X, An Q, Yi J, Feng F, Yin D, et al. Mesenchymal Stromal Cells Directly Promote Inflammation by Canonical NLRP3 and Non-canonical Caspase-11 Inflammasomes. EBioMedicine. 2018;32:31-42 pubmed 出版商
  30. Tinoco R, Carrette F, Henriquez M, Fujita Y, Bradley L. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells. J Immunol. 2018;200:2690-2702 pubmed 出版商
  31. Khan A, Carpenter B, Santos e Sousa P, Pospori C, Khorshed R, Griffin J, et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J Clin Invest. 2018;128:2010-2024 pubmed 出版商
  32. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  33. Kornete M, Marone R, Jeker L. Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. J Immunol. 2018;200:2489-2501 pubmed 出版商
  34. Doorduijn E, Sluijter M, Marijt K, Querido B, van der Burg S, van Hall T. T cells specific for a TAP-independent self-peptide remain naïve in tumor-bearing mice and are fully exploitable for therapy. Oncoimmunology. 2018;7:e1382793 pubmed 出版商
  35. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  36. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  37. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  38. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  39. Manzanares M, Usui A, Campbell D, Dumur C, Maldonado G, Fausther M, et al. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Am J Pathol. 2017;187:1068-1092 pubmed 出版商
  40. Liu J, Hu F, Tang J, Tang S, Xia K, Wu S, et al. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling. Int J Mol Med. 2017;39:879-888 pubmed 出版商
  41. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  42. Szilagyi B, Triebus J, Kressler C, De Almeida M, Tierling S, Durek P, et al. Gut memories do not fade: epigenetic regulation of lasting gut homing receptor expression in CD4+ memory T cells. Mucosal Immunol. 2017;10:1443-1454 pubmed 出版商
  43. Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed 出版商
  44. Sheng L, Mao X, Yu Q, Yu D. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2017;13:55-62 pubmed 出版商
  45. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  46. Marycz K, Kornicka K, Grzesiak J, Smieszek A, Szłapka J. Macroautophagy and Selective Mitophagy Ameliorate Chondrogenic Differentiation Potential in Adipose Stem Cells of Equine Metabolic Syndrome: New Findings in the Field of Progenitor Cells Differentiation. Oxid Med Cell Longev. 2016;2016:3718468 pubmed 出版商
  47. Marshall N, Vong A, Devarajan P, Brauner M, Kuang Y, Nayar R, et al. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol. 2017;198:1142-1155 pubmed 出版商
  48. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  49. Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, et al. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med. 2017;39:167-173 pubmed 出版商
  50. Ma C, Mishra S, Demel E, Liu Y, Zhang N. TGF-? Controls the Formation of Kidney-Resident T Cells via Promoting Effector T Cell Extravasation. J Immunol. 2017;198:749-756 pubmed 出版商
  51. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  52. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  53. Paszkiewicz P, Fräßle S, Srivastava S, Sommermeyer D, Hudecek M, Drexler I, et al. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest. 2016;126:4262-4272 pubmed 出版商
  54. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  55. Rothchild A, Sissons J, Shafiani S, Plaisier C, Min D, Mai D, et al. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113:E6172-E6181 pubmed
  56. Boddupalli C, Nair S, Gray S, Nowyhed H, Verma R, Gibson J, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest. 2016;126:3905-3916 pubmed 出版商
  57. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  58. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  59. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  60. Jacobs F, Sadie Van Gijsen H, van de Vyver M, Ferris W. Vanadate Impedes Adipogenesis in Mesenchymal Stem Cells Derived from Different Depots within Bone. Front Endocrinol (Lausanne). 2016;7:108 pubmed 出版商
  61. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  62. Ghazaryan E, Zhang Y, He Y, Liu X, Li Y, Xie J, et al. Mesenchymal stem cells in corneal neovascularization: Comparison of different application routes. Mol Med Rep. 2016;14:3104-12 pubmed 出版商
  63. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  64. Chen H, Jia W, Li J. ECM1 promotes migration and invasion of hepatocellular carcinoma by inducing epithelial-mesenchymal transition. World J Surg Oncol. 2016;14:195 pubmed 出版商
  65. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  66. Komatsu I, Wang J, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater. 2016;42:136-146 pubmed 出版商
  67. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  68. Harper I, Ali J, Harper S, Wlodek E, Alsughayyir J, Negus M, et al. Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant. Cell Rep. 2016;15:1214-27 pubmed 出版商
  69. Wu C, Sheu S, Hsu L, Yang K, Tseng C, Kuo T. Intra-articular Injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: An in vivo study in rabbits. J Biomed Mater Res B Appl Biomater. 2017;105:1536-1543 pubmed 出版商
  70. Goldstein J, Burlion A, Zaragoza B, Sendeyo K, Polansky J, Huehn J, et al. Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE. 2016;11:e0153682 pubmed 出版商
  71. Williams A, Maman Y, Alinikula J, Schatz D. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells. PLoS ONE. 2016;11:e0149146 pubmed 出版商
  72. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J Mater Sci Mater Med. 2016;27:77 pubmed 出版商
  73. Tong L, Zhou J, Rong L, Seeley E, Pan J, Zhu X, et al. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci Rep. 2016;6:21642 pubmed 出版商
  74. Mitrea D, Cika J, Guy C, Ban D, Banerjee P, Stanley C, et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. elife. 2016;5: pubmed 出版商
  75. Tubo N, Fife B, Pagán A, Kotov D, Goldberg M, Jenkins M. Most microbe-specific naïve CD4? T cells produce memory cells during infection. Science. 2016;351:511-4 pubmed 出版商
  76. Huang H, Wang S, Gui J, Shen H. A study to identify and characterize the stem/progenitor cell in rabbit meniscus. Cytotechnology. 2016;68:2083-103 pubmed 出版商
  77. Homayounfar N, Verma P, Nosrat A, El Ayachi I, Yu Z, Romberg E, et al. Isolation, Characterization, and Differentiation of Dental Pulp Stem Cells in Ferrets. J Endod. 2016;42:418-24 pubmed 出版商
  78. Liu T, Mu H, Shen Z, Song Z, Chen X, Wang Y. Autologous adipose tissue‑derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy. Mol Med Rep. 2016;13:2053-9 pubmed 出版商
  79. Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, et al. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Sci Rep. 2016;6:19073 pubmed 出版商
  80. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  81. Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep. 2016;13:49-58 pubmed 出版商
  82. Wu V, Smith A, You H, Nguyen T, Ferguson R, Taylor M, et al. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol. 2016;9:777-86 pubmed 出版商
  83. Forni M, Ramos Maia Lobba A, Pereira Ferreira A, Sogayar M. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin. PLoS ONE. 2015;10:e0140143 pubmed 出版商
  84. Fiore V, Strane P, Bryksin A, White E, Hagood J, Barker T. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol. 2015;211:173-90 pubmed 出版商
  85. Kurtulus S, Sakuishi K, Ngiow S, Joller N, Tan D, Teng M, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 2015;125:4053-62 pubmed 出版商
  86. Brasseit J, Althaus Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, et al. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol. 2016;9:689-701 pubmed 出版商
  87. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  88. Pogozhykh O, Pogozhykh D, Neehus A, Hoffmann A, Blasczyk R, Müller T. Molecular and cellular characteristics of human and non-human primate multipotent stromal cells from the amnion and bone marrow during long term culture. Stem Cell Res Ther. 2015;6:150 pubmed 出版商
  89. Landa Solís C, Granados Montiel J, Olivos Meza A, Ortega Sánchez C, Cruz Lemini M, Hernández Flores C, et al. Cryopreserved CD90+ cells obtained from mobilized peripheral blood in sheep: a new source of mesenchymal stem cells for preclinical applications. Cell Tissue Bank. 2016;17:137-45 pubmed 出版商
  90. Li Y, Shen C, Zhu B, Shi F, Eisen H, Chen J. Persistent Antigen and Prolonged AKT-mTORC1 Activation Underlie Memory CD8 T Cell Impairment in the Absence of CD4 T Cells. J Immunol. 2015;195:1591-8 pubmed 出版商
  91. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  92. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  93. Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang J, Bando H, et al. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun. 2015;6:7474 pubmed 出版商
  94. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  95. Gnavi S, Fornasari B, Tonda Turo C, Laurano R, Zanetti M, Ciardelli G, et al. The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. Int J Mol Sci. 2015;16:12925-42 pubmed 出版商
  96. Zhang F, Cui J, Lv B, Yu B. Nicorandil protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Int J Mol Med. 2015;36:415-23 pubmed 出版商
  97. Song H, Wang H, Wu W, Qi L, Shao L, Wang F, et al. Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells. Cell Tissue Res. 2015;362:97-113 pubmed 出版商
  98. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  99. Heinen A, Beyer F, Tzekova N, Hartung H, Küry P. Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp Neurol. 2015;271:25-35 pubmed 出版商
  100. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  101. Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12:2089-97 pubmed 出版商
  102. Williamson K, Lee K, Humphreys W, Comerford E, Clegg P, Canty Laird E. Restricted differentiation potential of progenitor cell populations obtained from the equine superficial digital flexor tendon (SDFT). J Orthop Res. 2015;33:849-58 pubmed 出版商
  103. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  104. Cameron S, Alwakeel A, Goddard L, Hobbs C, Gowing E, Barnett E, et al. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia. Mol Cell Neurosci. 2015;68:56-72 pubmed 出版商
  105. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  106. Shafiq M, Jung Y, Kim S. Stem cell recruitment, angiogenesis, and tissue regeneration in substance P-conjugated poly(l-lactide-co-É›-caprolactone) nonwoven meshes. J Biomed Mater Res A. 2015;103:2673-88 pubmed 出版商
  107. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  108. Yang Y, Otte A, Hass R. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines. Stem Cells Dev. 2015;24:1205-22 pubmed 出版商
  109. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  110. Stoycheva D, Deiser K, Stärck L, Nishanth G, Schlüter D, Uckert W, et al. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J Immunol. 2015;194:553-9 pubmed 出版商
  111. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  112. Wong H, Siu W, Fung C, Zhang C, Shum W, Zhou X, et al. Characteristics of stem cells derived from rat fascia: in vitro proliferative and multilineage potential assessment. Mol Med Rep. 2015;11:1982-90 pubmed 出版商
  113. McKinstry K, Strutt T, Bautista B, Zhang W, Kuang Y, Cooper A, et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun. 2014;5:5377 pubmed 出版商
  114. Kim W, Barron D, San Martin R, Chan K, Tran L, Yang F, et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A. 2014;111:16389-94 pubmed 出版商
  115. Cheng H, Ding Y, Yu R, Chen J, Wu C. Neuroprotection of a novel cyclopeptide C*HSDGIC* from the cyclization of PACAP (1-5) in cellular and rodent models of retinal ganglion cell apoptosis. PLoS ONE. 2014;9:e108090 pubmed 出版商
  116. Smith T, Verdeil G, Marquardt K, Sherman L. Contribution of TCR signaling strength to CD8+ T cell peripheral tolerance mechanisms. J Immunol. 2014;193:3409-16 pubmed 出版商
  117. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  118. Berod L, Stüve P, Varela F, Behrends J, Swallow M, Kruse F, et al. Rapid rebound of the Treg compartment in DEREG mice limits the impact of Treg depletion on mycobacterial burden, but prevents autoimmunity. PLoS ONE. 2014;9:e102804 pubmed 出版商
  119. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  120. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  121. Timblin G, Schlissel M. Ebf1 and c-Myb repress rag transcription downstream of Stat5 during early B cell development. J Immunol. 2013;191:4676-87 pubmed 出版商
  122. Kidwai F, Movahednia M, Iqbal K, Jokhun D, Cao T, Fawzy A. Human embryonic stem cell differentiation into odontoblastic lineage: an in vitro study. Int Endod J. 2014;47:346-55 pubmed 出版商
  123. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  124. Toker A, Engelbert D, Garg G, Polansky J, Floess S, Miyao T, et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol. 2013;190:3180-8 pubmed 出版商
  125. Baek H, Noh Y, Lee J, Yeon S, Jeong J, Kwon H. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells. J Tissue Eng Regen Med. 2014;8:717-27 pubmed 出版商
  126. Dráber P, Stepanek O, Hrdinka M, Drobek A, Chmatal L, Mala L, et al. LST1/A is a myeloid leukocyte-specific transmembrane adaptor protein recruiting protein tyrosine phosphatases SHP-1 and SHP-2 to the plasma membrane. J Biol Chem. 2012;287:22812-21 pubmed 出版商
  127. Marshall H, Prince A, Berg L, Welsh R. IFN-alpha beta and self-MHC divert CD8 T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. J Immunol. 2010;185:1419-28 pubmed 出版商
  128. Mohr C, Arapovic J, Mühlbach H, Panzer M, Weyn A, Dölken L, et al. A spread-deficient cytomegalovirus for assessment of first-target cells in vaccination. J Virol. 2010;84:7730-42 pubmed 出版商
  129. Moon J, Chu H, Hataye J, Pagán A, Pepper M, McLachlan J, et al. Tracking epitope-specific T cells. Nat Protoc. 2009;4:565-81 pubmed 出版商
  130. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  131. Rubinstein M, Kovar M, Purton J, Cho J, Boyman O, Surh C, et al. Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci U S A. 2006;103:9166-71 pubmed
  132. Hermans M, Opstelten D. In situ visualization of hemopoietic cell subsets and stromal elements in rat and mouse bone marrow by immunostaining of frozen sections. J Histochem Cytochem. 1991;39:1627-34 pubmed