这是一篇来自已证抗体库的有关大鼠 血管内皮生长因子A (Vegfa) 的综述,是根据116篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合血管内皮生长因子A 抗体。
血管内皮生长因子A 同义词: VEGF-A; VEGF111; VEGF164; VPF; Vegf

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e, 4f
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上 (图 4e, 4f). Commun Biol (2022) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 小鼠; 图 s5c
  • 免疫印迹; 小鼠; 图 8c
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5c) 和 被用于免疫印迹在小鼠样本上 (图 8c). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Rep (2021) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 7e
  • 免疫印迹; 人类; 1:1000; 图 1i, 2e
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 7e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1i, 2e). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(abcam, ab46154)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Rep (2021) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). J Orthop Surg Res (2021) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
  • 免疫组化-石蜡切片; 人类; 图 3d
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c) 和 被用于免疫组化-石蜡切片在人类样本上 (图 3d). Oncogene (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s2
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(abcam, ab46154)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2). PLoS ONE (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 4b
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4b). Int J Oral Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5a, 5c
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a, 5c). J Biol Chem (2021) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 人类; 图 6d
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫印迹在人类样本上 (图 6d). PLoS Genet (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab4615)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1e, 2d, 5h
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e, 2d, 5h). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s1
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1). PLoS ONE (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5e
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上 (图 3c). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
  • 免疫印迹; 人类; 1:2000; 图 3c
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Int J Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6o
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上 (图 s6o). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上 (图 2b). Mol Ther Nucleic Acids (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4f
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫细胞化学在人类样本上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a). Mol Cell Biol (2017) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化; 大鼠; 1:25; 图 4d
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化在大鼠样本上浓度为1:25 (图 4d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 st2
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, Ab46154)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 st2). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 7f
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7f). Mol Hum Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 6
  • 免疫印迹; 大鼠; 1:500; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 7). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab39250)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1a
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, 46154)被用于被用于免疫印迹在人类样本上 (图 s1a). Laryngoscope (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). J Clin Invest (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5). Braz J Med Biol Res (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫组化; 人类; 图 6
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫组化在小鼠样本上 (图 6), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3), 被用于免疫组化在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7). Int J Biol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; domestic rabbit; 1:1000; 图 7
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(abcam, ab1316)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 7). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫印迹在人类样本上 (图 5). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:120; 图 2
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:120 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Forensic Leg Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s8
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在小鼠样本上 (图 s8). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab46154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, VG-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). BMC Cancer (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 大鼠; 图 f4b
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫印迹在大鼠样本上 (图 f4b). Mol Med Rep (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
  • 免疫印迹; 小鼠; 1:300; 图 6
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:300 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Reprod Sci (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 图 1a
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Onco Targets Ther (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 6
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 6). PLoS ONE (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; domestic rabbit; 1:500; 图 4
  • 酶联免疫吸附测定; domestic rabbit; 1:500; 图 1
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:500 (图 4) 和 被用于酶联免疫吸附测定在domestic rabbit样本上浓度为1:500 (图 1). Oncol Lett (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(AbCam, VG-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). BMC Cancer (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Genet Mol Res (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Mol Sci (2014) ncbi
小鼠 单克隆(VG-1)
  • 抑制或激活实验; 小鼠
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于抑制或激活实验在小鼠样本上. J Biomed Res (2012) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化-石蜡切片; 人类; 1:100
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncol Lett (2013) ncbi
小鼠 单克隆(VG-1)
  • 酶联免疫吸附测定; 大鼠; 1:1000
艾博抗(上海)贸易有限公司血管内皮生长因子A抗体(Abcam, ab1316)被用于被用于酶联免疫吸附测定在大鼠样本上浓度为1:1000. Microvasc Res (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(SPM225)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4g
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-65617)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4g). Front Oncol (2022) ncbi
小鼠 单克隆(C-1)
  • 免疫组化; 大鼠; 图 8a
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化在大鼠样本上 (图 8a). Front Pharmacol (2021) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 8
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, SC-7269)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 8). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆(C-1)
  • 免疫沉淀; 人类; 1:100; 图 4b
  • 免疫印迹; 人类; 1:500; 图 1b
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa, sc-7269)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Cell Rep (2021) ncbi
小鼠 单克隆(JH121)
  • 免疫组化-石蜡切片; 小鼠; 1:300
圣克鲁斯生物技术血管内皮生长因子A抗体(anta Cruz Biotechnology, sc-57496)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Front Immunol (2021) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 小鼠; 图 6e
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, sc7269)被用于被用于免疫印迹在小鼠样本上 (图 6e). Biomolecules (2021) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1c
  • 免疫印迹; 大鼠; 1:200; 图 1a, 4c
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1c) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 1a, 4c). Mol Neurobiol (2021) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 小鼠; 1:100; 图 4g
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4g). Cell Death Dis (2021) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 小鼠; 1:200; 图 1c
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, Sc-53462)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1c). Sci Rep (2020) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1f, 2f
  • 免疫印迹; 大鼠; 1:200; 图 5c
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1f, 2f) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 5c). Int J Nanomedicine (2020) ncbi
小鼠 单克隆(JH121)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-57496)被用于被用于免疫组化在人类样本上 (图 1). PLoS ONE (2020) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, sc53462)被用于被用于免疫印迹在人类样本上 (图 5a). Exp Cell Res (2019) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 大鼠; 1:200; 图 2a
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa cruz, sc?\7269)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2a). Physiol Rep (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, SC-7269)被用于被用于免疫印迹在人类样本上 (图 5e). Circ Res (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术血管内皮生长因子A抗体(SantaCruz, SC-7269)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化; 小鼠; 图 3
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Endocrinol (2017) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6a). J Biomed Sci (2016) ncbi
小鼠 单克隆(C-1)
  • 抑制或激活实验; 小鼠; 图 3
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于抑制或激活实验在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, Sc-7269)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Discov (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术血管内皮生长因子A抗体(santa Cruz, sc-53462)被用于被用于免疫印迹在大鼠样本上 (图 7). BMC Cancer (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1d
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1d). Dis Markers (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 大鼠; 1:200; 图 6
圣克鲁斯生物技术血管内皮生长因子A抗体(santa Cruz, sc-7269)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 6). Mol Med Rep (2016) ncbi
小鼠 单克隆(VG-1)
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, S C-53462)被用于被用于免疫印迹在小鼠样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 大鼠; 1:2000; 图 3
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(VG76e)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术血管内皮生长因子A抗体(santa Cruz, sc-53463)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 8A
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 8A). Diabetol Metab Syndr (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, SC-7269)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 4). Tumour Biol (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, SC-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Cancer Res Treat (2016) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, Sc-7269)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术血管内皮生长因子A抗体(santa Cruz, sc-7269)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Hepatology (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 犬; 图 4
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, SC-7269)被用于被用于免疫组化-石蜡切片在犬样本上 (图 4). J Vet Sci (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫印迹在人类样本上 (图 2). Exp Ther Med (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-自由浮动切片; 大鼠; 1:50
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:50 和 被用于免疫印迹在大鼠样本上浓度为1:500. Biomed Res Int (2014) ncbi
小鼠 单克隆(VG-1)
  • 免疫组化; 大鼠
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz biotechnology, sc-53462)被用于被用于免疫组化在大鼠样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化; 人类; 1:1000
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, Sc7269)被用于被用于免疫组化在人类样本上浓度为1:1000. Brain Pathol (2015) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 家羊; 1:50
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, SC-7269)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:50. Anim Reprod Sci (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 家羊; 1:200
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:200. Biol Reprod (2014) ncbi
小鼠 单克隆(JH121)
  • 免疫印迹; 小鼠; 1:200; 图 4
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-57496)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 大鼠
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc-7269)被用于被用于免疫组化-石蜡切片在大鼠样本上. Mater Sci Eng C Mater Biol Appl (2013) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz Biotechnology, sc-7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Brain Tumor Pathol (2014) ncbi
小鼠 单克隆(C-1)
  • 免疫组化-石蜡切片; 人类; 1:30
圣克鲁斯生物技术血管内皮生长因子A抗体(Santa Cruz, sc- 7269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30. PLoS ONE (2012) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 9b
赛默飞世尔血管内皮生长因子A抗体(Thermo Fisher Scientific, PA5-85,171)被用于被用于免疫组化在人类样本上 (图 9b). Cancer Cell Int (2021) ncbi
小鼠 单克隆(VG1)
  • 免疫印迹; 人类; 1:200; 图 5a
赛默飞世尔血管内皮生长因子A抗体(Thermo Scientific, MA1-16629)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(VG1)
  • 免疫印迹基因敲除验证; 人类; 图 2a
  • 免疫组化; 人类; 1:200; 图 9a
赛默飞世尔血管内皮生长因子A抗体(Thermo Fisher Scientific, MA1-16629)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 2a) 和 被用于免疫组化在人类样本上浓度为1:200 (图 9a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 3
赛默飞世尔血管内皮生长因子A抗体(Thermo Fisher, RB-222-P0)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 3). Exp Ther Med (2016) ncbi
小鼠 单克隆(VG1)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔血管内皮生长因子A抗体(ThermoFisher Scientific, VG1)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔血管内皮生长因子A抗体(Neomarkers, RB-222-P0)被用于. Toxicol Mech Methods (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫印迹; 大鼠; 1:200
赛默飞世尔血管内皮生长因子A抗体(Thermo, MA1-16629)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Acta Biomater (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔血管内皮生长因子A抗体(LabVision, VG1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. APMIS (2015) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔血管内皮生长因子A抗体(Lab Vision, VG1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔血管内皮生长因子A抗体(Zymed, VG1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Clin Cancer Res (2009) ncbi
Novus Biologicals
小鼠 单克隆(VG1)
  • 免疫组化; 大鼠; 1:50
Novus Biologicals血管内皮生长因子A抗体(Novus Biologicals, NB100-664)被用于被用于免疫组化在大鼠样本上浓度为1:50. PLoS ONE (2021) ncbi
安迪生物R&D
domestic goat 多克隆
安迪生物R&D血管内皮生长因子A抗体(R&D Systems, AF564)被用于. PLoS ONE (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(VG1)
  • 免疫组化-石蜡切片; 大鼠; 1:800; 图 st15
  • 免疫组化-石蜡切片; 人类; 1:800; 图 st15
亚诺法生技股份有限公司血管内皮生长因子A抗体(Abnova MAB6996, MAB6996)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800 (图 st15) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 st15). J Toxicol Pathol (2017) ncbi
文章列表
  1. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  2. Turco C, Esposito G, Iaiza A, Goeman F, Benedetti A, Gallo E, et al. MALAT1-dependent hsa_circ_0076611 regulates translation rate in triple-negative breast cancer. Commun Biol. 2022;5:598 pubmed 出版商
  3. Du M, Wang C, Yang L, Liu B, Zheng Z, Yang L, et al. The role of long noncoding RNA Nron in atherosclerosis development and plaque stability. iScience. 2022;25:103978 pubmed 出版商
  4. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  5. Alvi A, Al Kury L, Alattar A, Ullah I, Muhammad A, Alshaman R, et al. Carveol Attenuates Seizure Severity and Neuroinflammation in Pentylenetetrazole-Kindled Epileptic Rats by Regulating the Nrf2 Signaling Pathway. Oxid Med Cell Longev. 2021;2021:9966663 pubmed 出版商
  6. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  7. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  8. Yang Y, Li Y, Qi R, Zhang L. Constructe a novel 5 hypoxia genes signature for cervical cancer. Cancer Cell Int. 2021;21:345 pubmed 出版商
  9. Cai C, Zeng D, Gao Q, Ma L, Zeng B, Zhou Y, et al. Decreased ferroportin in hepatocytes promotes macrophages polarize towards an M2-like phenotype and liver fibrosis. Sci Rep. 2021;11:13386 pubmed 出版商
  10. Qian J, Xu Q, Xu W, Cai R, Huang G. Expression of VEGF-A Signaling Pathway in Cartilage of ACLT-induced Osteoarthritis Mouse Model. J Orthop Surg Res. 2021;16:379 pubmed 出版商
  11. Shen M, Zhang R, Jia W, Zhu Z, Zhao X, Zhao L, et al. Nuclear scaffold protein p54nrb/NONO facilitates the hypoxia-enhanced progression of hepatocellular carcinoma. Oncogene. 2021;40:4167-4183 pubmed 出版商
  12. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  13. Maier A, Reichhart N, Gonnermann J, Kociok N, Riechardt A, Gundlach E, et al. Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse. PLoS ONE. 2021;16:e0245143 pubmed 出版商
  14. Borges P, Waclawiak I, Georgii J, Fraga Junior V, Barros J, Lemos F, et al. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Front Immunol. 2021;12:651740 pubmed 出版商
  15. Tirronen A, Downes N, Huusko J, Laakkonen J, Tuomainen T, Tavi P, et al. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules. 2021;11: pubmed 出版商
  16. Chen W, Wu C, Chen Y, Guo Y, Qiu L, Liu Z, et al. Downregulation of ceramide synthase 1 promotes oral cancer through endoplasmic reticulum stress. Int J Oral Sci. 2021;13:10 pubmed 出版商
  17. Li Y, Geng Y, Zhou B, Wu X, Zhang O, Guan X, et al. Long Non-coding RNA GAS5 Worsens Coronary Atherosclerosis Through MicroRNA-194-3p/TXNIP Axis. Mol Neurobiol. 2021;58:3198-3207 pubmed 出版商
  18. Pan Y, Iejima D, Nakayama M, Suga A, Noda T, Kaur I, et al. Binding of Gtf2i-β/δ transcription factors to the ARMS2 gene leads to increased circulating HTRA1 in AMD patients and in vitro. J Biol Chem. 2021;296:100456 pubmed 出版商
  19. Sene L, Scarano W, Zapparoli A, Gontijo J, Boer P. Impact of gestational low-protein intake on embryonic kidney microRNA expression and in nephron progenitor cells of the male fetus. PLoS ONE. 2021;16:e0246289 pubmed 出版商
  20. Klemke L, De Oliveira T, Witt D, Winkler N, Bohnenberger H, Bucala R, et al. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis. 2021;12:155 pubmed 出版商
  21. Attaai A, Noreldin A, Abdel Maksoud F, Hussein M. An updated investigation on the dromedary camel cerebellum (Camelus dromedarius) with special insight into the distribution of calcium-binding proteins. Sci Rep. 2020;10:21157 pubmed 出版商
  22. Mulcrone P, Edwards S, Petrusca D, Haneline L, Delgado Calle J, Roodman G. Osteocyte Vegf-a contributes to myeloma-associated angiogenesis and is regulated by Fgf23. Sci Rep. 2020;10:17319 pubmed 出版商
  23. Gao P, Wang D, Liu M, Chen S, Yang Z, Zhang J, et al. DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways. PLoS Genet. 2020;16:e1008592 pubmed 出版商
  24. Yang X, Zhao L, Campos M, Abu Asab M, Ortolan D, Hotaling N, et al. CSF1R blockade induces macrophage ablation and results in mouse choroidal vascular atrophy and RPE disorganization. elife. 2020;9: pubmed 出版商
  25. Lin Y, Huang X, Chang K, Liao K, Tsai N. Encapsulated n-Butylidenephthalide Efficiently Crosses the Blood-Brain Barrier and Suppresses Growth of Glioblastoma. Int J Nanomedicine. 2020;15:749-760 pubmed 出版商
  26. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  27. Baptista J, Traynelis V, Liberti E, Fontes R. Expression of degenerative markers in intervertebral discs of young and elderly asymptomatic individuals. PLoS ONE. 2020;15:e0228155 pubmed 出版商
  28. Jiang X, Xu C, Shi H, Cheng Q. PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model. PLoS ONE. 2019;14:e0226163 pubmed 出版商
  29. Yang Y, Tang F, Wei F, Yang L, Kuang C, Zhang H, et al. Silencing of long non-coding RNA H19 downregulates CTCF to protect against atherosclerosis by upregulating PKD1 expression in ApoE knockout mice. Aging (Albany NY). 2019;11:10016-10030 pubmed 出版商
  30. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  31. Peng T, Deng X, Tian F, Li Z, Jiang P, Zhao X, et al. The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. Int J Oncol. 2019;: pubmed 出版商
  32. Xie X, Wang Y, Xia Y, Mao Y. Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep. 2019;39: pubmed 出版商
  33. Guan H, Li N, Wang X, Shan X, Li Z, Lin Z. Role of Paip1 on angiogenesis and invasion in pancreatic cancer. Exp Cell Res. 2019;376:198-209 pubmed 出版商
  34. Das A, Huang G, Bonkowski M, Longchamp A, Li C, Schultz M, et al. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell. 2018;173:74-89.e20 pubmed 出版商
  35. Holmgaard A, Askou A, Benckendorff J, Thomsen E, Cai Y, Bek T, et al. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells. Mol Ther Nucleic Acids. 2017;9:89-99 pubmed 出版商
  36. Liu Z, Li H, Liu J, Wu M, Chen X, Liu L, et al. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication. Oncol Lett. 2017;14:2239-2243 pubmed 出版商
  37. Carmona Fontaine C, Deforet M, Akkari L, Thompson C, Joyce J, Xavier J. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934-2939 pubmed 出版商
  38. Hirayama Y, Nakanishi R, Maeshige N, Fujino H. Preventive effects of nucleoprotein supplementation combined with intermittent loading on capillary regression induced by hindlimb unloading in rat soleus muscle. Physiol Rep. 2017;5: pubmed 出版商
  39. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  40. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  41. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  42. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  43. Chu L, Ganta V, Choi M, Chen G, Finley S, Annex B, et al. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF165b in peripheral arterial disease in human and mouse. Sci Rep. 2016;6:37030 pubmed 出版商
  44. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  45. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  46. Seemann S, Lupp A. Administration of AMD3100 in endotoxemia is associated with pro-inflammatory, pro-oxidative, and pro-apoptotic effects in vivo. J Biomed Sci. 2016;23:68 pubmed
  47. Liang X, Guo Y, Sun T, Song H, Gao Y. Anti-angiogenic effect of total saponins of Rhizoma Dioscorea nipponica on collagen induced-arthritis in rats. Exp Ther Med. 2016;12:2155-2160 pubmed
  48. Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga -, Gomez Peña M, et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod. 2016;22:852-866 pubmed
  49. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  50. Quan F, Chen J, Zhong Y, Ren W. Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats. Exp Ther Med. 2016;12:1671-1680 pubmed
  51. Spina A, Montella R, Liccardo D, De Rosa A, Laino L, Mitsiadis T, et al. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression. Front Physiol. 2016;7:354 pubmed 出版商
  52. Sweeny L, Prince A, Patel N, Moore L, Rosenthal E, Hughley B, et al. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope. 2016;126:E387-E395 pubmed 出版商
  53. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  54. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  55. Garcia P, Seiva F, Carniato A, de Mello Júnior W, Duran N, Macedo A, et al. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer. 2016;16:422 pubmed 出版商
  56. Li X, Chen Y, Wang L, Shang G, Zhang C, Zhao Z, et al. Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome. Braz J Med Biol Res. 2016;49: pubmed 出版商
  57. Chung S, Gillies M, Yam M, Wang Y, Shen W. Differential expression of microRNAs in retinal vasculopathy caused by selective Müller cell disruption. Sci Rep. 2016;6:28993 pubmed 出版商
  58. Su X, Tan Q, Parikh B, Tan A, Mehta M, Sia Wey Y, et al. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina. Invest Ophthalmol Vis Sci. 2016;57:3397-408 pubmed 出版商
  59. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  60. Gao S, Fan C, Huang H, Zhu C, Su M, Zhang Y. Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett. 2016;12:459-466 pubmed
  61. Belfort Mattos P, Focchi G, Ribalta J, Megale De Lima T, Nogueira Carvalho C, Kesselring Tso F, et al. Immunohistochemical Expression of VEGF and Podoplanin in Uterine Cervical Squamous Intraepithelial Lesions. Dis Markers. 2016;2016:8293196 pubmed 出版商
  62. Zhang J, Guan J, Qi X, Ding H, Yuan H, Xie Z, et al. Dimethyloxaloylglycine Promotes the Angiogenic Activity of Mesenchymal Stem Cells Derived from iPSCs via Activation of the PI3K/Akt Pathway for Bone Regeneration. Int J Biol Sci. 2016;12:639-52 pubmed 出版商
  63. Zhang M, Huang W, Bai J, Nie X, Wang W. Chymase inhibition protects diabetic rats from renal lesions. Mol Med Rep. 2016;14:121-8 pubmed 出版商
  64. Wang Y, Li Y, Song L, Li Y, Jiang S, Zhang S. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep. 2016;14:234-42 pubmed 出版商
  65. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  66. Abu N, Akhtar M, Yeap S, Lim K, Ho W, Abdullah M, et al. Flavokawain B induced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB231 and inhibited the metastatic potential of MDA-MB231 via the regulation of several tyrosine kinases In vitro. BMC Complement Altern Med. 2016;16:86 pubmed 出版商
  67. Milosavljević M, Jovanovic I, Pejnovic N, Mitrovic S, Arsenijevic N, Simovic Markovic B, et al. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma. Oncotarget. 2016;7:18106-15 pubmed 出版商
  68. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  69. Lin Y, Ma Q, Lin S, Zhou H, Wen Q, Gao S, et al. Inhibitory effects of 90Sr/90Y β-irradiation on alkali burn-induced corneal neovascularization in rats. Exp Ther Med. 2016;11:409-414 pubmed
  70. Wang L, Zhao R, Liu C, Liu M, Li S, Li J, et al. A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med. 2016;39:138-46 pubmed 出版商
  71. Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett. 2016;11:610-618 pubmed
  72. Soriano A, París Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271-87 pubmed 出版商
  73. Cui L, Gao B, Cao Z, Chen X, Zhang S, Zhang W. Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide. Mol Med Rep. 2016;13:2032-8 pubmed 出版商
  74. Wang Y, Tadjuidje E, Pandey R, Stefater J, Smith L, Lang R, et al. The Eyes Absent Proteins in Developmental and Pathological Angiogenesis. Am J Pathol. 2016;186:568-78 pubmed 出版商
  75. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  76. Chen X, Dong X, Gao H, Jiang Y, Jin Y, Chang Y, et al. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep. 2016;13:689-96 pubmed 出版商
  77. Al Trad B, Ashankyty I, Alaraj M. Progesterone ameliorates diabetic nephropathy in streptozotocin-induced diabetic Rats. Diabetol Metab Syndr. 2015;7:97 pubmed 出版商
  78. Pinheiro C, Garcia E, Morais Santos F, Moreira M, Almeida F, Jubé L, et al. Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer. 2015;15:835 pubmed 出版商
  79. Kim C, Kim J, Jo K, Lee Y, Sohn E, Yoo N, et al. OSSC1E-K19, a novel phytochemical component of Osteomeles schwerinae, prevents glycated albumin-induced retinal vascular injury in rats. Mol Med Rep. 2015;12:7279-84 pubmed 出版商
  80. Hasan S, Sultana S. Geraniol attenuates 2-acetylaminofluorene induced oxidative stress, inflammation and apoptosis in the liver of wistar rats. Toxicol Mech Methods. 2015;25:559-73 pubmed 出版商
  81. Yang S, He H, Ma Q, Zhang Y, Zhu Y, Wan X, et al. Experimental study of the protective effects of SYVN1 against diabetic retinopathy. Sci Rep. 2015;5:14036 pubmed 出版商
  82. Jiang Q, Zhang Z, Li S, Wang Z, Ma Y, Hu Y. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen‑transformed MEF cells. Mol Med Rep. 2015;12:6517-26 pubmed 出版商
  83. Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, et al. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2016;37:1889-99 pubmed 出版商
  84. Bacallao K, Plaza Parrochia F, Cerda A, Gabler F, Romero C, Vantman D, et al. Levels of Regulatory Proteins Associated With Cell Proliferation in Endometria From Untreated Patients Having Polycystic Ovarian Syndrome With and Without Endometrial Hyperplasia. Reprod Sci. 2016;23:211-8 pubmed 出版商
  85. Park S, Nam S, Keam B, Kim T, Jeon Y, Lee S, et al. VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma. Cancer Res Treat. 2016;48:518-26 pubmed 出版商
  86. Li C, Wang L, Zheng L, Zhan X, Xu B, Jiang J, et al. SIRT1 expression is associated with poor prognosis of lung adenocarcinoma. Onco Targets Ther. 2015;8:977-84 pubmed 出版商
  87. Khayati F, Pérez Cano L, Maouche K, Sadoux A, Boutalbi Z, Podgorniak M, et al. EMMPRIN/CD147 is a novel coreceptor of VEGFR-2 mediating its activation by VEGF. Oncotarget. 2015;6:9766-80 pubmed
  88. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  89. Imberti B, Corna D, Rizzo P, Xinaris C, Abbate M, Longaretti L, et al. Renal primordia activate kidney regenerative events in a rat model of progressive renal disease. PLoS ONE. 2015;10:e0120235 pubmed 出版商
  90. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  91. de Monès E, Schlaubitz S, Oliveira H, d Elbée J, Bareille R, Bourget C, et al. Comparative study of membranes induced by PMMA or silicone in rats, and influence of external radiotherapy. Acta Biomater. 2015;19:119-27 pubmed 出版商
  92. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed 出版商
  93. Qi J, Wang W, Li F. Combination of interventional adenovirus-p53 introduction and ultrasonic irradiation in the treatment of liver cancer. Oncol Lett. 2015;9:1297-1302 pubmed
  94. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  95. Gültiken N, Guvenc T, Kaya D, Agaoglu A, Ay S, Kücükaslan I, et al. Tarantula cubensis extract alters the degree of apoptosis and mitosis in canine mammary adenocarcinomas. J Vet Sci. 2015;16:213-9 pubmed
  96. Yuan L, Liu X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol Med Rep. 2015;11:2449-58 pubmed 出版商
  97. Wang H, Zhang L, Zhang S, Li Y. Inhibition of vascular endothelial growth factor by small interfering RNA upregulates differentiation, maturation and function of dendritic cells. Exp Ther Med. 2015;9:120-124 pubmed
  98. Pinheiro C, Garcia E, Morais Santos F, Scapulatempo Neto C, Mafra A, Steenbergen R, et al. Lactate transporters and vascular factors in HPV-induced squamous cell carcinoma of the uterine cervix. BMC Cancer. 2014;14:751 pubmed 出版商
  99. Mendonça M, Soares E, Stávale L, Kalapothakis E, Cruz Höfling M. Vascular endothelial growth factor increases during blood-brain barrier-enhanced permeability caused by Phoneutria nigriventer spider venom. Biomed Res Int. 2014;2014:721968 pubmed 出版商
  100. Aeimlapa R, Wongdee K, Charoenphandhu N, Suntornsaratoon P, Krishnamra N. Premature chondrocyte apoptosis and compensatory upregulation of chondroregulatory protein expression in the growth plate of Goto-Kakizaki diabetic rats. Biochem Biophys Res Commun. 2014;452:395-401 pubmed 出版商
  101. Shen W, Chung S, Irhimeh M, Li S, Lee S, Gillies M. Systemic administration of erythropoietin inhibits retinopathy in RCS rats. PLoS ONE. 2014;9:e104759 pubmed 出版商
  102. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  103. Wiles J, Katchko R, Benavides E, O Gorman C, Escudero J, Keisler D, et al. The effect of leptin on luteal angiogenic factors during the luteal phase of the estrous cycle in goats. Anim Reprod Sci. 2014;148:121-9 pubmed 出版商
  104. Fidanza A, Toschi P, Zacchini F, Czernik M, Palmieri C, Scapolo P, et al. Impaired placental vasculogenesis compromises the growth of sheep embryos developed in vitro. Biol Reprod. 2014;91:21 pubmed 出版商
  105. Yuan S, Jiang T, Sun L, Zheng R, Cao G, Ahat N, et al. Use of bone mesenchymal stem cells to treat rats with acute liver failure. Genet Mol Res. 2014;13:6962-80 pubmed 出版商
  106. Bai X, Li X, Tian J, Zhou Z. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes. PLoS ONE. 2014;9:e96117 pubmed 出版商
  107. Ferreira C, Siqueira D, Romitti M, Ceolin L, Brasil B, Meurer L, et al. Role of VEGF-A and its receptors in sporadic and MEN2-associated pheochromocytoma. Int J Mol Sci. 2014;15:5323-36 pubmed 出版商
  108. Gorman J, Liu S, Slopack D, Shariati K, Hasanee A, Olenich S, et al. Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS ONE. 2014;9:e85537 pubmed 出版商
  109. Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S. Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C Mater Biol Appl. 2013;33:4816-24 pubmed 出版商
  110. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  111. Xu W, Fan W, Yao K. Cyclosporine A stimulated hair growth from mouse vibrissae follicles in an organ culture model. J Biomed Res. 2012;26:372-80 pubmed 出版商
  112. Wang W, Jiang H, Zhu H, Zhang H, Gong J, Zhang L, et al. Overexpression of high mobility group box 1 and 2 is associated with the progression and angiogenesis of human bladder carcinoma. Oncol Lett. 2013;5:884-888 pubmed
  113. Cao W, Kawai N, Miyake K, Zhang X, Fei Z, Tamiya T. Relationship of 14-3-3zeta (?), HIF-1?, and VEGF expression in human brain gliomas. Brain Tumor Pathol. 2014;31:1-10 pubmed 出版商
  114. Kweider N, Huppertz B, Wruck C, Beckmann R, Rath W, Pufe T, et al. A role for Nrf2 in redox signalling of the invasive extravillous trophoblast in severe early onset IUGR associated with preeclampsia. PLoS ONE. 2012;7:e47055 pubmed 出版商
  115. Tripathy D, Sanchez A, Yin X, Martinez J, Grammas P. Age-related decrease in cerebrovascular-derived neuroprotective proteins: effect of acetaminophen. Microvasc Res. 2012;84:278-85 pubmed 出版商
  116. Dawson M, Opat S, Taouk Y, Donovan M, Zammit M, Monaghan K, et al. Clinical and immunohistochemical features associated with a response to bortezomib in patients with multiple myeloma. Clin Cancer Res. 2009;15:714-22 pubmed 出版商