这是一篇来自已证抗体库的有关大鼠 Toll样受体4 (Tlr4) 的综述,是根据38篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Toll样受体4 抗体。
艾博抗(上海)贸易有限公司
小鼠 单克隆(76B357.1)
  • 免疫组化; 大鼠; 图 4a
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化在大鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上 (图 4b). J Inflamm Res (2021) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在大鼠样本上. Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Front Endocrinol (Lausanne) (2020) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3b). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 大鼠; 图 2a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在大鼠样本上 (图 2a). J Biol Chem (2018) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化; 大鼠; 图 6a
  • 免疫印迹; 大鼠; 图 6g
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化在大鼠样本上 (图 6a) 和 被用于免疫印迹在大鼠样本上 (图 6g). Brain Behav Immun (2017) ncbi
小鼠 单克隆(HTA125)
  • 免疫细胞化学; 小鼠; 1:200; 图 7d
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab 8376)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 7d) 和 被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5a
  • 免疫印迹; 大鼠; 1:500; 图 1f
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 1f). Brain Behav Immun (2017) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1b). Arthritis Res Ther (2017) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 大鼠; 图 6
艾博抗(上海)贸易有限公司Toll样受体4抗体(abcam, ab30667)被用于被用于免疫印迹在大鼠样本上 (图 6). BMC Cancer (2016) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 小鼠; 图 9a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫印迹在小鼠样本上 (图 9a). Oncotarget (2016) ncbi
小鼠 单克隆(HTA125)
  • 免疫组化; 大鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 图 2bb
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫印迹在小鼠样本上 (图 2bb). Int J Mol Med (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 大鼠; 图 6
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(HTA125)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab13556/ab30667)被用于被用于免疫印迹在大鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(HTA125)
  • 流式细胞仪; 人类; 图 2
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(HTA125)
  • 免疫细胞化学; 猕猴; 图 2a
  • 免疫印迹; 猕猴; 图 2b
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫细胞化学在猕猴样本上 (图 2a) 和 被用于免疫印迹在猕猴样本上 (图 2b). PLoS ONE (2015) ncbi
小鼠 单克隆(HTA125)
  • 免疫组化; 大鼠; 1:150; 图 3a
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab30667)被用于被用于免疫组化在大鼠样本上浓度为1:150 (图 3a). Sci Rep (2015) ncbi
小鼠 单克隆(HTA125)
  • 免疫组化; 大鼠; 1:100; 图 2d
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab8376)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2d). Exp Ther Med (2015) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Mol Pharm (2014) ncbi
小鼠 单克隆(76B357.1)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Mol Med Rep (2014) ncbi
小鼠 单克隆(76B357.1)
艾博抗(上海)贸易有限公司Toll样受体4抗体(Abcam, ab22048)被用于. Nat Commun (2014) ncbi
Novus Biologicals
小鼠 单克隆(76B357.1)
  • 免疫细胞化学; 人类; 1:100; 图 4e
Novus BiologicalsToll样受体4抗体(Novus Biological, NB-10056566)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4e). Nat Commun (2019) ncbi
小鼠 单克隆(76B357.1)
  • 免疫细胞化学; pigs ; 1:50; 图 1c
  • 免疫印迹; pigs ; 1:500; 图 1b
Novus BiologicalsToll样受体4抗体(Novus, NB100-56566)被用于被用于免疫细胞化学在pigs 样本上浓度为1:50 (图 1c) 和 被用于免疫印迹在pigs 样本上浓度为1:500 (图 1b). BMC Vet Res (2019) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 图 s2
Novus BiologicalsToll样受体4抗体(Novus Biologicals, NB100-56566SS)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2018) ncbi
小鼠 单克隆(76B357.1)
  • 流式细胞仪; 大鼠; 图 s1a
Novus BiologicalsToll样受体4抗体(Novus Biologicals, 76B357.1)被用于被用于流式细胞仪在大鼠样本上 (图 s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 小鼠; 1:1000; 图 s11
Novus BiologicalsToll样受体4抗体(Novus, NB100-56566)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s11). Sci Rep (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠; 1:500; 图 1a
  • 免疫印迹; 小鼠
Novus BiologicalsToll样受体4抗体(Imgenex, 76B357.1)被用于被用于免疫细胞化学在小鼠样本上, 被用于免疫组化在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在小鼠样本上. J Cell Mol Med (2014) ncbi
圣克鲁斯生物技术
大鼠 单克隆(MTS510)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz, sc-13591)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Int J Mol Sci (2021) ncbi
大鼠 单克隆(MTS510)
  • 流式细胞仪; 小鼠
圣克鲁斯生物技术Toll样受体4抗体(Santa Cruz Biotechnology, sc-13591)被用于被用于流式细胞仪在小鼠样本上. Exp Mol Med (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4g
赛默飞世尔Toll样受体4抗体(Invitrogen, 48-2300)被用于被用于免疫印迹在人类样本上 (图 4g). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 2
赛默飞世尔Toll样受体4抗体(Invitrogen, #48-2300)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2). Neurol Res Int (2020) ncbi
小鼠 单克隆(76B357.1)
  • 流式细胞仪; 人类; 图 1c
赛默飞世尔Toll样受体4抗体(Thermo Scientific, 76B357.1)被用于被用于流式细胞仪在人类样本上 (图 1c). J Immunol (2016) ncbi
小鼠 单克隆(76B357.1)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛默飞世尔Toll样受体4抗体(Thermo Fisher Scientific, MA5-16216)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Mol Cells (2016) ncbi
文章列表
  1. Gao Y, Sun Y, Ercan Sencicek A, King J, Akerberg B, Ma Q, et al. YAP/TEAD1 Complex Is a Default Repressor of Cardiac Toll-Like Receptor Genes. Int J Mol Sci. 2021;22: pubmed 出版商
  2. Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600 pubmed 出版商
  3. Lagosz Cwik K, Wielento A, Lipska W, Kantorowicz M, Darczuk D, Kaczmarzyk T, et al. hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Sci Rep. 2021;11:10770 pubmed 出版商
  4. Ye S, Su L, Shan P, Ye B, Wu S, Liang G, et al. LCZ696 Attenuated Doxorubicin-Induced Chronic Cardiomyopathy Through the TLR2-MyD88 Complex Formation. Front Cell Dev Biol. 2021;9:654051 pubmed 出版商
  5. Famakin B, Tsymbalyuk O, Tsymbalyuk N, Ivanova S, Woo S, Kwon M, et al. HMGB1 is a Potential Mediator of Astrocytic TLR4 Signaling Activation following Acute and Chronic Focal Cerebral Ischemia. Neurol Res Int. 2020;2020:3929438 pubmed 出版商
  6. Petrovic I, Pejnovic N, Ljujic B, Pavlovic S, Miletic Kovacevic M, Jeftic I, et al. Overexpression of Galectin 3 in Pancreatic β Cells Amplifies β-Cell Apoptosis and Islet Inflammation in Type-2 Diabetes in Mice. Front Endocrinol (Lausanne). 2020;11:30 pubmed 出版商
  7. Zhang S, Hu L, Jiang J, Li H, Wu Q, Ooi K, et al. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation. 2020;17:15 pubmed 出版商
  8. Managò A, Audrito V, Mazzola F, Sorci L, Gaudino F, Gizzi K, et al. Extracellular nicotinate phosphoribosyltransferase binds Toll like receptor 4 and mediates inflammation. Nat Commun. 2019;10:4116 pubmed 出版商
  9. Bernardini C, Bertocchi M, Zannoni A, Salaroli R, Tubon I, Dothel G, et al. Constitutive and LPS-stimulated secretome of porcine Vascular Wall-Mesenchymal Stem Cells exerts effects on in vitro endothelial angiogenesis. BMC Vet Res. 2019;15:123 pubmed 出版商
  10. Bergqvist F, Carr A, Wheway K, Watkins B, Oppermann U, Jakobsson P, et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res Ther. 2019;21:74 pubmed 出版商
  11. Bhattacharjee P, Keyel P. Cholesterol-dependent cytolysins impair pro-inflammatory macrophage responses. Sci Rep. 2018;8:6458 pubmed 出版商
  12. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  13. Shi Y, Zhang X, Chen C, Tang M, Wang Z, Liang X, et al. Schisantherin A attenuates ischemia/reperfusion-induced neuronal injury in rats via regulation of TLR4 and C5aR1 signaling pathways. Brain Behav Immun. 2017;66:244-256 pubmed 出版商
  14. Peng J, Wu Y, Tian X, Pang J, Kuai L, Cao F, et al. High-Throughput Sequencing and Co-Expression Network Analysis of lncRNAs and mRNAs in Early Brain Injury Following Experimental Subarachnoid Haemorrhage. Sci Rep. 2017;7:46577 pubmed 出版商
  15. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  16. Dakin S, Buckley C, Al Mossawi M, Hedley R, Martinez F, Wheway K, et al. Persistent stromal fibroblast activation is present in chronic tendinopathy. Arthritis Res Ther. 2017;19:16 pubmed 出版商
  17. Luo L, Bokil N, Wall A, Kapetanovic R, Lansdaal N, Marceline F, et al. SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages. Nat Commun. 2017;8:14133 pubmed 出版商
  18. Rigo Adrover M, Franch A, Castell M, Pérez Cano F. Preclinical Immunomodulation by the Probiotic Bifidobacterium breve M-16V in Early Life. PLoS ONE. 2016;11:e0166082 pubmed 出版商
  19. van Haren S, Dowling D, Foppen W, Christensen D, Andersen P, Reed S, et al. Age-Specific Adjuvant Synergy: Dual TLR7/8 and Mincle Activation of Human Newborn Dendritic Cells Enables Th1 Polarization. J Immunol. 2016;197:4413-4424 pubmed
  20. Fujita K, Motoki K, Tagawa K, Chen X, Hama H, Nakajima K, et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep. 2016;6:31895 pubmed 出版商
  21. Shi D, Shi G, Xie J, Du X, Yang H. MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis. Mol Cells. 2016;39:611-8 pubmed 出版商
  22. Garcia P, Seiva F, Carniato A, de Mello Júnior W, Duran N, Macedo A, et al. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer. 2016;16:422 pubmed 出版商
  23. Wang X, Wan H, Wei X, Zhang Y, Qu P. CLI-095 decreases atherosclerosis by modulating foam cell formation in apolipoprotein E-deficient mice. Mol Med Rep. 2016;14:49-56 pubmed 出版商
  24. Sominsky L, Ziko I, Soch A, Smith J, Spencer S. Neonatal overfeeding induces early decline of the ovarian reserve: Implications for the role of leptin. Mol Cell Endocrinol. 2016;431:24-35 pubmed 出版商
  25. Fan H, Qi D, Yu C, Zhao F, Liu T, Zhang Z, et al. Paeonol protects endotoxin-induced acute kidney injury: potential mechanism of inhibiting TLR4-NF-?B signal pathway. Oncotarget. 2016;7:39497-39510 pubmed 出版商
  26. Leng Y, Yi M, Fan J, Bai Y, Ge Q, Yao G. Effects of acute intra-abdominal hypertension on multiple intestinal barrier functions in rats. Sci Rep. 2016;6:22814 pubmed 出版商
  27. Li G, Wu X, Yang L, He Y, Liu Y, Jin X, et al. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med. 2016;37:99-107 pubmed 出版商
  28. Nozako M, Koyama T, Nagano C, Sato M, Matsumoto S, Mitani K, et al. An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats. PLoS ONE. 2015;10:e0143979 pubmed 出版商
  29. Shin W, Jeon M, Leem E, Won S, Jeong K, Park S, et al. Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson's disease. Sci Rep. 2015;5:14764 pubmed 出版商
  30. Hwang S, Cho H, Park S, Lee W, Lee H, Lee D, et al. Characteristics of Human Turbinate-Derived Mesenchymal Stem Cells Are Not Affected by Allergic Condition of Donor. PLoS ONE. 2015;10:e0138041 pubmed 出版商
  31. Feng Y, Guo H, Yuan F, Shen M. Lipopolysaccharide Promotes Choroidal Neovascularization by Up-Regulation of CXCR4 and CXCR7 Expression in Choroid Endothelial Cell. PLoS ONE. 2015;10:e0136175 pubmed 出版商
  32. Lin J, Du Y, Cai W, Kuang R, Chang T, Zhang Z, et al. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats. Sci Rep. 2015;5:12549 pubmed 出版商
  33. Wang L, Liu X, Chen H, Chen Z, Weng X, Qiu T, et al. Picroside II protects rat kidney against ischemia/reperfusion-induced oxidative stress and inflammation by the TLR4/NF-κB pathway. Exp Ther Med. 2015;9:1253-1258 pubmed
  34. Wang X, Xiong M, Zeng Y, Sun X, Gong T, Zhang Z. Mechanistic studies of a novel mycophenolic acid-glucosamine conjugate that attenuates renal ischemia/reperfusion injury in rat. Mol Pharm. 2014;11:3503-14 pubmed 出版商
  35. Weng H, Liu H, Deng Y, Xie Y, Shen G. Effects of high mobility group protein box 1 and toll like receptor 4 pathway on warts caused by human papillomavirus. Mol Med Rep. 2014;10:1765-71 pubmed 出版商
  36. Luo L, Wall A, Yeo J, Condon N, Norwood S, Schoenwaelder S, et al. Rab8a interacts directly with PI3K? to modulate TLR4-driven PI3K and mTOR signalling. Nat Commun. 2014;5:4407 pubmed 出版商
  37. Schuster A, Klotz M, Schwab T, Di Liddo R, Bertalot T, Schrenk S, et al. Maintenance of the enteric stem cell niche by bacterial lipopolysaccharides? Evidence and perspectives. J Cell Mol Med. 2014;18:1429-43 pubmed 出版商
  38. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商