这是一篇来自已证抗体库的有关大鼠 Tubb2a的综述,是根据29篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Tubb2a 抗体。
Tubb2a 同义词: tubulin beta-2A chain

赛默飞世尔
小鼠 单克隆(TBN06 (Tub 2.5))
赛默飞世尔 Tubb2a抗体(Thermo Fisher Scientific, MA5-11732)被用于. J Cell Biol (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(D66)
  • 免疫印迹; great pond snail; 1:2000; 图 2
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在great pond snail样品上浓度为1:2000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样品上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Tubb2a抗体(Sigma, 2-28-33)被用于被用于免疫印迹在小鼠样品上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2-28-33)
  • 免疫细胞化学; 人类; 图 4
西格玛奥德里奇 Tubb2a抗体(Sigma, T5293)被用于被用于免疫细胞化学在人类样品上 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Tubb2a抗体(Sigma, T5293)被用于被用于免疫印迹在人类样品上 (图 3). Hum Mutat (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样品上 (图 1). J Neurosci (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在人类样品上 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 1:5000; 图 2
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样品上浓度为1:5000 (图 2). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 图 s2
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样品上 (图 s2). Autophagy (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫细胞化学; 人类; 1:100; 图 s4d
西格玛奥德里奇 Tubb2a抗体(Sigma, T5293)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 s4d). Nat Commun (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Tubb2a抗体(Sigma, T5293)被用于被用于免疫印迹在人类样品上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(D66)
  • 免疫沉淀; 人类
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, T0198)被用于被用于免疫沉淀在人类样品上. J Cell Sci (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 大鼠; 图 2
西格玛奥德里奇 Tubb2a抗体(T5293, T5293)被用于被用于免疫印迹在大鼠样品上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(D66)
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫细胞化学在大鼠样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 1:10000
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样品上浓度为1:10000. J Cell Physiol (2016) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, T5293)被用于被用于免疫印迹在小鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在人类样品上. Oncogene (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在人类样品上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图  3
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在人类样品上 (图  3). Clin Exp Metastasis (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类; 1:2000; 图 2b
西格玛奥德里奇 Tubb2a抗体(sigma, T5293)被用于被用于免疫印迹在人类样品上浓度为1:2000 (图 2b). Nat Commun (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类; 1:1000; 图 1d
西格玛奥德里奇 Tubb2a抗体(Sigma, T5293)被用于被用于免疫印迹在人类样品上浓度为1:1000 (图 1d). Mol Biol Cell (2015) ncbi
小鼠 单克隆(2-28-33)
  • 免疫细胞化学; 人类; 图 s2
西格玛奥德里奇 Tubb2a抗体(Sigma, 2-28-33)被用于被用于免疫细胞化学在人类样品上 (图 s2). J Cell Sci (2014) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇 Tubb2a抗体(Sigma, T-0198)被用于被用于免疫印迹在小鼠样品上浓度为1:4000. Free Radic Biol Med (2014) ncbi
小鼠 单克隆(D66)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, D66)被用于被用于免疫细胞化学在小鼠样品上 和 被用于免疫印迹在小鼠样品上. Biol Open (2014) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 人类
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, 22833)被用于被用于免疫印迹在人类样品上. Oxid Med Cell Longev (2014) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠; 1:15000
西格玛奥德里奇 Tubb2a抗体(Sigma, T5293)被用于被用于免疫印迹在小鼠样品上浓度为1:15000. Genes Brain Behav (2014) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样品上. Physiol Behav (2014) ncbi
小鼠 单克隆(2-28-33)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, 22833)被用于被用于免疫印迹在小鼠样品上浓度为1:2000. Neuro Oncol (2009) ncbi
文章列表
  1. Getz A, Visser F, Bell E, Xu F, Flynn N, Zaidi W, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep. 2016;6:31779 pubmed 出版商
  2. Li S, Qu Z, Haas M, Ngo L, Heo Y, Kang H, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci Rep. 2016;6:29514 pubmed 出版商
  3. Kanemori Y, Koga Y, Sudo M, Kang W, Kashiwabara S, Ikawa M, et al. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc Natl Acad Sci U S A. 2016;113:E3696-705 pubmed 出版商
  4. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  5. Saunier C, Støve S, Popp B, Gerard B, Blenski M, AhMew N, et al. Expanding the Phenotype Associated with NAA10-Related N-Terminal Acetylation Deficiency. Hum Mutat. 2016;37:755-64 pubmed 出版商
  6. Wahl S, Magupalli V, Dembla M, Katiyar R, Schwarz K, Köblitz L, et al. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses. J Neurosci. 2016;36:2473-93 pubmed 出版商
  7. Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, et al. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis. 2016;7:e2083 pubmed 出版商
  8. Torres G, Morales P, García Miguel M, Norambuena Soto I, Cartes Saavedra B, Vidal Peña G, et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol. 2016;104:52-61 pubmed 出版商
  9. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed
  10. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  11. Maxfield K, Taus P, Corcoran K, Wooten J, Macion J, Zhou Y, et al. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun. 2015;6:8840 pubmed 出版商
  12. Casey J, Støve S, McGorrian C, Galvin J, Blenski M, Dunne A, et al. NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment. Sci Rep. 2015;5:16022 pubmed 出版商
  13. Jamieson C, Lui C, Brocardo M, Martino Echarri E, Henderson B. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci. 2015;128:3933-46 pubmed 出版商
  14. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed 出版商
  15. Zajkowski T, Nieznanska H, Nieznanski K. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta. 2015;1853:2228-39 pubmed 出版商
  16. Tang N, Lyu D, Liu T, Chen F, Jing S, Hao T, et al. Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells. J Cell Physiol. 2016;231:172-80 pubmed 出版商
  17. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed 出版商
  18. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  19. Giehl K, Keller C, Muehlich S, Goppelt Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS ONE. 2015;10:e0121589 pubmed 出版商
  20. Bi Q, Ranjan A, Fan R, Agarwal N, Welch D, Weinman S, et al. MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2015;32:301-11 pubmed 出版商
  21. Zimmermann M, Aguilera F, Castellucci M, Rossato M, Costa S, Lunardi C, et al. Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun. 2015;6:6061 pubmed 出版商
  22. Jin Z, Chung J, Mei W, Strack S, He C, Lau G, et al. Regulation of nuclear-cytoplasmic shuttling and function of Family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt. Mol Biol Cell. 2015;26:1160-73 pubmed 出版商
  23. Lucken Ardjomande Häsler S, Vallis Y, Jolin H, McKenzie A, McMahon H. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci. 2014;127:4602-19 pubmed 出版商
  24. Tanti G, Goswami S. SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med. 2014;75:1-13 pubmed 出版商
  25. Asano S, Nemoto T, Kitayama T, Harada K, Zhang J, Harada K, et al. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion. Biol Open. 2014;3:463-74 pubmed 出版商
  26. Shinmura K, Goto M, Tao H, Kato H, Suzuki R, Nakamura S, et al. Impaired 8-hydroxyguanine repair activity of MUTYH variant p.Arg109Trp found in a Japanese patient with early-onset colorectal cancer. Oxid Med Cell Longev. 2014;2014:617351 pubmed 出版商
  27. Price M, Gong H, Parsons M, Kundert J, Reznikov L, Bernardinelli L, et al. Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes Brain Behav. 2014;13:179-94 pubmed 出版商
  28. Heydendael W, Sengupta A, Beck S, Bhatnagar S. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol Behav. 2014;130:182-90 pubmed 出版商
  29. Li L, Dutra A, Pak E, Labrie J, Gerstein R, Pandolfi P, et al. EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors. Neuro Oncol. 2009;11:9-21 pubmed 出版商