这是一篇来自已证抗体库的有关大鼠 Ⅲ型β微管蛋白 (Tubb3) 的综述,是根据618篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ⅲ型β微管蛋白 抗体。
BioLegend
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 5a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 人类; 1:1000; 图 1a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Pharmaceuticals (Basel) (2021) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 图 2h
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上 (图 2h). iScience (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2f
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801213)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2f). Nat Commun (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 s6a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s6a). NPJ Parkinsons Dis (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 大鼠; 1:5000; 图 8k
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 8k). Nat Commun (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 1j
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1j). Cell Rep (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:750; 图 6m
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:750 (图 6m). Nat Commun (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 人类; 图 s6b
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801213)被用于被用于免疫组化在人类样本上 (图 s6b). Cell Stem Cell (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:750; 图 3g
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:750 (图 3g). Cell Rep Med (2021) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:500; 图 1d
BioLegendⅢ型β微管蛋白抗体(Biolegend, 802001)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1d). Int J Mol Sci (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801206)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3d). Front Cell Neurosci (2021) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 图 2a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 802001)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). JCI Insight (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 1a
BioLegendⅢ型β微管蛋白抗体(COVANCE, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1a). Cancer Biol Med (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:400
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:400. elife (2021) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 2c2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2c2). Int J Mol Sci (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 s5b
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s5b). Alzheimers Res Ther (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:200; 图 1s2a
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1s2a). elife (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Transl Psychiatry (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 图 s2c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 6j
BioLegendⅢ型β微管蛋白抗体(Biolegend, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6j). elife (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Glia (2020) ncbi
小鼠 单克隆(TUJ1)
  • 其他; 人类; 1:100
BioLegendⅢ型β微管蛋白抗体(Biolegend, TUJ1)被用于被用于其他在人类样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 6e
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 6e). Nat Commun (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 4d
  • 免疫印迹; 小鼠; 图 4b
BioLegendⅢ型β微管蛋白抗体(Biolegend, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上 (图 4d) 和 被用于免疫印迹在小鼠样本上 (图 4b). Neuron (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 图 1a
BioLegendⅢ型β微管蛋白抗体(BioLegend/Biozol, 801201)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Front Aging Neurosci (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5s1c
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5s1c). elife (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3e
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3e). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:5000; 图 4d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4d). elife (2020) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 5c
BioLegendⅢ型β微管蛋白抗体(Biolegend, 802001)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 5c). Nat Commun (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1s1b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1s1b). elife (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 6a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 6a). elife (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500; 图 7e
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 8c
  • 免疫细胞化学; 大鼠; 1:500; 图 6b
BioLegendⅢ型β微管蛋白抗体(Biolegend, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7e), 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 8c) 和 被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 6b). Sci Rep (2020) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化; 小鼠; 1:500; 图 1c
BioLegendⅢ型β微管蛋白抗体(Biolegend, 802001)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). Cell Rep (2020) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-石蜡切片; 人类; 图 s1
BioLegendⅢ型β微管蛋白抗体(BioLegend, PRB-435P)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). J Cancer Res Clin Oncol (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 1d
BioLegendⅢ型β微管蛋白抗体(Covance, 801213)被用于被用于免疫细胞化学在小鼠样本上 (图 1d). Sci Rep (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 图 6c
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c). elife (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 2s1c
  • 免疫组化-石蜡切片; 小鼠; 图 2s1a, 2s2a, 4s1a
  • 免疫细胞化学; 小鼠; 图 2a, 2s1b
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801213)被用于被用于免疫细胞化学在人类样本上 (图 2s1c), 被用于免疫组化-石蜡切片在小鼠样本上 (图 2s1a, 2s2a, 4s1a) 和 被用于免疫细胞化学在小鼠样本上 (图 2a, 2s1b). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4a
  • 免疫组化-冰冻切片; 人类; 1:3000; 图 6h
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4a) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:3000 (图 6h). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 流式细胞仪; 人类; 1:200; 图 4b
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801203)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 4b). Epilepsy Behav (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 鸡; 1:250; 图 3s6a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化在鸡样本上浓度为1:250 (图 3s6a). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2s3
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801213)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2s3). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 1d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 1d). J Comp Neurol (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 s1j
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 s1j). Cell (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 1a, 1d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, 1d). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 1c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Stem Cells (2019) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 1c
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Stem Cells (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 人类; 1:8000; 图 5b
BioLegendⅢ型β微管蛋白抗体(Biolegend, TUJ1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:8000 (图 5b). Nature (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 s4c
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801,202)被用于被用于免疫细胞化学在人类样本上 (图 s4c). Genome Biol (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 7s2b
  • 免疫印迹; 小鼠; 1:5000; 图 7s2c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 7s2b) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7s2c). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500; 图 2g
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2g). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 s3e
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫细胞化学在小鼠样本上 (图 s3e). Cell (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:100; 图 3s1b
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3s1b). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
BioLegendⅢ型β微管蛋白抗体(BioLegend, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). elife (2019) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:300; 图 s4d
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s4d). Nat Commun (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1k
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1k). Nat Neurosci (2019) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化; 小鼠; 1:2000; 图 2c
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P-100)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2c). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 人类; 图 s1b
  • 免疫组化; African green monkey; 1:500; 图 s1b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435)被用于被用于免疫组化在人类样本上 (图 s1b) 和 被用于免疫组化在African green monkey样本上浓度为1:500 (图 s1b). Cell (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 6a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6a). J Comp Neurol (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 1e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1e). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1d
BioLegendⅢ型β微管蛋白抗体(BioLegends, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 1d). Cell Rep (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5c). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Nature (2019) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). Science (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1a). Front Neurosci (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 2
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫细胞化学在人类样本上 (图 2). J Stem Cells Regen Med (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 4j
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上 (图 4j). J Clin Invest (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:750; 图 1c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:750 (图 1c). J Neurosci (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 s1c
BioLegendⅢ型β微管蛋白抗体(biolegend, 801201)被用于被用于免疫组化在小鼠样本上 (图 s1c). Nat Commun (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
BioLegendⅢ型β微管蛋白抗体(Covance, 801201)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a). Free Radic Biol Med (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 人类; 图 3a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3a). J Lipid Res (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上 (图 1a). Development (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 人类; 图 4g
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在人类样本上 (图 4g). Oncogenesis (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4d). Gene Expr Patterns (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4e). J Neurosci (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 4d
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫组化在小鼠样本上 (图 4d). Eneuro (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上 (图 1b). Dev Cell (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 e8i
BioLegendⅢ型β微管蛋白抗体(BioLegend, mms-435p)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 e8i). Nature (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 2b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:4000; 图 3e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (图 3e). Nat Commun (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 1j
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1j). Stem Cell Res (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1500; 图 1e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1500 (图 1e). Neuron (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2c
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435p)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 7a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 7a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:500; 表 s1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 s1). Stem Cell Reports (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 大鼠; 图 s4c
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在大鼠样本上 (图 s4c). J Cell Biol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 1f
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1f). Nat Cell Biol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 图 2a2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a2). Sci Rep (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 猕猴; 1:1000; 图 5b
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS 435 P)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:1000 (图 5b) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4c). Sci Rep (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:800; 图 1e
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 1e). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:6000; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:6000 (图 1b). Cell Rep (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500; 图 7a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7a). Nat Commun (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 1a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 1a). J Comp Neurol (2017) ncbi
小鼠 单克隆(TUJ1)
  • proximity ligation assay; 小鼠; 图 3a
  • 免疫细胞化学; 小鼠; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于proximity ligation assay在小鼠样本上 (图 3a) 和 被用于免疫细胞化学在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
BioLegendⅢ型β微管蛋白抗体(BioLegend, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). Hum Mol Genet (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:2000; 图 s7e
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s7e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 6b
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 6b). Cell (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:400; 图 42
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P-100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 42). Neural Regen Res (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:2500; 图 st4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2500 (图 st4). Nat Biotechnol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 3c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 3c). Cell Stem Cell (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 s2d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 s2d). Cell (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:5000; 图 3d
  • 免疫印迹; 小鼠; 1:5000; 图 3a
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). elife (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1c
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 1b
  • 免疫细胞化学; 人类; 1:1000; 图 s4a
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s4a). Transl Res (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 图 8a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上 (图 8a). elife (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 图 10a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 802001)被用于被用于免疫细胞化学在小鼠样本上 (图 10a). J Cell Biol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 e2k
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 e2k). Nature (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:1000; 图 1d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 1d). Mol Biol Cell (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 s1a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell Chem Biol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6c). Neural Dev (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:1000; 图 2c
BioLegendⅢ型β微管蛋白抗体(Covance, prb-435p-100)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2c). J Neuroinflammation (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 大鼠; 1:500; 图 7c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 7c). PLoS ONE (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500. Science (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1b
BioLegendⅢ型β微管蛋白抗体(BioLegend, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 1b). FASEB J (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 s3a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫细胞化学在人类样本上 (图 s3a). Nat Med (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化; 人类; 图 s5
BioLegendⅢ型β微管蛋白抗体(BioLegend, PRB-435P)被用于被用于免疫组化在人类样本上 (图 s5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫印迹; 人类; 1:5000
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫印迹在人类样本上浓度为1:5000. EMBO Mol Med (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:200; 图 s4a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4a). Development (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化; 人类; 1:2000; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 1a). Stem Cell Res (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5a). BMC Biol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 2000 ng/ml; 图 4s3
BioLegendⅢ型β微管蛋白抗体(Covance, mms-435p)被用于被用于免疫细胞化学在小鼠样本上浓度为2000 ng/ml (图 4s3). elife (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:5000; 表 2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (表 2). Lab Chip (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s2
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s2) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:500; 图 4a
  • 免疫印迹; 大鼠; 1:500; 图 4e
  • 免疫细胞化学; 人类; 1:500; 图 1a
  • 免疫印迹; 人类; 1:500; 图 1c
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 4a), 被用于免疫印迹在大鼠样本上浓度为1:500 (图 4e), 被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Sci Rep (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫印迹; 小鼠; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1500; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1500 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 图 1g
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上 (图 1g). Neuroscience (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 1d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 1d). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:2000; 图 1A
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1A). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:2000; 图 1A
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1A). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:2000; 图 1A
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1A). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:2000; 图 1A
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3a). EBioMedicine (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 st1
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6j
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6j). Cell Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:1,500; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1,500 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 2f
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上 (图 2f). elife (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 1:1000; 图 6
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1 ug/ml; 表 1
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 1s1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1s1). elife (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:250; 图 1c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1c). Nat Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s7
BioLegendⅢ型β微管蛋白抗体(covance, TUJ1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s7). Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 鸡; 图 2f
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在鸡样本上 (图 2f). Open Biol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:200; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, Tuj1)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Development (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 图 s2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3d). Nat Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Sci Rep (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (表 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 7
BioLegendⅢ型β微管蛋白抗体(Biolegend, 802001)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 7). Exp Ther Med (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:400; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5). Mol Brain (2016) ncbi
小鼠 单克隆(TUJ1)
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于. Stem Cell Reports (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Nat Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 2j
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2j). Stem Cells Int (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS435P)被用于被用于免疫细胞化学在人类样本上 (图 1a). Arch Toxicol (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 2e
BioLegendⅢ型β微管蛋白抗体(Covance/BioLegend, MMS-435P)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 2e). J Pineal Res (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 4). J Exp Med (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). J Cell Sci (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3a'
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3a'). Exp Neurol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:1000; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 6
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). J Neurosci (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-石蜡切片; 人类; 表 2
BioLegendⅢ型β微管蛋白抗体(Biolegend, PRB-435P)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Oncotarget (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:5000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; Meganyctiphanes norvegica; 图 5c
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化在Meganyctiphanes norvegica样本上 (图 5c). J Mol Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:100; 图 4b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4b). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:200
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:200. Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s1a). Cell (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:6000; 图 s1b
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:6000 (图 s1b). Nat Commun (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 大鼠; 图 7a
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在大鼠样本上 (图 7a). J Neurosci (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:2500; 图 4c
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2500 (图 4c). Stem Cells Int (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 1). Hum Mol Genet (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 5). J Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 1a). Synapse (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 图 8b
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上 (图 8b). Synapse (2016) ncbi
小鼠 单克隆(TUJ1)
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于. Stem Cell Reports (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 3a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). J Neurosci (2015) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化; 小鼠; 1:10,000; 图 2c
BioLegendⅢ型β微管蛋白抗体(BioLegend, 802001)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 2c). Dev Biol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:2000; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 2b
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Sci Rep (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, mms435p)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). EMBO Mol Med (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155p)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Dev Dyn (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 图 6
BioLegendⅢ型β微管蛋白抗体(BioLegend, TUJ1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:10,000; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 人类; 1:1000; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (表 1). J Neurosci Methods (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435p)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-100)被用于被用于免疫组化在小鼠样本上 (图 1). Lab Invest (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). J Tissue Eng Regen Med (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:300; 图 1e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1e). Brain Struct Funct (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, clone TUJ1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:5000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 3). Nat Protoc (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 2c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2c). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:5000
BioLegendⅢ型β微管蛋白抗体(Covance, TuJ1)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Brain (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:2000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1). Cereb Cortex (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 6d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6d). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance Research Projects, MMS-435P)被用于被用于免疫组化在小鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-冰冻切片; 人类
BioLegendⅢ型β微管蛋白抗体(Covance Inc, PRB-155P)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-冰冻切片在人类样本上. Acta Biomater (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:2000; 图 2Ah
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2Ah). Eur J Hum Genet (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:400
  • 免疫印迹; 小鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance Biolegend, PRB-155P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400, 被用于免疫印迹在小鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Mol Ther (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:350
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:350. J Biol Chem (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:2000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000. J Biol Chem (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:200; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Biol Chem (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncogene (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, PRB 155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Cytometry A (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Development (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:100; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Acta Biomater (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Dev Biol (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 6
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Neurosci (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Proteomics (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:2000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, Tuj1)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3). Stem Cell Reports (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上. Stem Cells (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:800
  • 免疫印迹; 小鼠; 1:800
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化在小鼠样本上浓度为1:800 和 被用于免疫印迹在小鼠样本上浓度为1:800. Mol Cell Biol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:400
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; pigs ; 1:100
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化在pigs 样本上浓度为1:100. Hum Mol Genet (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫细胞化学; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). J Cell Biochem (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; alpaca; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫细胞化学在alpaca样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 大鼠
  • 免疫印迹; 大鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在大鼠样本上 和 被用于免疫印迹在大鼠样本上. J Assoc Res Otolaryngol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:200
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:200. J Neurotrauma (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(TUJ1)
  • 流式细胞仪; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435p)被用于被用于流式细胞仪在人类样本上浓度为1:1000. Cancer Res (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. J Biol Chem (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Neurobiol Dis (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; African green monkey; 1:1200
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:1200. Nat Neurosci (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Assist Reprod Genet (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. World J Stem Cells (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:250
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. Front Cell Neurosci (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Cell Res (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1,000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1,000. J Comp Neurol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:2500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, Tuj1)被用于被用于免疫细胞化学在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫组化; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上浓度为1:500. Stem Cells Dev (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(BABCO, Tuj1)被用于被用于免疫组化在小鼠样本上浓度为1:500. Stem Cells (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Dev Biol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Stem Cell Res (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Antioxid Redox Signal (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:5000; 图 7a
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 7a). J Biol Chem (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, Tuj-1)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 人类; 1:100
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:100. Stem Cells Dev (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:3000
BioLegendⅢ型β微管蛋白抗体(Babco/Covance Res, PRB-155P)被用于被用于免疫组化在小鼠样本上浓度为1:3000. Cell Death Differ (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, TuJ1)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2). Neuroscience (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Stem Cell Res (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上. J Biomed Mater Res B Appl Biomater (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 大鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1,000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1,000. Methods Mol Biol (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:2000
BioLegendⅢ型β微管蛋白抗体(Covence, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000. PLoS ONE (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; pigs ; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在pigs 样本上浓度为1:500. Cell Reprogram (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上. Neural Dev (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). J Biol Chem (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 大鼠; 1:10,000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. J Biol Chem (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 大鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. Mol Cell Biol (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:400
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. PLoS ONE (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:10000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10000. J Neurosci (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上. Br J Cancer (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Neuropharmacology (2012) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1250
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1250. J Comp Neurol (2012) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:200
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2011) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Am J Pathol (2011) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 鸡; 1:1,000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:1,000. J Comp Neurol (2010) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; African green monkey; 1:2000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:2000. J Comp Neurol (2009) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 大鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 鸡; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ-1)被用于被用于免疫组化在鸡样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2b
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上 (图 s2b). BMC Biol (2021) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Acta Neuropathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化在小鼠样本上 (图 1c). PLoS Pathog (2021) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 图 4c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab190575)被用于被用于免疫细胞化学在人类样本上 (图 4c). ACS Biomater Sci Eng (2020) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 人类; 1:200; 图 s3-1c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s3-1c). elife (2020) ncbi
domestic rabbit 单克隆(EPR1568Y)
  • 免疫细胞化学; 小鼠; 1:400; 图 2a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab68193)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 2a). Transl Psychiatry (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 6g
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6g). elife (2020) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4g
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, Ab52901)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4g). Acta Neuropathol (2020) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 5d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EP1569Y)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52623)被用于被用于免疫印迹在人类样本上 (图 7a). elife (2020) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 人类; 图 1c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 6c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6c). Sci Rep (2020) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 小鼠; 1:300; 图 1c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1c). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1b). Epilepsy Behav (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). Cell (2019) ncbi
domestic rabbit 单克隆(EP1569Y)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5b
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52623)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5b). Nature (2019) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 人类; 图 s5b
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在人类样本上 (图 s5b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s4a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化在人类样本上 (图 s4a). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上. Front Mol Neurosci (2017) ncbi
domestic rabbit 单克隆(EP1569Y)
  • 免疫细胞化学; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52623)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3a). Neural Dev (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100; 表 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (表 1). Oncol Lett (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 小鼠; 1:400; 图 7a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 7a). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 小鼠; 图 3A
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在小鼠样本上 (图 3A). Peerj (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st15
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st15). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6j
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6j). Ann Neurol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫印迹; 大鼠; 1:100
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫印迹在大鼠样本上浓度为1:100. J Gen Physiol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫印迹; 人类; 图 9c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫印迹在人类样本上 (图 9c). Oncotarget (2016) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫印迹在小鼠样本上 (图 6a). F1000Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2a). F1000Res (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 18207)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 8). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Brain (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 小鼠; 图 4f
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, TU-20)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4f). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1h
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1h). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). J Neurochem (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:1000; 图 2
  • 免疫印迹; 大鼠; 图 s5
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, TU-20)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 s5). Stem Cells Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(abcam, ab18207)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Cell Reprogram (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2
  • 免疫印迹; 小鼠; 1:2000; 图 4
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(2G10)
  • 流式细胞仪; 大鼠; 图 6
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab195879)被用于被用于流式细胞仪在大鼠样本上 (图 6). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab41489)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在小鼠样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 18207)被用于被用于免疫印迹在小鼠样本上 (图 3b). BMC Genomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 鸡; 1:500; 图 s6
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化在鸡样本上浓度为1:500 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 7
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 人类; 1:500; 图 7a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在人类样本上浓度为1:500 (图 7a). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(abcam, ab18207)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Cytotechnology (2016) ncbi
domestic rabbit 单克隆
  • 免疫组化; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. Hum Pathol (2015) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫细胞化学在大鼠样本上. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:6000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫印迹在小鼠样本上浓度为1:6000. Biol Reprod (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:2000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Methods Mol Biol (2016) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 小鼠; 图 9
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫细胞化学在小鼠样本上 (图 9). Int J Mol Sci (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, AB7751)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EPR1568Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Epitomics, 2276-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5). J Neurochem (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Neurobiol (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:1000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Neurochem Int (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化; 人类; 1:1000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫组化在人类样本上浓度为1:1000. Stem Cells Dev (2013) ncbi
赛默飞世尔
小鼠 单克隆(2G10-TB3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 9a
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 14-4510-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 9a). Nat Commun (2021) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 小鼠; 图 1i
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Fisher, 480011)被用于被用于免疫细胞化学在小鼠样本上 (图 1i). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(2G10)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 4f
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3g
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermofisher, MA1-118)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 4f) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3g). Nat Commun (2020) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 图 9
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Fisher Scientific, MA5-16308)被用于被用于免疫印迹在人类样本上 (图 9). Cells (2019) ncbi
小鼠 单克隆(BT7R)
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, MA5-C16308-BTIN)被用于. J Biol Chem (2019) ncbi
小鼠 单克隆(BT7R)
  • 免疫细胞化学; 小鼠; 1:100; 图 3h
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Fisher, MA5-16308-A647)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3h). Mol Cancer Res (2018) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在小鼠样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在人类样本上 (图 3a). Autophagy (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:4000; 图 8a
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 8a). J Physiol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫组化-冰冻切片; domestic rabbit; 1:100; 图 4e
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, MA1118)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:100 (图 4e). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(2G10-TB3)
  • 免疫组化; 小鼠; 1:250; 图 2d
赛默飞世尔Ⅲ型β微管蛋白抗体(eBioscience, 50-4510)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2d). J Cell Sci (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5d
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 1559509A)被用于被用于免疫印迹在人类样本上 (图 5d). J Biol Chem (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1e
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1e). Neurotherapeutics (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样本上 (图 5). Reprod Biol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 3b
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样本上 (图 3b). J Hematol Oncol (2016) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000; 图 4d
赛默飞世尔Ⅲ型β微管蛋白抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4d). Mol Neurobiol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:500; 图 4
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:5000; 表 1
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Fisher, MA5-16308)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (表 1). J Nutr Biochem (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Cancer Res (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛默飞世尔Ⅲ型β微管蛋白抗体(ThermoFisher, BT7R)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 人类; 1:2000; 图 9
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Fisher, MA1-19187)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 9). Oncotarget (2016) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样本上 (图 4). J Neurotrauma (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1s1
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1s1). elife (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(ThermoFisher Scientific, PA5-16863)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 人类; 1:100; 图 5e
赛默飞世尔Ⅲ型β微管蛋白抗体(eBioscience, 2G10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5e). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 32?C2600)被用于被用于免疫细胞化学在小鼠样本上. Eur J Immunol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, PA1-16947)被用于. Chem Pharm Bull (Tokyo) (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32?C2600)被用于被用于免疫印迹在人类样本上. Clin Transl Gastroenterol (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 人类; 1:500; 图 1,4
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 32-C2600)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1,4). Sci Rep (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 s5
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 0.5 ng/ml
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样本上浓度为0.5 ng/ml. J Cell Physiol (2015) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:5000; 图 4a
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo, BT7R)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4a). Exp Eye Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Fisher Scientific, PA1-41331)被用于. Mol Med (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在小鼠样本上. J Cereb Blood Flow Metab (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, PA1-16947)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AA10)
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 480011)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 322600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔Ⅲ型β微管蛋白抗体(ZYMED, 22833)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Front Cell Neurosci (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo, RB-9249-PO)被用于. Hum Mol Genet (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific Pierce Antibodies, PA1-16947)被用于被用于免疫印迹在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 犬
赛默飞世尔Ⅲ型β微管蛋白抗体(Zymed, 32-2600)被用于被用于免疫印迹在犬样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. BMC Neurosci (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 2
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样本上. Brain Res (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 2-28-33)被用于被用于免疫组化在小鼠样本上浓度为1:300. Brain Struct Funct (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 人类
赛默飞世尔Ⅲ型β微管蛋白抗体(Novex, 32-2600)被用于被用于免疫细胞化学在人类样本上. Histochem Cell Biol (2014) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 小鼠; 1:3000
赛默飞世尔Ⅲ型β微管蛋白抗体(Pierce, MA5-16308)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. Front Neurosci (2013) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔Ⅲ型β微管蛋白抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Oxid Med Cell Longev (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). J Biol Chem (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 1
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, clone 2-28-33)被用于被用于免疫印迹在人类样本上 (图 1). Int J Cancer (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 4, 5
赛默飞世尔Ⅲ型β微管蛋白抗体(Zymed, 32-2600)被用于被用于免疫印迹在人类样本上 (图 4, 5). Exp Cell Res (2011) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔Ⅲ型β微管蛋白抗体(Zymed Laboratories, 32-2600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuro Oncol (2011) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔Ⅲ型β微管蛋白抗体(Zymed Laboratories, 32-2600)被用于被用于免疫印迹在小鼠样本上 (图 3). Free Radic Biol Med (2009) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; African green monkey; 图 2
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 2-28-33)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). Angew Chem Int Ed Engl (2008) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 8
赛默飞世尔Ⅲ型β微管蛋白抗体(Zymed, 32-2600)被用于被用于免疫印迹在人类样本上 (图 8). J Invest Dermatol (2008) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔Ⅲ型β微管蛋白抗体(Zymed Laboratories, 2-28-33)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2007) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 32-2600)被用于被用于免疫印迹在小鼠样本上 (图 6). J Immunol (2006) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5
赛默飞世尔Ⅲ型β微管蛋白抗体(Zymed, 2-28-33)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2004) ncbi
圣克鲁斯生物技术
小鼠 单克隆(AA10)
  • 免疫组化; 大鼠; 1:200; 图 1d
  • 免疫印迹; 大鼠; 1:1000; 图 7f
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz Biotechnology, sc80016)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7f). Mol Pain (2020) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 小鼠; 图 s2c
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(SantaCruz, sc-80016)被用于被用于免疫细胞化学在小鼠样本上 (图 s2c). Cell (2017) ncbi
小鼠 单克隆(AA10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-80016)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 图 5c
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, TU-20)被用于被用于免疫细胞化学在小鼠样本上 (图 5c). Neuroscience (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:2000
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-51670)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. PLoS ONE (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-51670)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mar Drugs (2015) ncbi
小鼠 单克隆(3H3091)
  • 免疫印迹; 犬; 1:1000; 图 6
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-69966)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 6). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 大鼠; 1:1000
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz Biotechnology, sc-80005)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Oxid Med Cell Longev (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz Biotechnology, sc-51670)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Neuroreport (2014) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 大鼠; 1:550
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-80005)被用于被用于免疫细胞化学在大鼠样本上浓度为1:550. Cell Mol Neurobiol (2014) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化; 小鼠
Synaptic SystemsⅢ型β微管蛋白抗体(Synaptic Systems, 302302)被用于被用于免疫组化在小鼠样本上. Nature (2021) ncbi
豚鼠 多克隆
  • 免疫印迹; 小鼠; 图 1a
Synaptic SystemsⅢ型β微管蛋白抗体(Synaptic Systems, 302304)被用于被用于免疫印迹在小鼠样本上 (图 1a). Science (2019) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4s1b
Synaptic SystemsⅢ型β微管蛋白抗体(Synaptic Systems, 302304)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4s1b). elife (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2j
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2j). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3d). Metabolites (2021) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 小鼠; 图 ex8n
  • 免疫印迹; 小鼠; 1:1000; 图 ex8m
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568S)被用于被用于免疫细胞化学在小鼠样本上 (图 ex8n) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ex8m). Nat Cell Biol (2021) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫印迹; 人类; 1:10,000; 图 1g
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1g). Neuro Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2j
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2j). Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2h
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2h). PLoS Genet (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Science (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 3a). Cells (2020) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 4466)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5c). Cell Death Dis (2020) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 图 s3d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technologies, 4466)被用于被用于免疫细胞化学在人类样本上 (图 s3d). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signalling Technology, 9284S)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Lett (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Biochem J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nature (2019) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(CST, 5568S)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3e). Clin Sci (Lond) (2019) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于. Cell Stem Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(cst, 9284)被用于被用于免疫印迹在人类样本上 (图 4b). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 6a) 和 被用于免疫印迹在大鼠样本上 (图 6a). Cancer Lett (2018) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化; 大鼠; 1:200; 图 4a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化; 小鼠; 1:400; 图 3a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 1c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化; 人类; 1:100; 图 1g
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568S)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1g). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Breast Cancer (Dove Med Press) (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(CST, 9284)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signalling Technolog, 9284)被用于被用于免疫印迹在人类样本上 (图 3d). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Cycle (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Arch Biochem Biophys (2017) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, D71G9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Brain (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 5568)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6a). Dev Growth Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technologies, 9284)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; roundworm ; 图 s3b
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284)被用于被用于免疫印迹在roundworm 样本上 (图 s3b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 5568)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2a). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284S)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Tech, 9284)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Signaling Technology, 9284)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 5f). Cell Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Tech, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(ell Signaling Technology, 9284)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 人类; 1:300; 图 s14
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, D71G9)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s14). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signal, 9284)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(cell signalling, D71G9)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284L)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D65A4)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5666)被用于被用于免疫印迹在人类样本上 (图 8c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res Treat (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在小鼠样本上 (图 2e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technolog, 9284)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(cell signalling, 9284)被用于被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 4466)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5j
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 5j). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 4d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). DNA Repair (Amst) (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Med Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 s5). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nature (2015) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(cell signalling, D71G9)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Acta Neuropathol (2015) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, #5568)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Neuroinflammation (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signalling, 9284)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化; 人类; 1:50; 图 7
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫组化在人类样本上浓度为1:50 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 4466S)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 4466)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neurobiol Aging (2015) ncbi
domestic rabbit 单克隆(D65A4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 5666)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T5076)被用于被用于免疫组化在小鼠样本上浓度为1:400. Development (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 人类; 1:1000; 图 1c, 1f
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1c, 1f). Endocrinology (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:500; 图 s13c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076-200UL)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s13c). Nat Cell Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5a). Cells (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:750; 图 8u
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T5076)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 8u). BMC Biol (2021) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 人类; 1:3000; 图 6b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8578)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 6b). Nat Commun (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:10,000; 图 2b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma Aldrich, T8660)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2b). elife (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:5000; 图 3c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3c). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2d
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2d). Nat Commun (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:300; 图 3a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T 8660)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3a). Front Immunol (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3b). Dis Model Mech (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 人类; 1:5000; 图 7b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T-8660)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7b). Nat Commun (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 猕猴; 1:1000; 图 6a
  • 免疫细胞化学; African green monkey; 1:1000; 图 6a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在猕猴样本上浓度为1:1000 (图 6a) 和 被用于免疫细胞化学在African green monkey样本上浓度为1:1000 (图 6a). Cells (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 人类; 1:500; 图 ev5b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫组化在人类样本上浓度为1:500 (图 ev5b). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s2a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma Aldrich, T2200)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2a). Commun Biol (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 图 2a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上 (图 2a). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 s4c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s4c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1g
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1g). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在小鼠样本上 (图 6c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 1a, 6a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1a, 6a). Cell (2019) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Glia (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3b). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma Aldrich, T2200)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1a). Brain Behav Immun (2019) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:200; 图 s2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2). PLoS Pathog (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:3000; 图 4c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:3000 (图 4c). Nat Commun (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:300; 图 s4c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s4c). Nat Neurosci (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3b). Stem Cell Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 4g
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T2200)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上 (图 4g). Wound Repair Regen (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:500; 图 6e
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6e). Cell (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s2c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s2c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在人类样本上 (图 3a). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 st1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 st1). Nature (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 表 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Stem Cell Res (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3d
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3d). Stem Cell Reports (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 图 5e
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上 (图 5e). Stem Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 1a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1a). Mol Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 3d
  • 免疫印迹; 小鼠; 1:5000; 图 3a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). elife (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 1:2000; 图 6a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, SDL.3D10)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3). J Vis Exp (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:300; 图 s1h
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s1h). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 S1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T2200)被用于被用于免疫细胞化学在人类样本上 (图 S1). J Clin Invest (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:2000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000. J Neurochem (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:1000; 表 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:4000; 图 2a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上浓度为1:4000 (图 2a). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; African green monkey; 1:250; 图 4
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:250 (图 4). Biomed Res Int (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:2000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Mol Ther (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:500; 图 3a
  • 免疫印迹; 小鼠; 1:500; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3b). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 5
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 6a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上 (图 6a). ACS Nano (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:4000; 表 2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (表 2). Stem Cell Res (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:4000; 图 1e
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (图 1e). Stem Cell Res (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 图 3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Mol Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 s9d
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s9d). Nature (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 犬; 1:1000; 图 2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:1000 (图 2). Brain Behav (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 1
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma Aldrich, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s8a). Nat Commun (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:500; 图 6f
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6f). Mol Med Rep (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; common marmoset; 1:250; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在common marmoset样本上浓度为1:250 (图 1). Neurosci Res (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:400; 图 1a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich,, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1a). BMC Biol (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 人类; 1:400; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在人类样本上浓度为1:400 (图 3b). Methods Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 s3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上 (图 s3). PLoS ONE (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; African green monkey; 1:250; 图 1i
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫组化在African green monkey样本上浓度为1:250 (图 1i). Sci Rep (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 大鼠; 1:400; 图 7h
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 7h). Acta Biomater (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Basic Res Cardiol (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:200; 表 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于. Brain Behav (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:3000; 图 s2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 s2). Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T2200)被用于. Mol Ther Methods Clin Dev (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; giant panda; 1:100; 图 3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在giant panda样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 大鼠; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T-8660)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Cell J (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于. Genome Res (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1). Cell Transplant (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于. Nature (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:200; 图 1h
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1h). PLoS ONE (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; common marmoset; 1:400; 图 3
  • 免疫组化; common marmoset; 1:600; 图 3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在common marmoset样本上浓度为1:400 (图 3) 和 被用于免疫组化在common marmoset样本上浓度为1:600 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 s6
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s6) 和 被用于免疫印迹在人类样本上浓度为1:1000. BMC Genomics (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 大鼠; 1:1000; 图 S2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 S2). PLoS ONE (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1b). Nat Commun (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:5000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:5000. Transl Psychiatry (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:500; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Stem Cells Dev (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 大鼠; 1:20000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在大鼠样本上浓度为1:20000. J Neurosci (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:400. J Vis Exp (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Stem Cells Transl Med (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:400; 图 4c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4c). Mol Neurobiol (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Neurosci Methods (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 犬
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在犬样本上. Methods Mol Biol (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, SDL.3D10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 人类
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在人类样本上. Am J Physiol Renal Physiol (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Cytotherapy (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫组化在人类样本上浓度为1:1000. Mol Brain (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上. EMBO J (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫组化在人类样本上. Acta Neurobiol Exp (Wars) (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1,000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1,000. Stem Cells Transl Med (2012) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; African green monkey; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在African green monkey样本上浓度为1:200. J Comp Neurol (2011) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; 小鼠; 1:250
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. J Comp Neurol (2010) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Comp Neurol (2009) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:200. J Comp Neurol (2009) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:6000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在小鼠样本上浓度为1:6000. J Comp Neurol (2009) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 大鼠; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫组化在大鼠样本上浓度为1:200. J Comp Neurol (2007) ncbi
文章列表
  1. Xiao D, Jin K, Qiu S, Lei Q, Huang W, Chen H, et al. In vivo Regeneration of Ganglion Cells for Vision Restoration in Mammalian Retinas. Front Cell Dev Biol. 2021;9:755544 pubmed 出版商
  2. Prabhu A, Kang I, De Pace R, Wassif C, Fujiwara H, Kell P, et al. A human iPSC-derived inducible neuronal model of Niemann-Pick disease, type C1. BMC Biol. 2021;19:218 pubmed 出版商
  3. Sapir G, Steinberg D, Aqeilan R, Katz Brull R. Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids-A New Method to Characterize the Metabolism of Brain Organoids?. Pharmaceuticals (Basel). 2021;14: pubmed 出版商
  4. Zhao J, Lu W, Ren Y, Fu Y, Martens Y, Shue F, et al. Apolipoprotein E regulates lipid metabolism and α-synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathol. 2021;142:807-825 pubmed 出版商
  5. Sugiyama T, Murao N, Kadowaki H, Takao K, Miyakawa T, Matsushita Y, et al. ERAD components Derlin-1 and Derlin-2 are essential for postnatal brain development and motor function. iScience. 2021;24:102758 pubmed 出版商
  6. Cho A, Jin Y, An Y, Kim J, Choi Y, Lee J, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730 pubmed 出版商
  7. Shi X, Jiang Y, Kitano A, Hu T, Murdaugh R, Li Y, et al. Nuclear NAD+ homeostasis governed by NMNAT1 prevents apoptosis of acute myeloid leukemia stem cells. Sci Adv. 2021;7: pubmed 出版商
  8. Yoo J, Lee D, Park S, Shin H, Lee K, Kim D, et al. Trophoblast glycoprotein is a marker for efficient sorting of ventral mesencephalic dopaminergic precursors derived from human pluripotent stem cells. NPJ Parkinsons Dis. 2021;7:61 pubmed 出版商
  9. Chronowski C, Akhanov V, CHAN D, Catic A, Finegold M, Sahin E. Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and p53 Loss. Metabolites. 2021;11: pubmed 出版商
  10. Ichinose M, Suzuki N, Wang T, Kobayashi H, Vrbanac L, Ng J, et al. The BMP antagonist gremlin 1 contributes to the development of cortical excitatory neurons, motor balance and fear responses. Development. 2021;148: pubmed 出版商
  11. Oury J, Zhang W, Leloup N, Koide A, Corrado A, Ketavarapu G, et al. Mechanism of disease and therapeutic rescue of Dok7 congenital myasthenia. Nature. 2021;595:404-408 pubmed 出版商
  12. Li F, Lo T, Miles L, Wang Q, Noristani H, Li D, et al. The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nat Commun. 2021;12:3845 pubmed 出版商
  13. Hung C, Tuck E, Stubbs V, van der Lee S, Aalfs C, van Spaendonk R, et al. SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Rep. 2021;35:109259 pubmed 出版商
  14. Keen K, Petersen A, Figueroa A, Fordyce B, Shin J, Yadav R, et al. Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells. Endocrinology. 2021;162: pubmed 出版商
  15. Mehboob R, Marchenkova A, van den Maagdenberg A, Nistri A. Overexpressed Na V 1.7 Channels Confer Hyperexcitability to in vitro Trigeminal Sensory Neurons of Ca V 2.1 Mutant Hemiplegic Migraine Mice. Front Cell Neurosci. 2021;15:640709 pubmed 出版商
  16. Truong D, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, et al. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol. 2021;23:652-663 pubmed 出版商
  17. Xu P, Borges R, Fillatre J, de Oliveira Melo M, Cheng T, Thisse B, et al. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun. 2021;12:3277 pubmed 出版商
  18. Vermehren Schmaedick A, Huang J, Levinson M, Pomaville M, Reed S, Bellus G, et al. Characterization of PARP6 Function in Knockout Mice and Patients with Developmental Delay. Cells. 2021;10: pubmed 出版商
  19. Eriksen A, Møller R, Makovoz B, Uhl S, tenOever B, Blenkinsop T. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell. 2021;28:1205-1220.e7 pubmed 出版商
  20. Gusyatiner O, Bady P, Pham M, Lei Y, Park J, Daniel R, et al. BET inhibitors repress expression of interferon-stimulated genes and synergize with HDAC inhibitors in glioblastoma. Neuro Oncol. 2021;23:1680-1692 pubmed 出版商
  21. Lin T, Quellier D, Lamb J, Voisin T, Baral P, Bock F, et al. Pseudomonas aeruginosa-induced nociceptor activation increases susceptibility to infection. PLoS Pathog. 2021;17:e1009557 pubmed 出版商
  22. Aprigliano R, Aksu M, Bradamante S, Mihaljevic B, Wang W, Rian K, et al. Increased p53 signaling impairs neural differentiation in HUWE1-promoted intellectual disabilities. Cell Rep Med. 2021;2:100240 pubmed 出版商
  23. Seol B, Kim Y, Cho Y. Modeling Sialidosis with Neural Precursor Cells Derived from Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci. 2021;22: pubmed 出版商
  24. Park J, Kam T, Lee S, Park H, Oh Y, Kwon S, et al. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:78 pubmed 出版商
  25. Ofek S, Wiszniak S, Kagan S, Tondl M, Schwarz Q, Kalcheim C. Notch signaling is a critical initiator of roof plate formation as revealed by the use of RNA profiling of the dorsal neural tube. BMC Biol. 2021;19:84 pubmed 出版商
  26. Miwa T. Protective Effects of N1-Methylnicotinamide Against High-Fat Diet- and Age-Induced Hearing Loss via Moderate Overexpression of Sirtuin 1 Protein. Front Cell Neurosci. 2021;15:634868 pubmed 出版商
  27. Baker L, Tar M, Kramer A, Villegas G, Charafeddine R, Vafaeva O, et al. Fidgetin-like 2 negatively regulates axonal growth and can be targeted to promote functional nerve regeneration. JCI Insight. 2021;6: pubmed 出版商
  28. Inak G, Rybak Wolf A, Lisowski P, Pentimalli T, Jüttner R, Glažar P, et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun. 2021;12:1929 pubmed 出版商
  29. Wang X, Pei Z, Hossain A, Bai Y, Chen G. Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion. Cancer Biol Med. 2021;: pubmed 出版商
  30. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  31. Ferreira N, Gonçalves N, Jan A, Jensen N, van der Laan A, Mohseni S, et al. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. Acta Neuropathol Commun. 2021;9:31 pubmed 出版商
  32. Tapias A, Lazaro D, Yin B, Rasa S, Krepelova A, Kelmer Sacramento E, et al. HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. elife. 2021;10: pubmed 出版商
  33. Deshpande D, Agarwal N, Fleming T, Gaveriaux Ruff C, Klose C, Tappe Theodor A, et al. Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nat Commun. 2021;12:426 pubmed 出版商
  34. Roliński M, Montaldo N, Aksu M, Fordyce Martin S, Brambilla A, Kunath N, et al. Loss of Mediator complex subunit 13 (MED13) promotes resistance to alkylation through cyclin D1 upregulation. Nucleic Acids Res. 2021;: pubmed 出版商
  35. O Grady B, Balotin K, Bosworth A, McClatchey P, Weinstein R, Gupta M, et al. Development of an N-Cadherin Biofunctionalized Hydrogel to Support the Formation of Synaptically Connected Neural Networks. ACS Biomater Sci Eng. 2020;6:5811-5822 pubmed 出版商
  36. Morozov Y, Mackie K, Rakic P. Cannabinoid Type 1 Receptor is Undetectable in Rodent and Primate Cerebral Neural Stem Cells but Participates in Radial Neuronal Migration. Int J Mol Sci. 2020;21: pubmed 出版商
  37. Hall Roberts H, Agarwal D, Obst J, Smith T, Monzón Sandoval J, Di Daniel E, et al. TREM2 Alzheimer's variant R47H causes similar transcriptional dysregulation to knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages. Alzheimers Res Ther. 2020;12:151 pubmed 出版商
  38. Roth J, Muench K, Asokan A, Mallett V, Gai H, Verma Y, et al. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. elife. 2020;9: pubmed 出版商
  39. Wiemann S, Reinhard J, Reinehr S, Cibir Z, Joachim S, Faissner A. Loss of the Extracellular Matrix Molecule Tenascin-C Leads to Absence of Reactive Gliosis and Promotes Anti-inflammatory Cytokine Expression in an Autoimmune Glaucoma Mouse Model. Front Immunol. 2020;11:566279 pubmed 出版商
  40. Dewhurst M, Ow J, Zafer G, Van Hul N, Wollmann H, Bisteau X, et al. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet. 2020;16:e1009084 pubmed 出版商
  41. Guo H, Chou W, Lai Y, Liang K, Tam J, Brickey W, et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science. 2020;370: pubmed 出版商
  42. Schuster S, Heuten E, Velic A, Admard J, Synofzik M, Ossowski S, et al. CHIP mutations affect the heat shock response differently in human fibroblasts and iPSC-derived neurons. Dis Model Mech. 2020;13: pubmed 出版商
  43. Franco A, Dang X, Walton E, Ho J, Zablocka B, Ly C, et al. Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A. elife. 2020;9: pubmed 出版商
  44. Moses N, Zhang M, Wu J, Hu C, Xiang S, Geng X, et al. HDAC6 Regulates Radiosensitivity of Non-Small Cell Lung Cancer by Promoting Degradation of Chk1. Cells. 2020;9: pubmed 出版商
  45. Morales Garcia J, Calleja Conde J, Lopez Moreno J, Alonso Gil S, Sanz Sancristobal M, Riba J, et al. N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl Psychiatry. 2020;10:331 pubmed 出版商
  46. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  47. Benavente F, Piltti K, Hooshmand M, Nava A, Lakatos A, Feld B, et al. Novel C1q receptor-mediated signaling controls neural stem cell behavior and neurorepair. elife. 2020;9: pubmed 出版商
  48. Perera S, Williams R, Lyne R, Stubbs O, Buehler D, Sauka Spengler T, et al. Insights into olfactory ensheathing cell development from a laser-microdissection and transcriptome-profiling approach. Glia. 2020;68:2550-2584 pubmed 出版商
  49. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  50. Leelatian N, Sinnaeve J, Mistry A, Barone S, Brockman A, Diggins K, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. elife. 2020;9: pubmed 出版商
  51. Soleilhavoup C, Travaglio M, Patrick K, Garção P, Boobalan E, Adolfs Y, et al. Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nat Commun. 2020;11:3111 pubmed 出版商
  52. Stauske M, Rodriguez Polo I, Haas W, Knorr D, Borchert T, Streckfuss Bömeke K, et al. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells. 2020;9: pubmed 出版商
  53. Shin S, Itson Zoske B, Cai Y, Qiu C, Pan B, Stucky C, et al. Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Mol Pain. 2020;16:1744806920925425 pubmed 出版商
  54. Sase S, Almad A, Boecker C, Guedes Dias P, Li J, Takanohashi A, et al. TUBB4A mutations result in both glial and neuronal degeneration in an H-ABC leukodystrophy mouse model. elife. 2020;9: pubmed 出版商
  55. Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, et al. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med. 2020;12:e11419 pubmed 出版商
  56. Van der Perren A, Gelders G, Fenyi A, Bousset L, Brito F, Peelaerts W, et al. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson's disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. 2020;139:977-1000 pubmed 出版商
  57. Waaler J, Mygland L, Tveita A, Strand M, Solberg N, Olsen P, et al. Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 2020;3:196 pubmed 出版商
  58. Escande Beillard N, Loh A, Saleem S, Kanata K, Hashimoto Y, Altunoglu U, et al. Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2. Neuron. 2020;107:82-94.e6 pubmed 出版商
  59. Marchetta P, Möhrle D, Eckert P, Reimann K, Wolter S, Tolone A, et al. Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. Front Aging Neurosci. 2020;12:83 pubmed 出版商
  60. Mondal B, Jin H, Kallappagoudar S, Sedkov Y, Martinez T, Sentmanat M, et al. The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. elife. 2020;9: pubmed 出版商
  61. Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, et al. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY). 2020;12:5590-5611 pubmed 出版商
  62. Zhang R, Liakath Ali K, Sudhof T. Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. elife. 2020;9: pubmed 出版商
  63. Mecha M, Yanguas Casás N, Feliú A, Mestre L, Carrillo Salinas F, Riecken K, et al. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. J Neuroinflammation. 2020;17:88 pubmed 出版商
  64. Barry D, Liu X, Liu B, Liu X, Gao F, Zeng X, et al. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun. 2020;11:1397 pubmed 出版商
  65. Fares M, Cochet Bernoin M, Gonzalez G, Montero Menei C, Blanchet O, Benchoua A, et al. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J Neuroinflammation. 2020;17:76 pubmed 出版商
  66. Vigouroux R, Cesar Q, Chedotal A, Nguyen Ba Charvet K. Revisiting the role of Dcc in visual system development with a novel eye clearing method. elife. 2020;9: pubmed 出版商
  67. Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun. 2020;11:941 pubmed 出版商
  68. Liu C, Stevens S, Teliska L, Stankewich M, Mohler P, Hund T, et al. Nodal β spectrins are required to maintain Na+ channel clustering and axon integrity. elife. 2020;9: pubmed 出版商
  69. Philpott J, Narasimamurthy R, Ricci C, Freeberg A, Hunt S, Yee L, et al. Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. elife. 2020;9: pubmed 出版商
  70. Torres Mejía E, Trumbach D, Kleeberger C, Dornseifer U, Orschmann T, Bäcker T, et al. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep. 2020;10:1984 pubmed 出版商
  71. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  72. Suter T, Blagburn S, Fisher S, Anderson Keightly H, D Elia K, Jaworski A. TAG-1 Multifunctionality Coordinates Neuronal Migration, Axon Guidance, and Fasciculation. Cell Rep. 2020;30:1164-1177.e7 pubmed 出版商
  73. Heinzelmann Schwarz V, Kind A, Vetter M, Russell K, Omar S, Schoetzau A, et al. Should MMMT still be treated with adjuvant taxane-based combination chemotherapy?. J Cancer Res Clin Oncol. 2020;146:695-704 pubmed 出版商
  74. Trevisan A, Bauer M, Brindley R, Currie K, Carter B. Jedi-1 deficiency increases sensory neuron excitability through a non-cell autonomous mechanism. Sci Rep. 2020;10:1300 pubmed 出版商
  75. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  76. Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed 出版商
  77. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  78. Sarić N, Selby M, Ramaswamy V, Kool M, Stockinger B, Hogstrand C, et al. The AHR pathway represses TGFβ-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Sci Rep. 2020;10:148 pubmed 出版商
  79. Zhu Q, Zhang N, Hu N, Jiang R, Lu H, Xuan A, et al. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer's disease. Mol Med Rep. 2020;21:1172-1180 pubmed 出版商
  80. Li C, Li X, Bi Z, Sugino K, Wang G, Zhu T, et al. Comprehensive transcriptome analysis of cochlear spiral ganglion neurons at multiple ages. elife. 2020;9: pubmed 出版商
  81. Yang D, Qu F, Cai H, Chuang C, Lim J, Jahchan N, et al. Axon-like protrusions promote small cell lung cancer migration and metastasis. elife. 2019;8: pubmed 出版商
  82. Ercan Herbst E, Ehrig J, Schöndorf D, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun. 2019;7:192 pubmed 出版商
  83. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  84. Rocktäschel P, Sen A, Cader M. High glucose concentrations mask cellular phenotypes in a stem cell model of tuberous sclerosis complex. Epilepsy Behav. 2019;101:106581 pubmed 出版商
  85. Zhu Y, Scheibinger M, Ellwanger D, Krey J, Choi D, Kelly R, et al. Single-cell proteomics reveals changes in expression during hair-cell development. elife. 2019;8: pubmed 出版商
  86. Sifuentes Dominguez L, Li H, Llano E, Liu Z, Singla A, Patel A, et al. SCGN deficiency results in colitis susceptibility. elife. 2019;8: pubmed 出版商
  87. Margarido A, Le Guen L, Falco A, Faure S, Chauvet N, de Santa Barbara P. PROX1 is a specific and dynamic marker of sacral neural crest cells in the chicken intestine. J Comp Neurol. 2020;528:879-889 pubmed 出版商
  88. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  89. Guo S, Liu R, Wen Y, Liu L, Yuan L, Li Y, et al. Endogenous production of C-C motif chemokine ligand 2 by nasopharyngeal carcinoma cells drives radioresistance-associated metastasis. Cancer Lett. 2020;468:27-40 pubmed 出版商
  90. Patzke C, Brockmann M, Dai J, Gan K, Grauel M, Fenske P, et al. Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell. 2019;179:498-513.e22 pubmed 出版商
  91. Guo H, Li Y, Shen L, Wang T, Jia X, Liu L, et al. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Sci Adv. 2019;5:eaax2166 pubmed 出版商
  92. Fan D, Chettouh Z, Consalez G, Brunet J. Taste bud formation depends on taste nerves. elife. 2019;8: pubmed 出版商
  93. Grimaldi A, Pediconi N, Oieni F, Pizzarelli R, Rosito M, Giubettini M, et al. Neuroinflammatory Processes, A1 Astrocyte Activation and Protein Aggregation in the Retina of Alzheimer's Disease Patients, Possible Biomarkers for Early Diagnosis. Front Neurosci. 2019;13:925 pubmed 出版商
  94. Wenta T, Rychlowski M, Jarzab M, Lipinska B. HtrA4 Protease Promotes Chemotherapeutic-Dependent Cancer Cell Death. Cells. 2019;8: pubmed 出版商
  95. Huycke T, Miller B, Gill H, Nerurkar N, Sprinzak D, Mahadevan L, et al. Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell. 2019;179:90-105.e21 pubmed 出版商
  96. Martínez J, Tarallo D, Martinez Palma L, Victoria S, Bresque M, Rodriguez Bottero S, et al. Mitofusins modulate the increase in mitochondrial length, bioenergetics and secretory phenotype in therapy-induced senescent melanoma cells. Biochem J. 2019;476:2463-2486 pubmed 出版商
  97. Tomassoni Ardori F, Fulgenzi G, Becker J, Barrick C, Palko M, Kuhn S, et al. Rbfox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels. elife. 2019;8: pubmed 出版商
  98. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  99. Zhu Y, Huang M, Bushong E, Phan S, Uytiepo M, Beutter E, et al. Class IIa HDACs regulate learning and memory through dynamic experience-dependent repression of transcription. Nat Commun. 2019;10:3469 pubmed 出版商
  100. Hovestadt V, Smith K, Bihannic L, Filbin M, Shaw M, Baumgartner A, et al. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature. 2019;572:74-79 pubmed 出版商
  101. Wegmann R, Neri M, Schuierer S, Bilican B, Hartkopf H, Nigsch F, et al. CellSIUS provides sensitive and specific detection of rare cell populations from complex single-cell RNA-seq data. Genome Biol. 2019;20:142 pubmed 出版商
  102. Nam H, Jeon S, An H, Yoo J, Lee H, Lee S, et al. Critical roles of ARHGAP36 as a signal transduction mediator of Shh pathway in lateral motor columnar specification. elife. 2019;8: pubmed 出版商
  103. Wiel C, Le Gal K, Ibrahim M, Jahangir C, Kashif M, Yao H, et al. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell. 2019;: pubmed 出版商
  104. Zhang J, Lee Y, Dang F, Gan W, Menon A, Katon J, et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019;: pubmed 出版商
  105. An D, Fujiki R, Iannitelli D, Smerdon J, Maity S, Rose M, et al. Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. elife. 2019;8: pubmed 出版商
  106. Ioannou M, Jackson J, Sheu S, Chang C, Weigel A, Liu H, et al. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell. 2019;: pubmed 出版商
  107. Alexander J, Guan J, Li B, Maliskova L, Song M, Shen Y, et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. elife. 2019;8: pubmed 出版商
  108. Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed 出版商
  109. Zeng X, Ye M, Resch J, Jedrychowski M, Hu B, Lowell B, et al. Innervation of thermogenic adipose tissue via a calsyntenin 3β-S100b axis. Nature. 2019;569:229-235 pubmed 出版商
  110. Wang G, Simon D, Wu Z, Belsky D, Heller E, O Rourke M, et al. Structural plasticity of actin-spectrin membrane skeleton and functional role of actin and spectrin in axon degeneration. elife. 2019;8: pubmed 出版商
  111. Montalbán Loro R, Lozano Ureña A, Ito M, Krueger C, Reik W, Ferguson Smith A, et al. TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn. Nat Commun. 2019;10:1726 pubmed 出版商
  112. Chan E, Shibue T, McFarland J, Gaeta B, Ghandi M, Dumont N, et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature. 2019;568:551-556 pubmed 出版商
  113. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  114. DeLalio L, Billaud M, Ruddiman C, Johnstone S, Butcher J, Wolpe A, et al. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem. 2019;294:6940-6956 pubmed 出版商
  115. Wang H, Wang X, Zhang K, Wang Q, Cao X, Wang Z, et al. Rapid depletion of ESCRT protein Vps4 underlies injury-induced autophagic impediment and Wallerian degeneration. Sci Adv. 2019;5:eaav4971 pubmed 出版商
  116. Nakazeki F, Tsuge I, Horie T, Imamura K, Tsukita K, Hotta A, et al. MiR-33a is a therapeutic target in SPG4-related hereditary spastic paraplegia human neurons. Clin Sci (Lond). 2019;133:583-595 pubmed 出版商
  117. Li Z, Hao M, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. elife. 2019;8: pubmed 出版商
  118. Pollen A, Bhaduri A, Andrews M, Nowakowski T, Meyerson O, Mostajo Radji M, et al. Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell. 2019;176:743-756.e17 pubmed 出版商
  119. Davies A, Kim H, González Cano R, Choi J, Back S, Roh S, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176:716-728.e18 pubmed 出版商
  120. Friocourt F, Kozulin P, Belle M, Su rez R, Di Po N, Richards L, et al. Shared and differential features of Robo3 expression pattern in amniotes. J Comp Neurol. 2019;527:2009-2029 pubmed 出版商
  121. Erwig M, Patzig J, Steyer A, Dibaj P, Heilmann M, Heilmann I, et al. Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. elife. 2019;8: pubmed 出版商
  122. Paonessa F, Evans L, Solanki R, Larrieu D, Wray S, Hardy J, et al. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Rep. 2019;26:582-593.e5 pubmed 出版商
  123. Luo C, Lee Q, Wapinski O, Castanon R, Nery J, Mall M, et al. Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. elife. 2019;8: pubmed 出版商
  124. Poulopoulos A, Murphy A, Ozkan A, Davis P, Hatch J, Kirchner R, et al. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature. 2019;565:356-360 pubmed 出版商
  125. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  126. Ciolli Mattioli C, Rom A, Franke V, Imami K, Arrey G, Terne M, et al. Alternative 3' UTRs direct localization of functionally diverse protein isoforms in neuronal compartments. Nucleic Acids Res. 2019;47:2560-2573 pubmed 出版商
  127. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018;362: pubmed 出版商
  128. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  129. Hill J, Zuluaga Ramirez V, Gajghate S, Winfield M, Sriram U, Rom S, et al. Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation. Brain Behav Immun. 2019;76:165-181 pubmed 出版商
  130. Hsu J, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F, et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018;23:700-713.e6 pubmed 出版商
  131. Cheruiyot A, Li S, Nickless A, Roth R, Fitzpatrick J, You Z. Compound C inhibits nonsense-mediated RNA decay independently of AMPK. PLoS ONE. 2018;13:e0204978 pubmed 出版商
  132. Robbins J, Perfect L, Ribe E, Maresca M, Dangla Valls A, Foster E, et al. Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons. Front Neurosci. 2018;12:504 pubmed 出版商
  133. Tseligka E, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, et al. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog. 2018;14:e1007190 pubmed 出版商
  134. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  135. Xiao D, Liu X, Zhang M, Zou M, Deng Q, Sun D, et al. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun. 2018;9:2865 pubmed 出版商
  136. Playne R, Jones K, Connor B. Generation of dopamine neuronal-like cells from induced neural precursors derived from adult human cells by non-viral expression of lineage factors. J Stem Cells Regen Med. 2018;14:34-44 pubmed
  137. Wang B, Joo J, Mount R, Teubner B, Krenzer A, Ward A, et al. The COPII cargo adapter SEC24C is essential for neuronal homeostasis. J Clin Invest. 2018;128:3319-3332 pubmed 出版商
  138. Karow M, Camp J, Falk S, Gerber T, Pataskar A, Gac Santel M, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci. 2018;21:932-940 pubmed 出版商
  139. Appel J, Ye S, Tang F, Sun D, Zhang H, Mei L, et al. Increased Microglial Activity, Impaired Adult Hippocampal Neurogenesis, and Depressive-like Behavior in Microglial VPS35-Depleted Mice. J Neurosci. 2018;38:5949-5968 pubmed 出版商
  140. Luisier R, Tyzack G, Hall C, Mitchell J, Devine H, Taha D, et al. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun. 2018;9:2010 pubmed 出版商
  141. Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, et al. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett. 2018;428:21-33 pubmed 出版商
  142. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  143. Wu M, Liu S, Gao Y, Bai H, Machairaki V, Li G, et al. Conditional gene knockout and reconstitution in human iPSCs with an inducible Cas9 system. Stem Cell Res. 2018;29:6-14 pubmed 出版商
  144. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  145. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  146. Wilson R, Drake J, Cui D, Lewellen B, Fisher C, Zhang M, et al. Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. Free Radic Biol Med. 2018;117:180-190 pubmed 出版商
  147. Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, et al. Neural crest-derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen. 2018;26:54-63 pubmed 出版商
  148. Allende M, Cook E, Larman B, Nugent A, Brady J, Golebiowski D, et al. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res. 2018;59:550-563 pubmed 出版商
  149. Panaliappan T, Wittmann W, Jidigam V, Mercurio S, Bertolini J, Sghari S, et al. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development. 2018;145: pubmed 出版商
  150. de la Torre Ubieta L, Stein J, Won H, Opland C, Liang D, Lu D, et al. The Dynamic Landscape of Open Chromatin during Human Cortical Neurogenesis. Cell. 2018;172:289-304.e18 pubmed 出版商
  151. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  152. Miesfeld J, Glaser T, Brown N. The dynamics of native Atoh7 protein expression during mouse retinal histogenesis, revealed with a new antibody. Gene Expr Patterns. 2018;27:114-121 pubmed 出版商
  153. Hata K, Maeno Hikichi Y, Yumoto N, Burden S, Landmesser L. Distinct Roles of Different Presynaptic and Postsynaptic NCAM Isoforms in Early Motoneuron-Myotube Interactions Required for Functional Synapse Formation. J Neurosci. 2018;38:498-510 pubmed 出版商
  154. Browne L, Smith K, Jagger D. Identification of Persistent and Resurgent Sodium Currents in Spiral Ganglion Neurons Cultured from the Mouse Cochlea. Eneuro. 2017;4: pubmed 出版商
  155. Yamazaki R, Yamazoe K, Yoshida S, Hatou S, Inagaki E, Okano H, et al. The Semaphorin 3A inhibitor SM-345431 preserves corneal nerve and epithelial integrity in a murine dry eye model. Sci Rep. 2017;7:15584 pubmed 出版商
  156. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  157. Vassilev V, Platek A, Hiver S, Enomoto H, Takeichi M. Catenins Steer Cell Migration via Stabilization of Front-Rear Polarity. Dev Cell. 2017;43:463-479.e5 pubmed 出版商
  158. Escamilla C, Filonova I, Walker A, Xuan Z, Holehonnur R, Espinosa F, et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017;551:227-231 pubmed 出版商
  159. Zhao L, Liu J, He C, Yan R, Zhou K, Cui Q, et al. Protein kinase A determines platelet life span and survival by regulating apoptosis. J Clin Invest. 2017;127:4338-4351 pubmed 出版商
  160. Ong D, Hu B, Ho Y, Sauvé C, Bristow C, Wang Q, et al. PAF promotes stemness and radioresistance of glioma stem cells. Proc Natl Acad Sci U S A. 2017;114:E9086-E9095 pubmed 出版商
  161. Chu T, Connell M, Zhou L, He Z, Won J, Chen H, et al. Cell Cycle-Dependent Tumor Engraftment and Migration Are Enabled by Aurora-A. Mol Cancer Res. 2018;16:16-31 pubmed 出版商
  162. Chen X, Janssen J, Liu J, Maggio I, t Jong A, Mikkers H, et al. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nat Commun. 2017;8:657 pubmed 出版商
  163. Alonso Barroso E, Brasil S, Briso Montiano Á, Navarrete R, Perez Cerda C, Ugarte M, et al. Generation and characterization of a human iPSC line from a patient with propionic acidemia due to defects in the PCCA gene. Stem Cell Res. 2017;23:173-177 pubmed 出版商
  164. Sloan S, Darmanis S, Huber N, Khan T, Birey F, Caneda C, et al. Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells. Neuron. 2017;95:779-790.e6 pubmed 出版商
  165. Smith R, Huang Y, Tian T, Vojtasova D, Mesalles Naranjo O, Pollard S, et al. The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. J Neurosci. 2017;37:7975-7993 pubmed 出版商
  166. Young F, Keruzore M, Nan X, Gennet N, Bellefroid E, Li M. The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A. 2017;114:E5599-E5607 pubmed 出版商
  167. Wang R, Cao X, Kulej K, Liu W, Ma T, MacDonald M, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E5352-E5361 pubmed 出版商
  168. Nandi S, Mishra P. H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci Rep. 2017;7:3639 pubmed 出版商
  169. Coleman J, Lin B, Schwob J. Dissecting LSD1-Dependent Neuronal Maturation in the Olfactory Epithelium. J Comp Neurol. 2017;525:3391-3413 pubmed 出版商
  170. Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda Andoh T, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports. 2017;8:1743-1756 pubmed 出版商
  171. Chavali P, Stojic L, Meredith L, Joseph N, Nahorski M, Sanford T, et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science. 2017;357:83-88 pubmed 出版商
  172. Ganguly A, Han X, Das U, Wang L, Loi J, Sun J, et al. Hsc70 chaperone activity is required for the cytosolic slow axonal transport of synapsin. J Cell Biol. 2017;216:2059-2074 pubmed 出版商
  173. Wang L, Yu C, Wang J, Leung P, Ma D, Zhao H, et al. Nogo-B is the major form of Nogo at the floor plate and likely mediates crossing of commissural axons in the mouse spinal cord. J Comp Neurol. 2017;525:2915-2928 pubmed 出版商
  174. Takahashi Y, Wu J, Suzuki K, Martínez Redondo P, Li M, Liao H, et al. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science. 2017;356:503-508 pubmed 出版商
  175. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  176. Cha Y, Han M, Cha H, Zoldan J, Burkart A, Jung J, et al. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol. 2017;19:445-456 pubmed 出版商
  177. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  178. Yang X, Qi L, Lin F, Ou Z. The role of the chemokine receptor XCR1 in breast cancer cells. Breast Cancer (Dove Med Press). 2017;9:227-236 pubmed 出版商
  179. Liu S, Ye Z, Gao Y, He C, Williams D, MOLITERNO A, et al. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene. Stem Cell Res. 2017;18:57-59 pubmed 出版商
  180. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  181. Suzuki J, Hashimoto K, Xiao R, Vandenberghe L, Liberman M. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep. 2017;7:45524 pubmed 出版商
  182. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  183. McNeely K, Cupp T, Little J, Janisch K, Shrestha A, Dwyer N. Mutation of Kinesin-6 Kif20b causes defects in cortical neuron polarization and morphogenesis. Neural Dev. 2017;12:5 pubmed 出版商
  184. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  185. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  186. Barlow Anacker A, Fu M, Erickson C, Bertocchini F, Gosain A. Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen. Sci Rep. 2017;7:45645 pubmed 出版商
  187. Kang H, Park J, Choi K, Kim Y, Choi H, Jung C, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616-623 pubmed 出版商
  188. Yungher B, Ribeiro M, Park K. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci. 2017;58:1743-1750 pubmed 出版商
  189. Laporte M, Chatellard C, Vauchez V, Hemming F, Deloulme J, Vossier F, et al. Alix is required during development for normal growth of the mouse brain. Sci Rep. 2017;7:44767 pubmed 出版商
  190. García Castañeda M, Vega A, Rodríguez R, Montiel Jaen M, Cisneros B, Zarain Herzberg A, et al. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1. J Physiol. 2017;595:4167-4187 pubmed 出版商
  191. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. 2017;18:2622-2634 pubmed 出版商
  192. Jongbloets B, Lemstra S, Schellino R, Broekhoven M, Parkash J, Hellemons A, et al. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun. 2017;8:14666 pubmed 出版商
  193. Shan M, Lin S, Li S, Du Y, Zhao H, Hong H, et al. TIR-Domain-Containing Adapter-Inducing Interferon-? (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Front Cell Neurosci. 2017;11:35 pubmed 出版商
  194. Bartlett R, Sluyter V, Watson D, Sluyter R, Yerbury J. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1G93A amyotrophic lateral sclerosis mice. Peerj. 2017;5:e3064 pubmed 出版商
  195. Itakura G, Kawabata S, Ando M, Nishiyama Y, Sugai K, Ozaki M, et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports. 2017;8:673-684 pubmed 出版商
  196. Chang Y, Lin T, Campbell M, Pan C, Lee S, Lee H, et al. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep. 2017;7:42795 pubmed 出版商
  197. Hegarty D, Hermes S, Yang K, Aicher S. Select noxious stimuli induce changes on corneal nerve morphology. J Comp Neurol. 2017;525:2019-2031 pubmed 出版商
  198. Chen W, Chen Y, Huang Y, Hsieh B, Chiu H, Kao P, et al. Ran-dependent TPX2 activation promotes acentrosomal microtubule nucleation in neurons. Sci Rep. 2017;7:42297 pubmed 出版商
  199. Arioka Y, Ito H, Hirata A, Semi K, Yamada Y, Seishima M. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Res. 2017;20:1-9 pubmed 出版商
  200. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  201. Yuan H, Tan B, Gao S. Tenovin-6 impairs autophagy by inhibiting autophagic flux. Cell Death Dis. 2017;8:e2608 pubmed 出版商
  202. Meisenberg C, Ashour M, El Shafie L, Liao C, Hodgson A, Pilborough A, et al. Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res. 2017;45:1159-1176 pubmed 出版商
  203. Cooper H, Yang Y, Ylikallio E, Khairullin R, Woldegebriel R, Lin K, et al. ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia. Hum Mol Genet. 2017;26:1432-1443 pubmed 出版商
  204. Sterky F, Trotter J, Lee S, Recktenwald C, Du X, Zhou B, et al. Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proc Natl Acad Sci U S A. 2017;114:E1253-E1262 pubmed 出版商
  205. Wu J, Platero Luengo A, Sakurai M, Sugawara A, Gil M, Yamauchi T, et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell. 2017;168:473-486.e15 pubmed 出版商
  206. Weng C, Ding M, Chang L, Ren M, Zhang H, Lu Z, et al. Ankfy1 is dispensable for neural stem/precursor cell development. Neural Regen Res. 2016;11:1804-1809 pubmed 出版商
  207. Zhou C, Robert M, Kapoulea V, Lei F, Stagner A, Jakobiec F, et al. Sustained Subconjunctival Delivery of Infliximab Protects the Cornea and Retina Following Alkali Burn to the Eye. Invest Ophthalmol Vis Sci. 2017;58:96-105 pubmed 出版商
  208. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  209. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  210. Huang Y, Zhou B, Wernig M, Sudhof T. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and A? Secretion. Cell. 2017;168:427-441.e21 pubmed 出版商
  211. Callif B, Maunze B, Krueger N, Simpson M, Blackmore M. The application of CRISPR technology to high content screening in primary neurons. Mol Cell Neurosci. 2017;80:170-179 pubmed 出版商
  212. Yoshitomi Y, Ikeda T, Saito H, Yoshitake Y, Ishigaki Y, Hatta T, et al. JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin. J Cell Sci. 2017;130:916-926 pubmed 出版商
  213. Walker L, Summers D, Sasaki Y, Brace E, Milbrandt J, DiAntonio A. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. elife. 2017;6: pubmed 出版商
  214. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  215. Gao S, Geng C, Song T, Lin X, Liu J, Cai Z, et al. Activation of c-Abl Kinase Potentiates the Anti-myeloma Drug Lenalidomide by Promoting DDA1 Protein Recruitment to the CRL4 Ubiquitin Ligase. J Biol Chem. 2017;292:3683-3691 pubmed 出版商
  216. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  217. Lee I, Koo K, Jung K, Kim M, Kim I, Hwang K, et al. Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury. Transl Res. 2017;183:121-136.e9 pubmed 出版商
  218. Ilouz R, Lev Ram V, Bushong E, Stiles T, Friedmann Morvinski D, Douglas C, et al. Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain. elife. 2017;6: pubmed 出版商
  219. Aggarwal T, Hoeber J, Ivert P, Vasylovska S, Kozlova E. Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons. Neurotherapeutics. 2017;14:773-783 pubmed 出版商
  220. Alcoba D, Schneider J, Arruda L, Martiny P, Capp E, von Eye Corleta H, et al. Brilliant cresyl blue staining does not present cytotoxic effects on human luteinized follicular cells, according to gene/protein expression, as well as to cytotoxicity tests. Reprod Biol. 2017;17:60-68 pubmed 出版商
  221. Kim J, Lee J, Sun W. Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone. J Vis Exp. 2016;: pubmed 出版商
  222. Wakatsuki S, Tokunaga S, Shibata M, Araki T. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration. J Cell Biol. 2017;216:477-493 pubmed 出版商
  223. Hosoya M, Fujioka M, Sone T, Okamoto S, Akamatsu W, Ukai H, et al. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017;18:68-81 pubmed 出版商
  224. Wamsley J, Issaeva N, An H, Lu X, Donehower L, Yarbrough W. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213-223 pubmed 出版商
  225. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  226. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  227. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  228. Fimiani C, Goina E, Su Q, Gao G, Mallamaci A. RNA activation of haploinsufficient Foxg1 gene in murine neocortex. Sci Rep. 2016;6:39311 pubmed 出版商
  229. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  230. Burnett L, LeDuc C, Sulsona C, Paull D, Rausch R, Eddiry S, et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest. 2017;127:293-305 pubmed 出版商
  231. Yao P, Manor U, Petralia R, Brose R, Wu R, Ott C, et al. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Mol Biol Cell. 2017;28:387-395 pubmed 出版商
  232. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  233. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  234. McKenzie C, D Avino P. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget. 2016;7:87323-87341 pubmed 出版商
  235. FINAN G, Realubit R, Chung S, Lutjohann D, Wang N, Cirrito J, et al. Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes. Cell Chem Biol. 2016;23:1526-1538 pubmed 出版商
  236. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  237. López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, et al. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation. 2016;13:295 pubmed
  238. Moulis M, Millet A, Daloyau M, Miquel M, Ronsin B, Wissinger B, et al. OPA1 haploinsufficiency induces a BNIP3-dependent decrease in mitophagy in neurons: relevance to Dominant Optic Atrophy. J Neurochem. 2017;140:485-494 pubmed 出版商
  239. Ibañez Rodriguez M, Noctor S, Muñoz E. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator. PLoS ONE. 2016;11:e0167063 pubmed 出版商
  240. Espinosa Medina I, Saha O, Boismoreau F, Chettouh Z, Rossi F, Richardson W, et al. The sacral autonomic outflow is sympathetic. Science. 2016;354:893-897 pubmed
  241. Deflorio C, Blanchard S, Carisì M, Bohl D, Maskos U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons. FASEB J. 2017;31:828-839 pubmed 出版商
  242. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  243. Brykczynska U, Pecho Vrieseling E, Thiemeyer A, Klein J, Fruh I, Doll T, et al. CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Reports. 2016;7:1059-1071 pubmed 出版商
  244. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  245. Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, et al. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med. 2016;8:1421-1437 pubmed 出版商
  246. Wang W, Ye H, Wei P, Han B, He B, Chen Z, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 2016;9:117 pubmed
  247. Puschmann A, Fiesel F, Caulfield T, Hudec R, Ando M, Truban D, et al. Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain. 2017;140:98-117 pubmed 出版商
  248. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  249. Varga E, Nemes C, Táncos Z, Bock I, Berzsenyi S, Lévay G, et al. Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance. Stem Cell Res. 2016;17:531-533 pubmed 出版商
  250. Rangasamy S, Olfers S, Gerald B, Hilbert A, Svejda S, Narayanan V. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model. F1000Res. 2016;5:2269 pubmed
  251. Konstantinidou C, Taraviras S, Pachnis V. Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biol. 2016;14:94 pubmed
  252. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  253. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  254. Gasperini L, Meneghetti E, Legname G, Benetti F. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution. Front Neurosci. 2016;10:437 pubmed
  255. Illingworth R, Hölzenspies J, Roske F, Bickmore W, Brickman J. Polycomb enables primitive endoderm lineage priming in embryonic stem cells. elife. 2016;5: pubmed 出版商
  256. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016;16:4152-4162 pubmed
  257. Yang J, Platt L, Maity B, Ahlers K, Luo Z, Lin Z, et al. RGS6 is an essential tumor suppressor that prevents bladder carcinogenesis by promoting p53 activation and DNMT1 downregulation. Oncotarget. 2016;7:69159-69172 pubmed 出版商
  258. Oksdath M, Guil A, Grassi D, Sosa L, Quiroga S. The Motor KIF5C Links the Requirements of Stable Microtubules and IGF-1 Receptor Membrane Insertion for Neuronal Polarization. Mol Neurobiol. 2017;54:6085-6096 pubmed 出版商
  259. Powis R, Karyka E, Boyd P, Côme J, Jones R, Zheng Y, et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight. 2016;1:e87908 pubmed 出版商
  260. Neckel P, Mattheus U, Hirt B, Just L, Mack A. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331 pubmed 出版商
  261. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert D. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ. 2016;58:664-676 pubmed 出版商
  262. Sadick J, Boutin M, Hoffman Kim D, Darling E. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep. 2016;6:33999 pubmed 出版商
  263. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  264. Tang Y, Hendriks J, Gensch T, Dai L, Li J. Automatic Bayesian single molecule identification for localization microscopy. Sci Rep. 2016;6:33521 pubmed 出版商
  265. Borgs L, Peyre E, Alix P, Hanon K, Grobarczyk B, Godin J, et al. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Sci Rep. 2016;6:33377 pubmed 出版商
  266. Dias T, Alves M, Rato L, Casal S, Silva B, Oliveira P. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. J Nutr Biochem. 2016;37:83-93 pubmed 出版商
  267. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  268. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  269. Xing H, Lim Y, Chong J, Lee J, Aarsland D, Ballard C, et al. Increased phosphorylation of collapsin response mediator protein-2 at Thr514 correlates with ?-amyloid burden and synaptic deficits in Lewy body dementias. Mol Brain. 2016;9:84 pubmed 出版商
  270. Weber A, Drobnitzky N, Devery A, Bokobza S, Adams R, Maughan T, et al. Phenotypic consequences of somatic mutations in the ataxia-telangiectasia mutated gene in non-small cell lung cancer. Oncotarget. 2016;7:60807-60822 pubmed 出版商
  271. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  272. Magalhães A, Rivera C. NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence. Front Cell Neurosci. 2016;10:200 pubmed 出版商
  273. Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation. 2016;13:208 pubmed 出版商
  274. Zak M, van Oort T, Hendriksen F, Garcia M, Vassart G, Grolman W. LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea. Front Cell Neurosci. 2016;10:186 pubmed 出版商
  275. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:81-83 pubmed 出版商
  276. Chandrasekaran A, Varga E, Nemes C, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:78-80 pubmed 出版商
  277. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from an 84-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:75-77 pubmed 出版商
  278. Ochalek A, Nemes C, Varga E, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer's disease. Stem Cell Res. 2016;17:72-74 pubmed 出版商
  279. Shikuma N, Antoshechkin I, Medeiros J, Pilhofer M, Newman D. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci U S A. 2016;113:10097-102 pubmed 出版商
  280. Wang Y, Zhao Z, Rege S, Wang M, Si G, Zhou Y, et al. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nat Med. 2016;22:1050-5 pubmed 出版商
  281. Park J, Yang S, Park J, Ka S, Kim J, Kong Y, et al. Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification. Nat Commun. 2016;7:12513 pubmed 出版商
  282. Nagano T, Nakano M, Nakashima A, Onishi K, Yamao S, Enari M, et al. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci Rep. 2016;6:31758 pubmed 出版商
  283. Mikami Y, Kanemaru K, Okubo Y, Nakaune T, Suzuki J, Shibata K, et al. Nitric Oxide-induced Activation of the Type 1 Ryanodine Receptor Is Critical for Epileptic Seizure-induced Neuronal Cell Death. EBioMedicine. 2016;11:253-261 pubmed 出版商
  284. Kazantseva J, Sadam H, Neuman T, Palm K. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming. Sci Rep. 2016;6:30852 pubmed 出版商
  285. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  286. Wiley L, Burnight E, DeLuca A, Anfinson K, Cranston C, Kaalberg E, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep. 2016;6:30742 pubmed 出版商
  287. Ah Koon L, Lesage D, Lemadre E, Souissi I, Fagard R, Varin Blank N, et al. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells. J Cell Mol Med. 2016;20:1956-65 pubmed 出版商
  288. Luo H, Cowen L, Yu G, Jiang W, Tang Y. SMG7 is a critical regulator of p53 stability and function in DNA damage stress response. Cell Discov. 2016;2:15042 pubmed 出版商
  289. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  290. Borromeo M, Savage T, Kollipara R, He M, Augustyn A, Osborne J, et al. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep. 2016;16:1259-1272 pubmed 出版商
  291. Stergiopoulos A, Politis P. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development. Nat Commun. 2016;7:12230 pubmed 出版商
  292. Shivkumar M, Lawler C, Milho R, Stevenson P. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol. 2016;90:8661-72 pubmed 出版商
  293. Li H, Li H, Hao Y, Jiao Y, Li Z, Yue H, et al. Differential long non?coding RNA and mRNA expression in differentiated human glioblastoma stem cells. Mol Med Rep. 2016;14:2067-76 pubmed 出版商
  294. Li S, Qu Z, Haas M, Ngo L, Heo Y, Kang H, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci Rep. 2016;6:29514 pubmed 出版商
  295. Hosoya M, Fujioka M, Okano H, Ogawa K. Distinct Expression Pattern of a Deafness Gene, KIAA1199, in a Primate Cochlea. Biomed Res Int. 2016;2016:1781894 pubmed 出版商
  296. Osman E, Washington C, Kaifer K, Mazzasette C, Patitucci T, Florea K, et al. Optimization of Morpholino Antisense Oligonucleotides Targeting the Intronic Repressor Element1 in Spinal Muscular Atrophy. Mol Ther. 2016;24:1592-601 pubmed 出版商
  297. Huang Z, Hu J, Pan J, Wang Y, Hu G, Zhou J, et al. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development. 2016;143:2398-409 pubmed 出版商
  298. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5: pubmed 出版商
  299. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  300. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  301. Edmondson R, Adcock A, Yang L. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins. PLoS ONE. 2016;11:e0158116 pubmed 出版商
  302. Park K, Luo X, Mooney S, Yungher B, Belin S, Wang C, et al. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol. 2017;525:380-388 pubmed 出版商
  303. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  304. Hansen S, Borland H, Hasholt L, Tumer Z, Nielsen J, Rasmussen M, et al. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11. Stem Cell Res. 2016;16:589-92 pubmed 出版商
  305. Hansen S, Borland H, Hasholt L, Tumer Z, Nielsen J, Rasmussen M, et al. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11. Stem Cell Res. 2016;16:553-6 pubmed 出版商
  306. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  307. Stefanelli G, Gandaglia A, Costa M, Cheema M, Di Marino D, Barbiero I, et al. Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association. Sci Rep. 2016;6:28295 pubmed 出版商
  308. Lee W, Jo S, Lee M, Won C, Lee M, Choi J, et al. The Effect of MCP-1/CCR2 on the Proliferation and Senescence of Epidermal Constituent Cells in Solar Lentigo. Int J Mol Sci. 2016;17: pubmed 出版商
  309. Joly S, Pernet V. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma. J Neurochem. 2016;138:571-86 pubmed 出版商
  310. Cormerais Y, Giuliano S, Lefloch R, Front B, Durivault J, Tambutte E, et al. Genetic Disruption of the Multifunctional CD98/LAT1 Complex Demonstrates the Key Role of Essential Amino Acid Transport in the Control of mTORC1 and Tumor Growth. Cancer Res. 2016;76:4481-92 pubmed 出版商
  311. Quintes S, Brinkmann B, Ebert M, Fröb F, Kungl T, Arlt F, et al. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat Neurosci. 2016;19:1050-1059 pubmed 出版商
  312. Hyslop L, Blakeley P, Craven L, Richardson J, Fogarty N, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534:383-6 pubmed 出版商
  313. Lin S, Gou G, Hsia C, Ho C, Huang K, Wu Y, et al. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev. 2016;25:1172-93 pubmed 出版商
  314. Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, et al. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep. 2016;6:27354 pubmed 出版商
  315. Akizu N, García M, Estarás C, Fueyo R, Badosa C, de la Cruz X, et al. EZH2 regulates neuroepithelium structure and neuroblast proliferation by repressing p21. Open Biol. 2016;6:150227 pubmed 出版商
  316. Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, et al. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav. 2016;6:e00472 pubmed 出版商
  317. Hudish L, Galati D, Ravanelli A, Pearson C, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143:2292-304 pubmed 出版商
  318. Liu X, Koehler K, Mikosz A, Hashino E, Holt J. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat Commun. 2016;7:11508 pubmed 出版商
  319. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  320. Topalidou I, Cattin Ortolá J, Pappas A, Cooper K, Merrihew G, MacCoss M, et al. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet. 2016;12:e1006074 pubmed 出版商
  321. Momcilovic O, Sivapatham R, Oron T, Meyer M, Mooney S, Rao M, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS ONE. 2016;11:e0154890 pubmed 出版商
  322. Liu B, Shi Y, Peng W, Zhang Q, Liu J, Chen N, et al. Diosmetin induces apoptosis by upregulating p53 via the TGF-? signal pathway in HepG2 hepatoma cells. Mol Med Rep. 2016;14:159-64 pubmed 出版商
  323. Thakurela S, Garding A, Jung R, Müller C, Goebbels S, White R, et al. The transcriptome of mouse central nervous system myelin. Sci Rep. 2016;6:25828 pubmed 出版商
  324. Baleriola J, Álvarez Lindo N, de la Villa P, Bernad A, Blanco L, Suárez T, et al. Increased neuronal death and disturbed axonal growth in the Polμ-deficient mouse embryonic retina. Sci Rep. 2016;6:25928 pubmed 出版商
  325. PACKARD A, Lin B, Schwob J. Sox2 and Pax6 Play Counteracting Roles in Regulating Neurogenesis within the Murine Olfactory Epithelium. PLoS ONE. 2016;11:e0155167 pubmed 出版商
  326. Keilhoff G, Lucas B, Uhde K, Fansa H. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med. 2016;11:1685-1699 pubmed
  327. Wang N, Dong B, Quan Y, Chen Q, Chu M, Xu J, et al. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status. Stem Cell Reports. 2016;6:668-678 pubmed 出版商
  328. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  329. Wang X, Bey A, Katz B, Badea A, Kim N, David L, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459 pubmed 出版商
  330. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  331. Zhang N, Chen B, Wang W, Chen C, Kang J, Deng S, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016;14:95-102 pubmed 出版商
  332. Beck S, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun. 2016;7:11483 pubmed 出版商
  333. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  334. Heinen T, dos Santos R, da Rocha A, Dos Santos M, Lopez P, Silva Filho M, et al. Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma. Oncotarget. 2016;7:34860-80 pubmed 出版商
  335. Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, et al. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports. 2016;6:772-783 pubmed 出版商
  336. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  337. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  338. Hosoya M, Fujioka M, Kobayashi R, Okano H, Ogawa K. Overlapping expression of anion exchangers in the cochlea of a non-human primate suggests functional compensation. Neurosci Res. 2016;110:1-10 pubmed 出版商
  339. Chiang T, le Sage C, Larrieu D, Demir M, Jackson S. CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep. 2016;6:24356 pubmed 出版商
  340. He D, Xiang J, Li B, Liu H. The dynamic behavior of Ect2 in response to DNA damage. Sci Rep. 2016;6:24504 pubmed 出版商
  341. Ding Y, Adachi H, Katsuno M, Sahashi K, Kondo N, Iida M, et al. BIIB021, a synthetic Hsp90 inhibitor, induces mutant ataxin-1 degradation through the activation of heat shock factor 1. Neuroscience. 2016;327:20-31 pubmed 出版商
  342. Saito H, Okita K, Fusaki N, Sabel M, Chang A, Ito F. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells. Stem Cells Int. 2016;2016:8394960 pubmed 出版商
  343. Liu Q, Zhang R, Li D, Cheng S, Yang Y, Tian T, et al. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts. Cell Reprogram. 2016;18:67-77 pubmed 出版商
  344. Hall A, Lu W, Godfrey J, Antonov A, Paicu C, Moxon S, et al. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis. 2016;7:e2184 pubmed 出版商
  345. Efremova L, Chovancova P, Adam M, Gutbier S, Schildknecht S, Leist M. Switching from astrocytic neuroprotection to neurodegeneration by cytokine stimulation. Arch Toxicol. 2017;91:231-246 pubmed 出版商
  346. Juárez Vicente F, Luna Pelaez N, Garcia Dominguez M. The Sumo protease Senp7 is required for proper neuronal differentiation. Biochim Biophys Acta. 2016;1863:1490-8 pubmed 出版商
  347. Navarra A, Musto A, Gargiulo A, Petrosino G, Pierantoni G, Fusco A, et al. Hmga2 is necessary for Otx2-dependent exit of embryonic stem cells from the pluripotent ground state. BMC Biol. 2016;14:24 pubmed 出版商
  348. Lin T, Chang Y, Lee S, Campbell M, Wang T, Shen S, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget. 2016;7:26137-51 pubmed 出版商
  349. Meng G, Poon A, Liu S, Rancourt D. An Effective and Reliable Xeno-free Cryopreservation Protocol for Single Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1516:47-56 pubmed 出版商
  350. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  351. Yu H, Benitez S, Jung S, Farias Altamirano L, Kruse M, Seo J, et al. GABAergic signaling in the rat pineal gland. J Pineal Res. 2016;61:69-81 pubmed 出版商
  352. Eisch V, Lu X, Gabriel D, Djabali K. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget. 2016;7:24700-18 pubmed 出版商
  353. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  354. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  355. Panousopoulou E, Hobbs C, Mason I, Green J, Formstone C. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci. 2016;129:1915-27 pubmed 出版商
  356. González Burguera I, Ricobaraza A, Aretxabala X, Barrondo S, Garcia del Caño G, López de Jesús M, et al. Highly efficient generation of glutamatergic/cholinergic NT2-derived postmitotic human neurons by short-term treatment with the nucleoside analogue cytosine ?-D-arabinofuranoside. Stem Cell Res. 2016;16:541-51 pubmed 出版商
  357. Sagi I, Chia G, Golan Lev T, Peretz M, Weissbein U, Sui L, et al. Derivation and differentiation of haploid human embryonic stem cells. Nature. 2016;532:107-11 pubmed 出版商
  358. Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol. 2016;279:243-260 pubmed 出版商
  359. He H, Deng K, Siddiq M, Pyie A, Mellado W, Hannila S, et al. Cyclic AMP and Polyamines Overcome Inhibition by Myelin-Associated Glycoprotein through eIF5A-Mediated Increases in p35 Expression and Activation of Cdk5. J Neurosci. 2016;36:3079-91 pubmed 出版商
  360. Pandiri I, Chen Y, Joe Y, Kim H, Park J, Chung H, et al. Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells. Breast Cancer Res Treat. 2016;156:57-64 pubmed 出版商
  361. Li T, Liu X, Jiang L, MANFREDI J, Zha S, Gu W. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging. Oncotarget. 2016;7:11838-49 pubmed 出版商
  362. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  363. Herzog T, Spetzler D, Xiao N, Burnett K, Maney T, Voss A, et al. Impact of molecular profiling on overall survival of patients with advanced ovarian cancer. Oncotarget. 2016;7:19840-9 pubmed 出版商
  364. Nair S, Zhang X, Chiang H, Jahid M, Wang Y, Garza P, et al. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun. 2016;7:10913 pubmed 出版商
  365. Kemp M, Sancar A. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. J Biol Chem. 2016;291:9330-42 pubmed 出版商
  366. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  367. Lamprecht M, Elkin B, Kesavabhotla K, Crary J, Hammers J, Huh J, et al. Strong Correlation of Genome-Wide Expression after Traumatic Brain Injury In Vitro and In Vivo Implicates a Role for SORLA. J Neurotrauma. 2017;34:97-108 pubmed 出版商
  368. Hosoya M, Fujioka M, Ogawa K, Okano H. Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Sci Rep. 2016;6:22250 pubmed 出版商
  369. Katzenell S, Leib D. Herpes Simplex Virus and Interferon Signaling Induce Novel Autophagic Clusters in Sensory Neurons. J Virol. 2016;90:4706-4719 pubmed 出版商
  370. Matsumoto M, Nakamachi T, Watanabe J, Sugiyama K, Ohtaki H, Murai N, et al. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke. J Mol Neurosci. 2016;59:270-9 pubmed 出版商
  371. Hussain S, Ringsevjen H, Egbenya D, Skjervold T, Davanger S. SNARE Protein Syntaxin-1 Colocalizes Closely with NMDA Receptor Subunit NR2B in Postsynaptic Spines in the Hippocampus. Front Mol Neurosci. 2016;9:10 pubmed 出版商
  372. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  373. Dietl S, Schwinn S, Dietl S, Riedel S, Deinlein F, Rutkowski S, et al. MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. BMC Cancer. 2016;16:115 pubmed 出版商
  374. Pecháčková S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458-75 pubmed 出版商
  375. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed 出版商
  376. Taverna E, Mora Bermúdez F, Strzyz P, Florio M, Icha J, Haffner C, et al. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep. 2016;6:21206 pubmed 出版商
  377. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  378. Gonzales Cope M, Sidoli S, Bhanu N, Won K, Garcia B. Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells. BMC Genomics. 2016;17:95 pubmed 出版商
  379. Delmas E, Jah N, Pirou C, Bouleau S, Le Floch N, Vayssière J, et al. FGF1 C-terminal domain and phosphorylation regulate intracrine FGF1 signaling for its neurotrophic and anti-apoptotic activities. Cell Death Dis. 2016;7:e2079 pubmed 出版商
  380. Cui Q, Yang S, Ye P, Tian E, Sun G, Zhou J, et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nat Commun. 2016;7:10637 pubmed 出版商
  381. Long K, Moss L, Laursen L, Boulter L, ffrench Constant C. Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin. Nat Commun. 2016;7:10354 pubmed 出版商
  382. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  383. Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño Roa L, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. elife. 2016;5: pubmed 出版商
  384. Heeren A, He N, de Souza A, Goercharn Ramlal A, van Iperen L, Roost M, et al. On the development of extragonadal and gonadal human germ cells. Biol Open. 2016;5:185-94 pubmed 出版商
  385. Capell B, Drake A, Zhu J, Shah P, Dou Z, Dorsey J, et al. MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 2016;30:321-36 pubmed 出版商
  386. Llanos S, García Pedrero J, Morgado Palacin L, Rodrigo J, Serrano M. Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nat Commun. 2016;7:10438 pubmed 出版商
  387. Esfandiari A, Hawthorne T, Nakjang S, Lunec J. Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Mol Cancer Ther. 2016;15:379-91 pubmed 出版商
  388. Kishi N, MacDonald J, Ye J, Molyneaux B, Azim E, Macklis J. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice. Nat Commun. 2016;7:10520 pubmed 出版商
  389. Walter D, Hoffmann S, Komseli E, Rappsilber J, Gorgoulis V, Sørensen C. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun. 2016;7:10530 pubmed 出版商
  390. Yau K, Schätzle P, Tortosa E, Pagès S, Holtmaat A, Kapitein L, et al. Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation. J Neurosci. 2016;36:1071-85 pubmed 出版商
  391. Malan D, Zhang M, Stallmeyer B, Müller J, Fleischmann B, Schulze Bahr E, et al. Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol. 2016;111:14 pubmed 出版商
  392. Kovacs G, Szabo V, Pirity M. Absence of Rybp Compromises Neural Differentiation of Embryonic Stem Cells. Stem Cells Int. 2016;2016:4034620 pubmed 出版商
  393. Chavoshi S, Egorova O, Lacdao I, Farhadi S, Sheng Y, Saridakis V. Identification of Kaposi Sarcoma Herpesvirus (KSHV) vIRF1 Protein as a Novel Interaction Partner of Human Deubiquitinase USP7. J Biol Chem. 2016;291:6281-91 pubmed 出版商
  394. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  395. Lalli M, Jang J, Park J, Wang Y, Guzman E, Zhou H, et al. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum Mol Genet. 2016;25:1294-306 pubmed 出版商
  396. Koppaka V, Chen Y, Mehta G, Orlicky D, Thompson D, Jester J, et al. ALDH3A1 Plays a Functional Role in Maintenance of Corneal Epithelial Homeostasis. PLoS ONE. 2016;11:e0146433 pubmed 出版商
  397. Gupta Y, Pasupuleti V, Du W, Welford S. Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells. PLoS ONE. 2016;11:e0146482 pubmed 出版商
  398. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商
  399. Kawabata S, Takano M, Numasawa Kuroiwa Y, Itakura G, Kobayashi Y, Nishiyama Y, et al. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury. Stem Cell Reports. 2016;6:1-8 pubmed 出版商
  400. Kucab J, Zwart E, van Steeg H, Luijten M, Schmeiser H, Phillips D, et al. TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts. DNA Repair (Amst). 2016;39:21-33 pubmed 出版商
  401. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  402. Fokina A, Chechenova M, Karginov A, Ter Avanesyan M, Agaphonov M. Genetic Evidence for the Role of the Vacuole in Supplying Secretory Organelles with Ca2+ in Hansenula polymorpha. PLoS ONE. 2015;10:e0145915 pubmed 出版商
  403. Gho C, Schomann T, de Groot S, Frijns J, Rivolta M, Neumann M, et al. Isolation, expansion and neural differentiation of stem cells from human plucked hair: a further step towards autologous nerve recovery. Cytotechnology. 2016;68:1849-58 pubmed 出版商
  404. Schmitt M, Dehay B, Bezard E, Garcia Ladona F. Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse. 2016;70:71-86 pubmed 出版商
  405. Hjørnevik L, Frøyset A, Grønset T, Rungruangsak Torrissen K, Fladmark K. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry. Mar Drugs. 2015;13:7390-402 pubmed 出版商
  406. Chao C, Kan D, Lo T, Lu K, Chien C. Induction of neural differentiation in rat C6 glioma cells with taxol. Brain Behav. 2015;5:e00414 pubmed 出版商
  407. Liu Z, Skamagki M, Kim K, Zhao R. Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming. Stem Cell Reports. 2015;5:1119-1127 pubmed 出版商
  408. Hashimoto M, Murata K, Ishida J, Kanou A, Kasuya Y, Fukamizu A. Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System. J Biol Chem. 2016;291:2237-45 pubmed 出版商
  409. Min J, Guo K, Suryadevara P, Zhu F, Holbrook G, Chen Y, et al. Optimization of a Novel Series of Ataxia-Telangiectasia Mutated Kinase Inhibitors as Potential Radiosensitizing Agents. J Med Chem. 2016;59:559-77 pubmed 出版商
  410. Kim Y, Jo S, Kim W, Kweon O. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther. 2015;6:229 pubmed 出版商
  411. Oliveira L, Falomir Lockhart L, Botelho M, Lin K, Wales P, Koch J, et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis. 2015;6:e1994 pubmed 出版商
  412. Amadei G, Zander M, Yang G, Dumelie J, Vessey J, Lipshitz H, et al. A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis. J Neurosci. 2015;35:15666-81 pubmed 出版商
  413. Schill E, Lake J, Tusheva O, Nagy N, Bery S, Foster L, et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol. 2016;409:473-88 pubmed 出版商
  414. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  415. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  416. Beaudet M, Yang Q, Cadau S, Blais M, Bellenfant S, Gros Louis F, et al. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord. Sci Rep. 2015;5:16763 pubmed 出版商
  417. Sluch V, Davis C, Ranganathan V, Kerr J, Krick K, Martin R, et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep. 2015;5:16595 pubmed 出版商
  418. Holmberg Olausson K, Elsir T, Moazemi Goudarzi K, Nistér M, Lindström M. NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape. Sci Rep. 2015;5:16495 pubmed 出版商
  419. Fernández Santiago R, Carballo Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez Danés A, et al. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Mol Med. 2015;7:1529-46 pubmed 出版商
  420. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Stepp M. K14 + compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Dev Dyn. 2016;245:132-43 pubmed 出版商
  421. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  422. Stachtea X, Tykesson E, van Kuppevelt T, Feinstein R, Malmström A, Reijmers R, et al. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis. PLoS ONE. 2015;10:e0140279 pubmed 出版商
  423. Hussain S, Davanger S. Postsynaptic VAMP/Synaptobrevin Facilitates Differential Vesicle Trafficking of GluA1 and GluA2 AMPA Receptor Subunits. PLoS ONE. 2015;10:e0140868 pubmed 出版商
  424. Riquelme S, Pogu J, Anegon I, Bueno S, Kalergis A. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol. 2015;45:3269-88 pubmed 出版商
  425. Adesina A, Veo B, Courteau G, Mehta V, Wu X, Pang K, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol. 2015;46:1859-71 pubmed 出版商
  426. Endaya B, Cavanagh B, Alowaidi F, Walker T, de Pennington N, Ng J, et al. Isolating dividing neural and brain tumour cells for gene expression profiling. J Neurosci Methods. 2016;257:121-33 pubmed 出版商
  427. Ortega Atienza S, Wong V, Deloughery Z, Luczak M, Zhitkovich A. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage. Nucleic Acids Res. 2016;44:198-209 pubmed 出版商
  428. Straccia M, Garcia Díaz Barriga G, Sanders P, Bombau G, Carrere J, Mairal P, et al. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell-derived medium spiny neurons. Mol Ther Methods Clin Dev. 2015;2:15030 pubmed 出版商
  429. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  430. Prescott H, Manning C, Gardner A, Ritchie W, Pizzi R, Girling S, et al. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells. PLoS ONE. 2015;10:e0138840 pubmed 出版商
  431. Cheng C, Lin C, Lee M, Tsai M, Huang W, Huang M, et al. Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection. PLoS ONE. 2015;10:e0138705 pubmed 出版商
  432. Clayton E, Mizielinska S, Edgar J, Nielsen T, Marshall S, Norona F, et al. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathol. 2015;130:511-23 pubmed 出版商
  433. Simpson M, Venkatesh I, Callif B, Thiel L, Coley D, Winsor K, et al. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons. Mol Cell Neurosci. 2015;68:272-83 pubmed 出版商
  434. Han Y, Wang Z, Bae E. Synthesis of the Proposed Structure of Damaurone D and Evaluation of Its Anti-inflammatory Activity. Chem Pharm Bull (Tokyo). 2015;63:907-12 pubmed 出版商
  435. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Kyne B, Saban D, Stepp M. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. Lab Invest. 2015;95:1305-18 pubmed 出版商
  436. Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. J Neuroinflammation. 2015;12:137 pubmed 出版商
  437. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  438. Mohammadi A, Attari F, Babapour V, Hassani S, Masoudi N, Shahverdi A, et al. Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways. Cell J. 2015;17:288-95 pubmed
  439. Zhou J, Joshi B, Duan X, Pant A, Qiu Z, Kuick R, et al. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol. 2015;6:e101 pubmed 出版商
  440. Garcia Calero E, Botella Lopez A, Bahamonde O, Perez Balaguer A, Martinez S. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct. 2016;221:2905-17 pubmed 出版商
  441. Fei Q, Yang X, Jiang H, Wang Q, Yu Y, Yu Y, et al. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells. Genome Res. 2015;25:1325-35 pubmed 出版商
  442. Tang Y, Dai L, Zhang X, Li J, Hendriks J, Fan X, et al. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy. Sci Rep. 2015;5:11073 pubmed 出版商
  443. Wang J, Chen S, Sun C, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene. 2016;35:1657-70 pubmed 出版商
  444. Joshi P, Waterhouse P, Kannan N, Narala S, Fang H, Di Grappa M, et al. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1. Stem Cell Reports. 2015;5:31-44 pubmed 出版商
  445. Huang X, Hu Q, Braun G, Pallaoro A, Morales D, ZASADZINSKI J, et al. Light-activated RNA interference in human embryonic stem cells. Biomaterials. 2015;63:70-9 pubmed 出版商
  446. Zhu Y, Matsumoto T, Nagasawa T, Mackay F, Murakami F. Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. J Neurosci. 2015;35:9211-24 pubmed 出版商
  447. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  448. Petroni M, Sardina F, Heil C, Sahún Roncero M, Colicchia V, Veschi V, et al. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ. 2016;23:197-206 pubmed 出版商
  449. von Einem B, Wahler A, Schips T, Serrano Pozo A, Proepper C, Boeckers T, et al. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA) Proteins Alter Amyloid-β Precursor Protein (APP) Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1). PLoS ONE. 2015;10:e0129047 pubmed 出版商
  450. Zhu S, Wang H, Ding S. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat Protoc. 2015;10:959-73 pubmed 出版商
  451. Wilkinson D, Bethell G, Shukla R, Kenny S, Edgar D. Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung's Disease. PLoS ONE. 2015;10:e0125724 pubmed 出版商
  452. Torres Fuentes J, Rios M, Moreno R. Involvement of a P2X7 Receptor in the Acrosome Reaction Induced by ATP in Rat Spermatozoa. J Cell Physiol. 2015;230:3068-75 pubmed 出版商
  453. Wang D, Kinoshita Y, Kinoshita C, Uo T, Sopher B, Cudaback E, et al. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 2015;138:2005-19 pubmed 出版商
  454. Bedogni F, Cobolli Gigli C, Pozzi D, Rossi R, Scaramuzza L, Rossetti G, et al. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. Cereb Cortex. 2016;26:2517-2529 pubmed 出版商
  455. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  456. Mortusewicz O, Evers B, Helleday T. PC4 promotes genome stability and DNA repair through binding of ssDNA at DNA damage sites. Oncogene. 2016;35:761-70 pubmed 出版商
  457. Del Mar N, von Buttlar X, Yu A, Guley N, Reiner A, Honig M. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol. 2015;271:53-71 pubmed 出版商
  458. Terzic D, Maxon J, Krevitt L, DiBartolomeo C, Goyal T, Low W, et al. Directed Differentiation of Oligodendrocyte Progenitor Cells From Mouse Induced Pluripotent Stem Cells. Cell Transplant. 2016;25:411-24 pubmed 出版商
  459. Meganathan K, Jagtap S, Srinivasan S, Wagh V, Hescheler J, Hengstler J, et al. Neuronal developmental gene and miRNA signatures induced by histone deacetylase inhibitors in human embryonic stem cells. Cell Death Dis. 2015;6:e1756 pubmed 出版商
  460. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature. 2015;521:316-21 pubmed 出版商
  461. Morissette Martin P, Maux A, Laterreur V, Mayrand D, L Gagné V, Moulin V, et al. Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes. Acta Biomater. 2015;22:39-49 pubmed 出版商
  462. Thierry M, Pasquis B, Buteau B, Fourgeux C, Dembele D, Leclère L, et al. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats. Exp Eye Res. 2015;135:37-46 pubmed 出版商
  463. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  464. Ghatak S, Chan Y, Khanna S, Banerjee J, Weist J, Roy S, et al. Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes. Mol Ther. 2015;23:1201-1210 pubmed 出版商
  465. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  466. Trakhtenberg E, Morkin M, Patel K, Fernandez S, Sang A, Shaw P, et al. The N-terminal Set-β Protein Isoform Induces Neuronal Death. J Biol Chem. 2015;290:13417-26 pubmed 出版商
  467. Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, et al. Reg3? Overexpression Protects Pancreatic ? Cells from Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med. 2015;20:548-558 pubmed 出版商
  468. Muramatsu R, Kuroda M, Matoba K, Lin H, Takahashi C, Koyama Y, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem. 2015;290:11515-25 pubmed 出版商
  469. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  470. Debowski K, Warthemann R, Lentes J, Salinas Riester G, Dressel R, Langenstroth D, et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE. 2015;10:e0118424 pubmed 出版商
  471. You L, Yan K, Zou J, Zhao H, Bertos N, Park M, et al. The chromatin regulator Brpf1 regulates embryo development and cell proliferation. J Biol Chem. 2015;290:11349-64 pubmed 出版商
  472. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  473. Hue C, Cho F, Cao S, Dale Bass C, Meaney D, Morrison B. Dexamethasone potentiates in vitro blood-brain barrier recovery after primary blast injury by glucocorticoid receptor-mediated upregulation of ZO-1 tight junction protein. J Cereb Blood Flow Metab. 2015;35:1191-8 pubmed 出版商
  474. Knezevic J, Pfefferle A, Petrovic I, Greene S, Perou C, Rosen J. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34:5997-6006 pubmed 出版商
  475. Gendronneau G, Sanii S, Dang T, Deshayes F, Delacour D, Pichard E, et al. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PLoS ONE. 2015;10:e0119031 pubmed 出版商
  476. Oliva C, Markert T, Gillespie G, Griguer C. Nuclear-encoded cytochrome c oxidase subunit 4 regulates BMI1 expression and determines proliferative capacity of high-grade gliomas. Oncotarget. 2015;6:4330-44 pubmed
  477. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  478. Feeney S, McGrath M, Sriratana A, Gehrig S, Lynch G, D Arcy C, et al. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS ONE. 2015;10:e0117665 pubmed 出版商
  479. Kitamura J, Uemura M, Kurozumi M, Sonobe M, Manabe T, Hiai H, et al. Chronic lung injury by constitutive expression of activation-induced cytidine deaminase leads to focal mucous cell metaplasia and cancer. PLoS ONE. 2015;10:e0117986 pubmed 出版商
  480. Nagai J, Kitamura Y, Owada K, Yamashita N, Takei K, Goshima Y, et al. Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Sci Rep. 2015;5:8269 pubmed 出版商
  481. Sleiman N, McFarland T, Jones L, Cala S. Transitions of protein traffic from cardiac ER to junctional SR. J Mol Cell Cardiol. 2015;81:34-45 pubmed 出版商
  482. Wright M, Reed Geaghan E, Bolock A, Fujiyama T, Hoshino M, Maricich S. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. J Cell Biol. 2015;208:367-79 pubmed 出版商
  483. Richardson G, Lannigan J, Macara I. Does FACS perturb gene expression?. Cytometry A. 2015;87:166-75 pubmed 出版商
  484. Cerbini T, Funahashi R, Luo Y, Liu C, Park K, Rao M, et al. Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS ONE. 2015;10:e0116032 pubmed 出版商
  485. Arel Dubeau A, Longpré F, Bournival J, Tremblay C, Demers Lamarche J, Haskova P, et al. Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. Oxid Med Cell Longev. 2014;2014:425496 pubmed 出版商
  486. Bhattacharjee R, Goswami S, Dudiki T, Popkie A, Phiel C, Kline D, et al. Targeted disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in male infertility. Biol Reprod. 2015;92:65 pubmed 出版商
  487. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  488. Denton K, Xu C, Li X. Modeling Axonal Phenotypes with Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1353:309-21 pubmed 出版商
  489. Sivapatham R, Zeng X. Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling. Methods Mol Biol. 2016;1353:25-44 pubmed 出版商
  490. Crane J, Palanivel R, Mottillo E, Bujak A, Wang H, Ford R, et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med. 2015;21:166-72 pubmed 出版商
  491. Sundberg J, Stearns T, Joh J, Proctor M, Ingle A, Silva K, et al. Immune status, strain background, and anatomic site of inoculation affect mouse papillomavirus (MmuPV1) induction of exophytic papillomas or endophytic trichoblastomas. PLoS ONE. 2014;9:e113582 pubmed 出版商
  492. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  493. Polinski N, Gombash S, Manfredsson F, Lipton J, Kemp C, Cole Strauss A, et al. Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain. Neurobiol Aging. 2015;36:1110-20 pubmed 出版商
  494. El Sayed A, Zhang Z, Zhang L, Liu Z, Abbott L, Zhang Y, et al. Pluripotent state induction in mouse embryonic fibroblast using mRNAs of reprogramming factors. Int J Mol Sci. 2014;15:21840-64 pubmed 出版商
  495. Serinagaoglu Y, Paré J, Giovannini M, Cao X. Nf2-Yap signaling controls the expansion of DRG progenitors and glia during DRG development. Dev Biol. 2015;398:97-109 pubmed 出版商
  496. Blanchard J, Eade K, Szucs A, Lo Sardo V, Tsunemoto R, Williams D, et al. Selective conversion of fibroblasts into peripheral sensory neurons. Nat Neurosci. 2015;18:25-35 pubmed 出版商
  497. Colucci D Amato L, Cicatiello A, Reccia M, Volpicelli F, Severino V, Russo R, et al. A targeted secretome profiling by multiplexed immunoassay revealed that secreted chemokine ligand 2 (MCP-1/CCL2) affects neural differentiation in mesencephalic neural progenitor cells. Proteomics. 2015;15:714-24 pubmed 出版商
  498. Easter S, Mitchell E, Baxley S, Desmond R, Frost A, Serra R. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors. PLoS ONE. 2014;9:e113247 pubmed 出版商
  499. Niederst E, Reyna S, Goldstein L. Axonal amyloid precursor protein and its fragments undergo somatodendritic endocytosis and processing. Mol Biol Cell. 2015;26:205-17 pubmed 出版商
  500. Arredondo Zamarripa D, Díaz Lezama N, Meléndez García R, Chávez Balderas J, Adán N, Ledesma Colunga M, et al. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress. Front Cell Neurosci. 2014;8:333 pubmed 出版商
  501. Lim A, Shin K, Zhao C, Kawano S, Beachy P. Spatially restricted Hedgehog signalling regulates HGF-induced branching of the adult prostate. Nat Cell Biol. 2014;16:1135-45 pubmed 出版商
  502. Kretzschmar K, Cottle D, Donati G, Chiang M, Quist S, Gollnick H, et al. BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Reports. 2014;3:620-33 pubmed 出版商
  503. Kim K, Ossipova O, Sokol S. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674-85 pubmed 出版商
  504. Scholze A, Foo L, Mulinyawe S, Barres B. BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS ONE. 2014;9:e110668 pubmed 出版商
  505. Jung H, Tatar A, Tu Y, Nobumori C, Yang S, Goulbourne C, et al. An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol Cell Biol. 2014;34:4534-44 pubmed 出版商
  506. Chibly A, Querin L, Harris Z, Limesand K. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS ONE. 2014;9:e107893 pubmed 出版商
  507. Cottle D, Ursino G, Ip S, Jones L, DiTommaso T, Hacking D, et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet. 2015;24:436-49 pubmed 出版商
  508. Ye T, Ip J, Fu A, Ip N. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Nat Commun. 2014;5:4826 pubmed 出版商
  509. Toyo oka K, Wachi T, Hunt R, Baraban S, Taya S, Ramshaw H, et al. 14-3-3ε and ζ regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain. J Neurosci. 2014;34:12168-81 pubmed 出版商
  510. Lee H, Kim K, Lim H, Choi M, Kim H, Ahn H, et al. Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model. J Cell Biochem. 2015;116:310-9 pubmed 出版商
  511. Wang J, Shamah S, Sun A, Waldman I, Haggarty S, Perlis R. Label-free, live optical imaging of reprogrammed bipolar disorder patient-derived cells reveals a functional correlate of lithium responsiveness. Transl Psychiatry. 2014;4:e428 pubmed 出版商
  512. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  513. Franceschi V, Jacca S, Sassu E, Stellari F, van Santen V, Donofrio G. Generation and characterization of the first immortalized alpaca cell line suitable for diagnostic and immunization studies. PLoS ONE. 2014;9:e105643 pubmed 出版商
  514. Schuth O, McLean W, Eatock R, Pyott S. Distribution of Na,K-ATPase α subunits in rat vestibular sensory epithelia. J Assoc Res Otolaryngol. 2014;15:739-54 pubmed 出版商
  515. Lööv C, Nadadhur A, Hillered L, Clausen F, Erlandsson A. Extracellular ezrin: a novel biomarker for traumatic brain injury. J Neurotrauma. 2015;32:244-51 pubmed 出版商
  516. Kawase S, Kuwako K, Imai T, Renault Mihara F, Yaguchi K, Itohara S, et al. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev. 2014;23:2250-61 pubmed 出版商
  517. Goldstein B, Goss G, Hatzistergos K, Rangel E, Seidler B, Saur D, et al. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons. J Comp Neurol. 2015;523:15-31 pubmed 出版商
  518. Carlessi L, Fusar Poli E, Bechi G, Mantegazza M, Pascucci B, Narciso L, et al. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. Cell Death Dis. 2014;5:e1342 pubmed 出版商
  519. Kehoe L, Bellone C, De Roo M, Zandueta A, Dey P, Pérez Otaño I, et al. GluN3A promotes dendritic spine pruning and destabilization during postnatal development. J Neurosci. 2014;34:9213-21 pubmed 出版商
  520. Spadaro D, Tapia R, Jond L, Sudol M, Fanning A, Citi S. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB. J Biol Chem. 2014;289:22500-11 pubmed 出版商
  521. Jeon H, Kim S, Jin X, Park J, Kim S, Joshi K, et al. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res. 2014;74:4482-92 pubmed 出版商
  522. Ganz J, Arie I, Buch S, Zur T, Barhum Y, Pour S, et al. Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model. PLoS ONE. 2014;9:e100445 pubmed 出版商
  523. Kraemer B, Snow J, Vollbrecht P, Pathak A, Valentine W, Deutch A, et al. A role for the p75 neurotrophin receptor in axonal degeneration and apoptosis induced by oxidative stress. J Biol Chem. 2014;289:21205-16 pubmed 出版商
  524. Eroglu B, Kimbler D, Pang J, Choi J, Moskophidis D, Yanasak N, et al. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury. J Neurochem. 2014;130:626-41 pubmed 出版商
  525. Karow M, Schichor C, Beckervordersandforth R, Berninger B. Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J Vis Exp. 2014;: pubmed 出版商
  526. Trolle C, König N, Abrahamsson N, Vasylovska S, Kozlova E. Boundary cap neural crest stem cells homotopically implanted to the injured dorsal root transitional zone give rise to different types of neurons and glia in adult rodents. BMC Neurosci. 2014;15:60 pubmed 出版商
  527. Fernandes K, Harder J, JOHN S, Shrager P, Libby R. DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. Neurobiol Dis. 2014;69:108-16 pubmed 出版商
  528. Ferrer M, Corneo B, Davis J, Wan Q, Miyagishima K, King R, et al. A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med. 2014;3:911-22 pubmed 出版商
  529. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  530. Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X, et al. CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat Commun. 2014;5:3924 pubmed 出版商
  531. Stimpfel M, Cerkovnik P, Novakovic S, Maver A, Virant Klun I. Putative mesenchymal stem cells isolated from adult human ovaries. J Assist Reprod Genet. 2014;31:959-74 pubmed 出版商
  532. Li T, Yang D, Li J, Tang Y, Yang J, Le W. Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation. Mol Neurobiol. 2015;51:142-54 pubmed 出版商
  533. Liao M, Diaconu M, Monecke S, Collombat P, Timaeus C, Kuhlmann T, et al. Embryonic stem cell-derived neural progenitors as non-tumorigenic source for dopaminergic neurons. World J Stem Cells. 2014;6:248-55 pubmed 出版商
  534. Farioli Vecchioli S, Ceccarelli M, Saraulli D, Micheli L, Cannas S, D Alessandro F, et al. Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids. Front Cell Neurosci. 2014;8:98 pubmed 出版商
  535. Nguyen H, Nekanti U, Haus D, Funes G, Moreno D, Kamei N, et al. Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions. J Comp Neurol. 2014;522:2767-83 pubmed 出版商
  536. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed 出版商
  537. Zhao L, Jiao Q, Huang C, Hou N, Chen X, Zhang J, et al. mGluR5 promotes the differentiation of rat neural progenitor cells into cholinergic neurons and activation of extracellular signal-related protein kinases. Neuroreport. 2014;25:427-34 pubmed 出版商
  538. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T, D Hooge R, et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct. 2015;220:1601-17 pubmed 出版商
  539. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2014;24:665-79 pubmed 出版商
  540. Wyatt L, Filbin M, Keirstead H. PTEN inhibition enhances neurite outgrowth in human embryonic stem cell-derived neuronal progenitor cells. J Comp Neurol. 2014;522:2741-55 pubmed 出版商
  541. Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol. 2014;522:2707-28 pubmed 出版商
  542. García Corzo L, Luna Sánchez M, Doerrier C, Ortiz F, Escames G, Acuna Castroviejo D, et al. Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta. 2014;1842:893-901 pubmed 出版商
  543. Chang P, Wang T, Chang Y, Chu C, Lee C, Hsu H, et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS ONE. 2014;9:e88556 pubmed 出版商
  544. Macdonald C, Unsworth C, Graham E. Enrichment of differentiated hNT neurons and subsequent analysis using flow-cytometry and xCELLigence sensing. J Neurosci Methods. 2014;227:47-56 pubmed 出版商
  545. Rupprecht A, Sittner D, Smorodchenko A, Hilse K, Goyn J, Moldzio R, et al. Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function. PLoS ONE. 2014;9:e88474 pubmed 出版商
  546. Endesfelder U, Malkusch S, Fricke F, Heilemann M. A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol. 2014;141:629-38 pubmed 出版商
  547. Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, et al. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci. 2013;7:263 pubmed 出版商
  548. Suzuki Y, Jin C, Yazawa I. Cystatin C triggers neuronal degeneration in a model of multiple system atrophy. Am J Pathol. 2014;184:790-9 pubmed 出版商
  549. Ahn J, Jang J, Choi J, Lee J, Oh S, Lee J, et al. GSK3?, but not GSK3?, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev. 2014;23:1121-33 pubmed 出版商
  550. Maire C, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, diTomaso E, et al. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells. 2014;32:313-26 pubmed 出版商
  551. Fei D, Krimm R. Taste neurons consist of both a large TrkB-receptor-dependent and a small TrkB-receptor-independent subpopulation. PLoS ONE. 2013;8:e83460 pubmed 出版商
  552. Huang T, Krimm R. BDNF and NT4 play interchangeable roles in gustatory development. Dev Biol. 2014;386:308-20 pubmed 出版商
  553. Mallon B, Hamilton R, Kozhich O, Johnson K, Fann Y, Rao M, et al. Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res. 2014;12:376-86 pubmed 出版商
  554. Xavier J, Morgado A, Sola S, Rodrigues C. Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal. 2014;21:1009-24 pubmed 出版商
  555. Gao X, Zhang J, Zhang J, Zou H, Liu J. Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol. 2014;34:257-68 pubmed 出版商
  556. Tamai S, Imaizumi K, Kurabayashi N, Nguyen M, Abe T, Inoue M, et al. Neuroprotective role of the basic leucine zipper transcription factor NFIL3 in models of amyotrophic lateral sclerosis. J Biol Chem. 2014;289:1629-38 pubmed 出版商
  557. Salinas S, Zussy C, Loustalot F, Henaff D, Menendez G, Morton P, et al. Disruption of the coxsackievirus and adenovirus receptor-homodimeric interaction triggers lipid microdomain- and dynamin-dependent endocytosis and lysosomal targeting. J Biol Chem. 2014;289:680-95 pubmed 出版商
  558. Otero J, Kalaszczynska I, Michowski W, Wong M, Gygli P, Gokozan H, et al. Cerebellar cortical lamination and foliation require cyclin A2. Dev Biol. 2014;385:328-39 pubmed 出版商
  559. Bas E, Van De Water T, Lumbreras V, Rajguru S, Goss G, Hare J, et al. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion. Stem Cells Dev. 2014;23:502-14 pubmed 出版商
  560. de Craene B, Denecker G, Vermassen P, Taminau J, Mauch C, Derore A, et al. Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ. 2014;21:310-20 pubmed 出版商
  561. Kurowska Z, Brundin P, Schwab M, Li J. Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro. Neuroscience. 2014;256:456-66 pubmed 出版商
  562. Jiang K, Ren C, Nair V. MicroRNA-137 represses Klf4 and Tbx3 during differentiation of mouse embryonic stem cells. Stem Cell Res. 2013;11:1299-313 pubmed 出版商
  563. Momcilovic O, Liu Q, Swistowski A, Russo Tait T, Zhao Y, Rao M, et al. Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells. Stem Cells Dev. 2014;23:406-20 pubmed 出版商
  564. Kao T, Lee H, Higuchi A, Ling Q, Yu W, Chou Y, et al. Suppression of cancer-initiating cells and selection of adipose-derived stem cells cultured on biomaterials having specific nanosegments. J Biomed Mater Res B Appl Biomater. 2014;102:463-76 pubmed 出版商
  565. Absalon S, Kochanek D, Raghavan V, Krichevsky A. MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33:14645-59 pubmed 出版商
  566. Sha L, Wu X, Yao Y, Wen B, Feng J, Sha Z, et al. Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol. 2014;49:633-44 pubmed 出版商
  567. Tobias I, Brooks C, Teichroeb J, Betts D. Derivation and culture of canine embryonic stem cells. Methods Mol Biol. 2013;1074:69-83 pubmed 出版商
  568. Li W, Ding S. Converting mouse epiblast stem cells into mouse embryonic stem cells by using small molecules. Methods Mol Biol. 2013;1074:31-7 pubmed 出版商
  569. Huang Y, Kao J, Tseng D, Chen W, Chiang M, Hwang E. Microtubule-associated type II protein kinase A is important for neurite elongation. PLoS ONE. 2013;8:e73890 pubmed 出版商
  570. Lim J, McCullen S, Piedrahita J, Loboa E, Olby N. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells. Cell Reprogram. 2013;15:405-12 pubmed 出版商
  571. Saurat N, Andersson T, Vasistha N, Molnár Z, Livesey F. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 2013;8:14 pubmed 出版商
  572. Yang W, Wang X, Duan C, Lu L, Yang H. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem Int. 2013;63:180-94 pubmed 出版商
  573. Zeidán Chuliá F, Gelain D, Kolling E, Rybarczyk Filho J, Ambrosi P, Terra S, et al. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev. 2013;2013:791795 pubmed 出版商
  574. Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol. 2013;521:3832-46 pubmed 出版商
  575. Zhou X, Wang H, Burg M, Ferraris J. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol. 2013;305:F362-9 pubmed 出版商
  576. Liu Q, Pedersen O, Peng J, Couture L, Rao M, Zeng X. Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy. 2013;15:999-1010 pubmed 出版商
  577. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  578. Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y, Akamatsu W, et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain. 2013;6:19 pubmed 出版商
  579. Sparmann A, Xie Y, Verhoeven E, Vermeulen M, Lancini C, Gargiulo G, et al. The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO J. 2013;32:1598-612 pubmed 出版商
  580. Barrero M, Sesé B, Marti M, Izpisua Belmonte J. Macro histone variants are critical for the differentiation of human pluripotent cells. J Biol Chem. 2013;288:16110-6 pubmed 出版商
  581. Ruzicka J, Romanyuk N, Hejcl A, Vetrik M, Hruby M, Cocks G, et al. Treating spinal cord injury in rats with a combination of human fetal neural stem cells and hydrogels modified with serotonin. Acta Neurobiol Exp (Wars). 2013;73:102-15 pubmed
  582. Huang Q, Wang H, Perry S, Figueiredo Pereira M. Negative regulation of 26S proteasome stability via calpain-mediated cleavage of Rpn10 subunit upon mitochondrial dysfunction in neurons. J Biol Chem. 2013;288:12161-74 pubmed 出版商
  583. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  584. Tong K, Kwan K. Common partner Smad-independent canonical bone morphogenetic protein signaling in the specification process of the anterior rhombic lip during cerebellum development. Mol Cell Biol. 2013;33:1925-37 pubmed 出版商
  585. Kim H, Woo H, Ryu J, Bok J, Kim J, Choi S, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS ONE. 2013;8:e55609 pubmed 出版商
  586. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  587. Shim J, Lee T, Shin D. Enrichment and characterization of human dermal stem/progenitor cells by intracellular granularity. Stem Cells Dev. 2013;22:1264-74 pubmed 出版商
  588. Narvi E, Jaakkola K, Winsel S, Oetken Lindholm C, Halonen P, Kallio L, et al. Altered TUBB3 expression contributes to the epothilone response of mitotic cells. Br J Cancer. 2013;108:82-90 pubmed 出版商
  589. Siebert A, Ma Z, Grevet J, Demuro A, Parker I, Foskett J. Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem. 2013;288:6140-53 pubmed 出版商
  590. Liu Q, Spusta S, Mi R, Lassiter R, Stark M, Hoke A, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med. 2012;1:266-78 pubmed 出版商
  591. Schrama D, Hesbacher S, Becker J, Houben R. Survivin downregulation is not required for T antigen knockdown mediated cell growth inhibition in MCV infected merkel cell carcinoma cells. Int J Cancer. 2013;132:2980-2 pubmed 出版商
  592. Krolewski R, Packard A, Schwob J. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium. J Comp Neurol. 2013;521:833-59 pubmed 出版商
  593. Baptista S, Bento A, Gonçalves J, Bernardino L, Summavielle T, Lobo A, et al. Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology. 2012;62:2413-23 pubmed 出版商
  594. Arellano J, Guadiana S, Breunig J, Rakic P, Sarkisian M. Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol. 2012;520:848-73 pubmed 出版商
  595. Coso S, Zeng Y, Sooraj D, Williams E. Conserved signaling through vascular endothelial growth (VEGF) receptor family members in murine lymphatic endothelial cells. Exp Cell Res. 2011;317:2397-407 pubmed 出版商
  596. Gursel D, Connell Albert Y, Tuskan R, Anastassiadis T, Walrath J, Hawes J, et al. Control of proliferation in astrocytoma cells by the receptor tyrosine kinase/PI3K/AKT signaling axis and the use of PI-103 and TCN as potential anti-astrocytoma therapies. Neuro Oncol. 2011;13:610-21 pubmed 出版商
  597. Flores Otero J, Davis R. Synaptic proteins are tonotopically graded in postnatal and adult type I and type II spiral ganglion neurons. J Comp Neurol. 2011;519:1455-75 pubmed 出版商
  598. Xin Y, Lu Q, Li Q. IKK1 control of epidermal differentiation is modulated by notch signaling. Am J Pathol. 2011;178:1568-77 pubmed 出版商
  599. Sawamoto K, Hirota Y, Alfaro Cervello C, Soriano Navarro M, He X, Hayakawa Yano Y, et al. Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain. J Comp Neurol. 2011;519:690-713 pubmed 出版商
  600. Miller A, Treloar H, Greer C. Composition of the migratory mass during development of the olfactory nerve. J Comp Neurol. 2010;518:4825-41 pubmed 出版商
  601. Yang M, Cagle M, Honig M. Identification of cerebellin2 in chick and its preferential expression by subsets of developing sensory neurons and their targets in the dorsal horn. J Comp Neurol. 2010;518:2818-40 pubmed 出版商
  602. Gritti A, Dal Molin M, Foroni C, Bonfanti L. Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations. J Comp Neurol. 2009;517:333-49 pubmed 出版商
  603. Liang H, Ran Q, Jang Y, Holstein D, Lechleiter J, McDonald Marsh T, et al. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic Biol Med. 2009;47:312-20 pubmed 出版商
  604. Leonard B, Mastroeni D, Grover A, Liu Q, Yang K, Gao M, et al. Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. J Comp Neurol. 2009;515:269-94 pubmed 出版商
  605. Furmanski O, Gajavelli S, Lee J, Collado M, Jergova S, Sagen J. Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis. J Comp Neurol. 2009;515:56-71 pubmed 出版商
  606. Gil Perotin S, Duran Moreno M, Belzunegui S, Luquin M, Garcia Verdugo J. Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream. J Comp Neurol. 2009;514:533-54 pubmed 出版商
  607. Komitova M, Zhu X, Serwanski D, Nishiyama A. NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol. 2009;512:702-16 pubmed 出版商
  608. Yu T, Fotaki V, Mason J, Price D. Analysis of early ventral telencephalic defects in mice lacking functional Gli3 protein. J Comp Neurol. 2009;512:613-27 pubmed 出版商
  609. Sakakibara S, Nakadate K, Tanaka Nakadate S, Yoshida K, Nogami S, Shirataki H, et al. Developmental and spatial expression pattern of alpha-taxilin in the rat central nervous system. J Comp Neurol. 2008;511:65-80 pubmed 出版商
  610. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl. 2008;47:6172-6 pubmed 出版商
  611. Howell M, Fairchild H, Kim B, Bin L, Boguniewicz M, Redzic J, et al. Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J Invest Dermatol. 2008;128:2248-58 pubmed 出版商
  612. Vue T, Aaker J, Taniguchi A, Kazemzadeh C, Skidmore J, Martin D, et al. Characterization of progenitor domains in the developing mouse thalamus. J Comp Neurol. 2007;505:73-91 pubmed
  613. Talmadge R, Paalani M. Sarco(endo)plasmic reticulum calcium pump isoforms in paralyzed rat slow muscle. Biochim Biophys Acta. 2007;1770:1187-93 pubmed
  614. Berglöf E, af Bjerkén S, Stromberg I. Glial influence on nerve fiber formation from rat ventral mesencephalic organotypic tissue cultures. J Comp Neurol. 2007;501:431-42 pubmed
  615. Warchol M, Speck J. Expression of GATA3 and tenascin in the avian vestibular maculae: normative patterns and changes during sensory regeneration. J Comp Neurol. 2007;500:646-57 pubmed
  616. Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins S, et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol. 2006;177:5163-8 pubmed
  617. Navarro Quiroga I, Hernandez Valdes M, Lin S, Naegele J. Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex. J Comp Neurol. 2006;497:833-45 pubmed
  618. Li Q, Ching A, Chan B, Chow S, Lim P, Ho T, et al. A death receptor-associated anti-apoptotic protein, BRE, inhibits mitochondrial apoptotic pathway. J Biol Chem. 2004;279:52106-16 pubmed