这是一篇来自已证抗体库的有关大鼠 弹性蛋白 (Vim) 的综述,是根据691篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合弹性蛋白 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Front Pharmacol (2022) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 5a
  • 免疫印迹; 人类; 1:4000; 图 5f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 5f). Front Oncol (2022) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab92547)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 大鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1a). Heliyon (2022) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 图 5g
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上 (图 5g). Cell Stem Cell (2022) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5t
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5t). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:300; 图 2e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab193555)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2e). J Bone Oncol (2022) ncbi
小鼠 单克隆(VI-10)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cancer Cell Int (2022) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 小鼠; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(AbcamProteintech, ab8978)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 人类; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1c). Exp Ther Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab137321)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). Cancer Cell Int (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 大鼠; 1:500; 图 2d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2d). Cell Biosci (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在大鼠样本上. J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 图 5a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上 (图 5a). Methods Protoc (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2g, 5d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2g, 5d). Nat Commun (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 小鼠; 图 7a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化在小鼠样本上 (图 7a). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 7). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 2 ug/ml; 图 1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为2 ug/ml (图 1d). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 小鼠; 图 3e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化在小鼠样本上 (图 3e). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 图 4j
  • 免疫印迹; 人类; 图 4c, 4h
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上 (图 4j) 和 被用于免疫印迹在人类样本上 (图 4c, 4h). Theranostics (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 人类; 图 4j
  • 免疫印迹; 人类; 图 4c, 4h
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化在人类样本上 (图 4j) 和 被用于免疫印迹在人类样本上 (图 4c, 4h). Theranostics (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3c, 3d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 3c, 3d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 小鼠; 图 9c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在小鼠样本上 (图 9c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 图 2k
  • 免疫印迹; 人类; 图 2g, 3g
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上 (图 2k) 和 被用于免疫印迹在人类样本上 (图 2g, 3g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在小鼠样本上 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 1:2000; 图 1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 1d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:500; 图 6c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab137321)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3d). Hepatology (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:400; 图 5b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Epitomics, 2707-1)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5b). J Cardiovasc Dev Dis (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 1a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上 (图 1). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab137321)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2e). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2a). Front Psychiatry (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:10,000; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 4a). Basic Res Cardiol (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 1b, s1g, s1h, s3b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 1b, s1g, s1h, s3b). Sci Adv (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(RV202)
  • 流式细胞仪; 小鼠; 图 s2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:200; 图 s2a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2a). Theranostics (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 图 s1g
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上 (图 s1g). Theranostics (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab52943)被用于被用于免疫印迹在人类样本上 (图 6a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EP1070Y)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab52944)被用于被用于免疫印迹在人类样本上 (图 6a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EP1069Y)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab52942)被用于被用于免疫印迹在人类样本上 (图 6a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 小鼠; 1:200; 图 4d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4d). elife (2020) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 小鼠; 5 ug/ml
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab8069)被用于被用于免疫组化在小鼠样本上浓度为5 ug/ml. Arterioscler Thromb Vasc Biol (2021) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EPR3776)被用于被用于免疫印迹在人类样本上 (图 4b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:400; 图 1g
  • 免疫印迹; 人类; 1:1000; 图 1h
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1h). elife (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2500; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4a). Cancer Manag Res (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8s1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8s1a). elife (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3k
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3k). Life Sci Alliance (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 2h
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab137321)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3e). Front Oncol (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 2f). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2000; 图 3d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:5000; 图 1f, 5a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Cambridge, England, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1f, 5a). Integr Cancer Ther (2020) ncbi
小鼠 单克隆(VI-10)
  • 免疫组化-石蜡切片; pigs ; 1:500; 图 6b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:500 (图 6b). Biores Open Access (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab193555)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 2g: 2h, 2i
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g: 2h, 2i). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1d). Stem Cell Res Ther (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 e9k
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 e9k). Nature (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2000; 图 7a, 7b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a, 7b). Oncol Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a, 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab137321)被用于被用于免疫印迹在人类样本上 (图 3a, 3c). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2500; 图 2j
  • 免疫印迹; 小鼠; 1:2500; 图 4f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2j) 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 4f). Cancer Cell Int (2020) ncbi
小鼠 单克隆(VI-10)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3d). Cell (2020) ncbi
domestic rabbit 单克隆(EPR3776)
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab92547)被用于. Oncol Lett (2020) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 5d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化在小鼠样本上 (图 5d). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 s1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab193555)被用于被用于免疫印迹在人类样本上 (图 s1d). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 2c). Braz J Med Biol Res (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). BMC Ophthalmol (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 人类; 1:3000; 图 2a, 2e, 2i, 2m
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000 (图 2a, 2e, 2i, 2m). Tissue Eng Part A (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EP1071Y)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4a). Mol Biol Cell (2019) ncbi
小鼠 单克隆(VI-10)
  • 免疫细胞化学; 人类; 1:500; 图 3f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, VI-10)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3f). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆(EP1070Y)
  • 免疫印迹; 小鼠; 1:5000; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EP1070Y)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4a). Mol Biol Cell (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 5c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 5c). Br J Cancer (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). Nature (2019) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 4, 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, V9)被用于被用于免疫细胞化学在人类样本上 (图 4, 5). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 流式细胞仪; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 1a). BMC Mol Biol (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 3b). Exp Ther Med (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 小鼠; 1:500; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 2f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, 92547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 2f). elife (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). elife (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3a, 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 3a, 3c). Breast Cancer (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • mass cytometry; 人类; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 2c). FEBS Open Bio (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:100; 图 s1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:500; 图 4c35
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c35). Ocul Surf (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2000; 图 3e, 3f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e, 3f). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab 92547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). elife (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 图 s4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上 (图 s4a). Blood Adv (2019) ncbi
小鼠 单克隆(VI-10)
  • 免疫组化-冰冻切片; 小鼠; 图 s13a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s13a). Science (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 图 5b
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab92547)被用于被用于免疫组化在小鼠样本上 (图 5b). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 人类; 图 2f
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f), 被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 2d). Biomed Res Int (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2c). BMC Med Genomics (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:100; 图 e6o
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab92547)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 e6o). Nature (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 2d). J Exp Med (2019) ncbi
鸡 多克隆
  • 免疫组化; fruit fly ; 图 s32
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化在fruit fly 样本上 (图 s32). Science (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:3000; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2b). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 图 7b
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, EPR3776)被用于被用于免疫印迹在小鼠样本上 (图 7b). Oncogene (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 3a). J Mol Med (Berl) (2019) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1d). J Cell Physiol (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 牛; 图 6b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在牛样本上 (图 6b). Graefes Arch Clin Exp Ophthalmol (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:500; 图 s4i
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s4i). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 1a
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab45939)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3a). Exp Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 11c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 11c). J Clin Invest (2018) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-冰冻切片; black ferret
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-冰冻切片在black ferret样本上. Nature (2018) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 图 6a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3) 和 被用于免疫细胞化学在小鼠样本上 (图 6a). Wound Repair Regen (2018) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Mol Med Rep (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上 (图 1b). Stem Cell Res Ther (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 人类; 图 6i
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化在人类样本上 (图 6i). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:10,000; 图 9d
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (图 9d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 小鼠; 1:50; 图 1f
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1f). Am J Transl Res (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 1:400; 图 7
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上浓度为1:400 (图 7). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 1e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1e). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 小鼠; 1:200; 图 4c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Sigma, ab24525)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5). Glia (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 图 4a
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 3c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 大鼠; 图 3i
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在大鼠样本上 (图 3i). Sci Rep (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 1h). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Int J Cancer (2017) ncbi
domestic rabbit 单克隆(EPR3776)
  • 流式细胞仪; 人类; 1:100; 图 s1g
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EPR3776)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1g). Nat Commun (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 s2a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 1). Mol Vis (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell Int (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 大鼠; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4c
  • 免疫细胞化学; 人类; 1:200; 图 2a
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4c), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). Biochem Pharmacol (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 图 4b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫细胞化学在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2C
  • 免疫印迹; 小鼠; 图 2D
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫细胞化学在小鼠样本上 (图 2C) 和 被用于免疫印迹在小鼠样本上 (图 2D). Stem Cell Res Ther (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 人类; 图 3A
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化在人类样本上 (图 3A). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s1e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1e). Nat Biotechnol (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:200; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:200 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(VI-10)
  • 免疫细胞化学; 人类; 1:100; 图 s15
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s15). Nat Commun (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s6
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 大鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 大鼠; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在大鼠样本上 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 家羊; 图 s1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫细胞化学在家羊样本上 (图 s1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(RV203)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8979)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 4e
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab45939)被用于被用于免疫组化在人类样本上 (图 4e) 和 被用于免疫印迹在人类样本上 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3). Oncogene (2017) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 大鼠; 1:500; 图 5
  • 免疫印迹; 大鼠; 图 s5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, RV202)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 s5). Stem Cells Dev (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:700; 图 6
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:700 (图 6). J Neurochem (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s6d
  • 免疫细胞化学; 小鼠; 1:1000; 图 1g
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, EPR3776)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s6d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1g). Nat Commun (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab24525)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b). Stem Cell Res (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab92547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Tissue Eng Part C Methods (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; domestic water buffalo; 1:3000; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在domestic water buffalo样本上浓度为1:3000 (图 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 大鼠; 图 5c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5c). Oncotarget (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 5 ug/ml; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab8069)被用于被用于免疫组化在大鼠样本上浓度为5 ug/ml (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:1000; 图 s1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, EPR3776)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s1). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:3000; 图 5b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:2500; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 13
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab45939)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 13). J Immunol Res (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6). Breast Cancer Res (2016) ncbi
小鼠 单克隆(V9)
  • 免疫沉淀; 人类; 图 4
  • 免疫印迹; 人类; 1:10,000; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫沉淀在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 小鼠; 图 4g
  • 免疫印迹; 小鼠; 图 4f
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab8978)被用于被用于免疫细胞化学在小鼠样本上 (图 4g), 被用于免疫印迹在小鼠样本上 (图 4f), 被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4a). Nat Commun (2016) ncbi
小鼠 单克隆(VI-10)
  • 免疫细胞化学; 人类; 1:200; 图 5
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab20346)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, Ab92547)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在小鼠样本上 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2c). Reprod Sci (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫组化在人类样本上 (图 2). Int Braz J Urol (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 4h
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, 92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在人类样本上 (图 2c). Onco Targets Ther (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab92547)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 5C
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C). Mol Oncol (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab8978)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2500
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab-45939)被用于被用于免疫组化在小鼠样本上浓度为1:2500. Cell Tissue Res (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Mol Brain (2015) ncbi
小鼠 单克隆(RV203)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:100; 图 s4c
艾博抗(上海)贸易有限公司弹性蛋白抗体(AbCam, ab8979)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 s4c). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, AB92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在人类样本上. Adv Healthc Mater (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 犬; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在犬样本上 (图 4). PLoS Genet (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 小鼠; 1:400
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫细胞化学; 人类; 1:400; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(abcam, ab92547)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(AbCam, ab92547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫细胞化学在人类样本上 (图 3). Mol Cell Proteomics (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:25
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:25. Biomaterials (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:20; 图 4
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, Ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 4). Cell J (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫印迹在人类样本上 (图 2e). PLoS ONE (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:100; 图 4d
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4d). Mol Med Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, AB8978)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978-100)被用于被用于免疫细胞化学在人类样本上. J Vis Exp (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫印迹; 小鼠; 图 7b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫印迹在小鼠样本上 (图 7b). Neoplasia (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). In Vitro Cell Dev Biol Anim (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化; 人类; 图 1
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化在人类样本上 (图 1). Circ Heart Fail (2015) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Int J Cancer (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在大鼠样本上. Int J Mol Med (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Acta Naturae (2014) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 人类; 1:100
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. J Cell Mol Med (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:100; 图 7
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8069)被用于被用于免疫组化在人类样本上浓度为1:100 (图 7). Clin Exp Metastasis (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 2A
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上 (图 2A). Prostate (2014) ncbi
小鼠 单克隆(VI-10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab20346)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Reproduction (2014) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2013) ncbi
domestic rabbit 单克隆(EPR3776)
  • 免疫组化-冰冻切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab92547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Angiogenesis (2013) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司弹性蛋白抗体(Abcam, ab8978)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 犬; 1:500; 图 5a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:500 (图 5a). Front Vet Sci (2022) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 小鼠; 1:50; 图 7f
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc6260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 7f). Mol Oncol (2022) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 6e
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Front Oncol (2021) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1e
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1e). iScience (2021) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-6260)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Front Immunol (2021) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 4f
  • 免疫印迹; 小鼠; 图 5d
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上 (图 4f) 和 被用于免疫印迹在小鼠样本上 (图 5d). Theranostics (2021) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Int J Mol Sci (2021) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 斑马鱼; 1:200; 图 3e
圣克鲁斯生物技术弹性蛋白抗体(Santa-Cruz, sc-6260)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 3e). elife (2021) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 小鼠; 1:200; 图 1e
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Rabbit, sc-6260)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1e). Nat Commun (2020) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3g
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在人类样本上 (图 3g). IBRO Rep (2020) ncbi
小鼠 单克隆(RV202)
  • 流式细胞仪; 小鼠; 1:5; 图 4e
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32,322)被用于被用于流式细胞仪在小鼠样本上浓度为1:5 (图 4e). Mol Neurobiol (2021) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3g
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在人类样本上 (图 3g). Signal Transduct Target Ther (2020) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:100; 图 5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc- 6260)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5). Eur J Histochem (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2s1k
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2s1k). elife (2019) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:100; 图 3c
圣克鲁斯生物技术弹性蛋白抗体(Santa, V9)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3c). BMC Cancer (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 大鼠; 图 3i
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在大鼠样本上 (图 3i). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:50; 图 8b
圣克鲁斯生物技术弹性蛋白抗体(Santa, sc-6260)被用于被用于免疫组化在人类样本上浓度为1:50 (图 8b). Nat Cell Biol (2019) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-32322)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2018) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 s5a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 s5a). Sci Rep (2018) ncbi
小鼠 单克隆(2Q1123)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-73258)被用于被用于免疫印迹在人类样本上 (图 2a). Exp Ther Med (2018) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Cell Res (2018) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:50; 图 7d
  • 免疫印迹; 人类; 图 7b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 7d) 和 被用于免疫印迹在人类样本上 (图 7b). Cancer Res (2018) ncbi
小鼠 单克隆(0.N.602)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-73259)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:800; 图 6a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 6a). Exp Ther Med (2017) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 4e
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Int J Mol Med (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 6d
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, V9)被用于被用于免疫细胞化学在人类样本上 (图 6d). EMBO J (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:1000; 图 4B
  • 免疫印迹; 人类; 图 4A
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4B) 和 被用于免疫印迹在人类样本上 (图 4A). Oncol Lett (2017) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 7b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Mol Vis (2017) ncbi
小鼠 单克隆(0.N.602)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-73259)被用于被用于免疫印迹在人类样本上 (图 1c). Biosci Rep (2017) ncbi
小鼠 单克隆(0.N.602)
  • 流式细胞仪; domestic rabbit; 1:100; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-73259)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:100 (图 2). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(2Q1123)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-73258)被用于被用于免疫印迹在人类样本上 (图 s2). Neoplasia (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 s2i
圣克鲁斯生物技术弹性蛋白抗体(SCBT, sc6260)被用于被用于免疫细胞化学在人类样本上 (图 s2i). Cell (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 4b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, E-5)被用于被用于免疫印迹在人类样本上 (图 4f). Oncogenesis (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, E-5)被用于被用于免疫印迹在人类样本上 (图 4f). Oncogenesis (2016) ncbi
小鼠 单克隆(2Q1123)
  • 免疫组化-石蜡切片; 人类; 图 6a
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-73258)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnologies, E-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnologies, E-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(0.N.602)
  • 免疫印迹; 人类; 1:200; 图 6a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, Sc-73259)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6a). Carcinogenesis (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 牛; 1:100; 图 7c
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, Sc-6260)被用于被用于免疫组化在牛样本上浓度为1:100 (图 7c). PLoS ONE (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Biol Open (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:500; 图 6d
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc373717)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6d) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 人类; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 1:1000; 表 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (表 1). Spermatogenesis (2016) ncbi
小鼠 单克隆(RV203)
  • 免疫印迹; 人类; 1:1000; 图 7f
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-58899)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7f). Oncotarget (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:100; 图 2d
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2d). Endocrinology (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术弹性蛋白抗体(santa Cruz, sc-3232)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Gene Ther (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 2a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, V9)被用于被用于免疫细胞化学在人类样本上 (图 2a). BMC Cancer (2016) ncbi
小鼠 单克隆(V9)
  • 免疫沉淀; 大鼠; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫沉淀在大鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200; 图 6b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化在人类样本上浓度为1:200 (图 6b). Mol Cancer Res (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2). Biomed Res Int (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:1000; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). Oncol Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:200; 图 5c
圣克鲁斯生物技术弹性蛋白抗体(SantaCruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5c). Oncotarget (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 1c
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:400; 图 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:50; 图 2a
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2a). Ann Oncol (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术弹性蛋白抗体(santa Cruz, Sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 大鼠; 1:100; 图 3g
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, Sc-6260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3g). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-6260)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 1:200; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Cell Signal (2016) ncbi
小鼠 单克隆(J144)
  • 免疫组化; 人类; 1:100; 图 3
圣克鲁斯生物技术弹性蛋白抗体(santa Cruz, sc-53464)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4). J Neuroinflammation (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-32322)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Int J Mol Med (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:500; 图 st3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 st3). Nat Commun (2016) ncbi
小鼠 单克隆(0.N.602)
  • 免疫细胞化学; 小鼠; 图 s1b
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc73259)被用于被用于免疫细胞化学在小鼠样本上 (图 s1b). Toxicol Sci (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, SC32322)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s5). Breast Cancer Res (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Genes Cancer (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:250; 表 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫组化在人类样本上浓度为1:250 (表 1). J Anat (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 人类; 图 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫组化在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 1:150; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:150 (图 3). Reproduction (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 大鼠; 1:400; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 3C
圣克鲁斯生物技术弹性蛋白抗体(Santa cruz, V-9)被用于被用于免疫印迹在人类样本上 (图 3C). Mol Cell Biol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 s1d
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上 (图 s1d). Oncotarget (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:200; 图 s6
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, SC-6260)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 s6). PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:200; 图 6
圣克鲁斯生物技术弹性蛋白抗体(santa Cruz, sc-6260)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在小鼠样本上. Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology);, sc-6260)被用于被用于免疫印迹在人类样本上 (图 4). Oncol Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:3000; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 6
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-373717)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 6). Cell Death Dis (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:200; 图 7
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7). Respir Res (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:300
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:300. FASEB J (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; African green monkey; 图 1
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在African green monkey样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1000; 图 6g
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, RV202)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Mol Cancer (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnologies, sc-373717)被用于被用于免疫印迹在人类样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, SC-32322)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-32322)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:50; 图 2
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Int J Oncol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 4c
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Mol Med Rep (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫印迹; 人类; 1:1500
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotech, sc-32322)被用于被用于免疫印迹在人类样本上浓度为1:1500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化在人类样本上浓度为1:200. Tumour Biol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫组化-石蜡切片; 小鼠; 图 6
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Cell Cycle (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 1:300
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫印迹在大鼠样本上浓度为1:300. Endocrinology (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, SC-373717)被用于被用于免疫印迹在小鼠样本上. Nucl Recept Signal (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, V9)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-6260)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Reprod Toxicol (2014) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-373717)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Death Dis (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:50
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Pathol (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; alpaca; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology Inc, sc-32322)被用于被用于免疫细胞化学在alpaca样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:200; 图 3
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Cell Biol Int (2015) ncbi
小鼠 单克隆(0.N.602)
  • 免疫组化; South American coati; 1:400
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-73259)被用于被用于免疫组化在South American coati样本上浓度为1:400. Reprod Biol Endocrinol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, sc-373717)被用于被用于免疫印迹在人类样本上. Oncogenesis (2014) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, V-9)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; 人类; 1:50
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc6260)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(RV202)
  • 免疫组化-石蜡切片; 人类; 1:300
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz Biotechnology, RV202)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Clin Transl Oncol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; pigs
圣克鲁斯生物技术弹性蛋白抗体(Santa Cruz, sc-6260)被用于被用于免疫细胞化学在pigs 样本上. Stem Cells Transl Med (2012) ncbi
赛默飞世尔
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 图 4h
赛默飞世尔弹性蛋白抗体(Lab Vision, MS-129-P1)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4h). Int J Mol Sci (2022) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; 人类; 1:200-1:2000; 图 5d
  • 免疫组化-冰冻切片; African green monkey; 1:200-1:2000; 图 1g
赛默飞世尔弹性蛋白抗体(eBioscience, 14-9897)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200-1:2000 (图 5d) 和 被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:200-1:2000 (图 1g). Sci Adv (2022) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 1a
赛默飞世尔弹性蛋白抗体(eBioscience, 11-9897-82)被用于被用于免疫组化在人类样本上 (图 1a). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 2c
  • 免疫细胞化学; 犬; 1:200; 图 3b
赛默飞世尔弹性蛋白抗体(Thermo Fisher, MA5-11883)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 2c) 和 被用于免疫细胞化学在犬样本上浓度为1:200 (图 3b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(J144)
  • 免疫细胞化学; 犬; 图 s4d
  • 免疫印迹; 犬; 图 3h
  • 免疫印迹; 人类; 图 3m, 5c
赛默飞世尔弹性蛋白抗体(Invitrogen, MA3-745)被用于被用于免疫细胞化学在犬样本上 (图 s4d), 被用于免疫印迹在犬样本上 (图 3h) 和 被用于免疫印迹在人类样本上 (图 3m, 5c). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 小鼠; 图 5b
赛默飞世尔弹性蛋白抗体(Thermo Fisher, MA5-11883)被用于被用于免疫细胞化学在小鼠样本上 (图 5b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔弹性蛋白抗体(Thermo Fisher Scientific, MA5-11883)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2020) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:2000; 图 1d
赛默飞世尔弹性蛋白抗体(Thermo Fisher, MS129P)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔弹性蛋白抗体(Thermo Fisher Scientific, MA5-11883)被用于被用于免疫印迹在人类样本上 (图 1a). Biol Open (2019) ncbi
小鼠 单克隆(V9)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4a
赛默飞世尔弹性蛋白抗体(ThermoFisher, V9)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4a). J Allergy Clin Immunol (2019) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 2c
赛默飞世尔弹性蛋白抗体(Thermo Fisher, V9)被用于被用于免疫印迹在人类样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Hum Pathol (2017) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛默飞世尔弹性蛋白抗体(Neomarkers, Ab-2)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Nat Commun (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; pigs
赛默飞世尔弹性蛋白抗体(Thermo Fisher, MA5-11883)被用于被用于免疫细胞化学在pigs 样本上. J Cell Physiol (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 2a
赛默飞世尔弹性蛋白抗体(ThermoFisher Scientific, PA1-16759)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 2a). Virology (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Mod Pathol (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 5c
赛默飞世尔弹性蛋白抗体(Invitrogen, PA1-10003)被用于被用于免疫组化在小鼠样本上 (图 5c). Glia (2017) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:100
赛默飞世尔弹性蛋白抗体(Thermo Scientific, V9)被用于被用于免疫组化在人类样本上浓度为1:100. Balkan Med J (2016) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:200; 图 1
赛默飞世尔弹性蛋白抗体(Thermo Fisher, OMA1-06001)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔弹性蛋白抗体(ThermoFisher Scientific, PA5-27231)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Future Oncol (2016) ncbi
小鼠 单克隆(VI-01)
  • 免疫组化-冰冻切片; 大鼠; 1:200
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MA1-19168)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. Fertil Steril (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
赛默飞世尔弹性蛋白抗体(NeoMarkers, D9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:1000; 图 7d
赛默飞世尔弹性蛋白抗体(Neomarkers, MS-129)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 7d). Acta Biomater (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129-PO)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Pathol Res Pract (2015) ncbi
小鼠 单克隆(RV203)
  • 免疫印迹; 人类; 图 7
赛默飞世尔弹性蛋白抗体(Thermo, RV203)被用于被用于免疫印迹在人类样本上 (图 7). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔弹性蛋白抗体(Neomarkers, MS-129-P)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129)被用于被用于免疫印迹在人类样本上. Lab Invest (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:150
赛默飞世尔弹性蛋白抗体(ZYMED, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. Genes Chromosomes Cancer (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 s6
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129-P)被用于被用于免疫印迹在人类样本上 (图 s6). Genes Dev (2015) ncbi
小鼠 单克隆(RV202)
  • 免疫细胞化学; 人类; 1:400
赛默飞世尔弹性蛋白抗体(Thermo Fisher Scientific, OMA1-06001)被用于被用于免疫细胞化学在人类样本上浓度为1:400. J Mol Histol (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 大鼠; 1:50; 图 7g
赛默飞世尔弹性蛋白抗体(Lab Vision Corporation, MS129-PO)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 7g). Am J Pathol (2015) ncbi
小鼠 单克隆(VI-10)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔弹性蛋白抗体(Pierce, VI-10)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Hum Reprod (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Hum Pathol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔弹性蛋白抗体(Thermo Fisher Scientific, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Rom J Morphol Embryol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
赛默飞世尔弹性蛋白抗体(Thermo, V9)被用于被用于免疫细胞化学在人类样本上. Eur J Cell Biol (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:200
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化在人类样本上浓度为1:200. Histopathology (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129)被用于被用于免疫细胞化学在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(V9)
  • 流式细胞仪; 人类
赛默飞世尔弹性蛋白抗体(eBioscience, V9)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:1000
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化-石蜡切片在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Br J Cancer (2014) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129-P0)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2013) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Sci Rep (2013) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 图 2
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化在人类样本上 (图 2). Diagn Pathol (2013) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129)被用于被用于免疫印迹在人类样本上. Oncogene (2013) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔弹性蛋白抗体(Invitrogen, V9)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Anticancer Res (2012) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
赛默飞世尔弹性蛋白抗体(Thermo Scientific, MS-129)被用于被用于免疫细胞化学在人类样本上. Pediatr Dev Pathol (2012) ncbi
小鼠 单克隆(J144)
  • 其他; 人类; 表 5.1
赛默飞世尔弹性蛋白抗体(ABR Affinity BioReagents, MA3-745)被用于被用于其他在人类样本上 (表 5.1). Methods Mol Biol (2011) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). J Comp Pathol (2009) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; pigs ; 图 7
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 7). Wound Repair Regen (2007) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 2
  • 免疫组化; 犬; 图 2
赛默飞世尔弹性蛋白抗体(Neomarkers, MS129P)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫组化在犬样本上 (图 2). Proc Natl Acad Sci U S A (2006) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:400
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化在人类样本上浓度为1:400. Am J Transplant (2006) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠; 表 1
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在大鼠样本上 (表 1). Arch Med Res (2006) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔弹性蛋白抗体(Zymed, V9)被用于被用于免疫组化-石蜡切片在大鼠样本上. Physiol Res (2007) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化; 人类
赛默飞世尔弹性蛋白抗体(Neomarkers, V9)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化在人类样本上. Pathol Res Pract (2005) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 5
赛默飞世尔弹性蛋白抗体(Lab Vision, MS-129-P)被用于被用于免疫印迹在人类样本上 (图 5). Int J Cancer (2005) ncbi
安迪生物R&D
大鼠 单克隆(280618)
  • 免疫细胞化学; 小鼠; 1:500; 图 s3e
安迪生物R&D弹性蛋白抗体(R&D Systems, MAB2105)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s3e). Nat Commun (2022) ncbi
大鼠 单克隆(280618)
  • 免疫组化; 小鼠; 1:250; 图 s7i
安迪生物R&D弹性蛋白抗体(R&D Systems, MAB2105)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s7i). Nat Commun (2021) ncbi
大鼠 单克隆(280618)
  • 免疫细胞化学; 人类; 1:100; 图 1f
安迪生物R&D弹性蛋白抗体(R&D systems, MAB2105)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). Nat Commun (2021) ncbi
大鼠 单克隆(280618)
  • 免疫组化; 小鼠; 1:100; 图 2c
安迪生物R&D弹性蛋白抗体(R & D Systems, MAB2105)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). elife (2020) ncbi
大鼠 单克隆(280618)
  • 免疫组化; 人类; 图 3a
安迪生物R&D弹性蛋白抗体(R&D Systems, MAB2105)被用于被用于免疫组化在人类样本上 (图 3a). Cell Mol Life Sci (2019) ncbi
大鼠 单克隆(280618)
  • 免疫组化; 人类; 1:200; 图 2d,2e
安迪生物R&D弹性蛋白抗体(R&D, MAB2105)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2d,2e). PLoS ONE (2017) ncbi
大鼠 单克隆(280618)
  • 免疫组化; 大鼠; 1:100; 图 2
安迪生物R&D弹性蛋白抗体(R&D Systems, MAB2105)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2). Int J Mol Med (2016) ncbi
大鼠 单克隆(280618)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
安迪生物R&D弹性蛋白抗体(R&D, MAB2105)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(280618)
  • 免疫组化-石蜡切片; 人类; 图 1
安迪生物R&D弹性蛋白抗体(R&D Systems, MAB2105)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Head Neck (2016) ncbi
Novus Biologicals
小鼠 单克隆(VM452)
  • 免疫组化-石蜡切片; 鸡; 1:400; 图 3b
Novus Biologicals弹性蛋白抗体(Novus, VM452)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:400 (图 3b). J Vet Med Sci (2020) ncbi
小鼠 单克隆(2A52)
  • 免疫组化; 人类; 图 s4d
Novus Biologicals弹性蛋白抗体(Novus, 2A52)被用于被用于免疫组化在人类样本上 (图 s4d). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆(45M1)
  • 免疫印迹; 人类; 1:1000; 图 1c
Novus Biologicals弹性蛋白抗体(Novus, NBP1-31327)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Cancer Lett (2020) ncbi
小鼠 单克隆(RV202)
  • 免疫组化; 小鼠; 图 s2c
Novus Biologicals弹性蛋白抗体(Novus Biologicals, RV202)被用于被用于免疫组化在小鼠样本上 (图 s2c). Diabetes (2017) ncbi
鸡 多克隆(6C5cc)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2k
Novus Biologicals弹性蛋白抗体(Novus Biologicals, NB300-223)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2k). Dev Growth Differ (2016) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1c
Synaptic Systems弹性蛋白抗体(Synaptic Systems, 172002)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). J Gen Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5c
Synaptic Systems弹性蛋白抗体(Synaptic Systems, 172002)被用于被用于免疫组化在小鼠样本上 (图 5c). Glia (2017) ncbi
BioLegend
鸡 多克隆(Poly29191)
  • 免疫细胞化学; African green monkey; 图 5f
  • 免疫细胞化学; 小鼠; 图 4
BioLegend弹性蛋白抗体(Biolegend, Poly 29191)被用于被用于免疫细胞化学在African green monkey样本上 (图 5f) 和 被用于免疫细胞化学在小鼠样本上 (图 4). Sci Rep (2016) ncbi
EnCor Biotechnology
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4a
EnCor Biotechnology弹性蛋白抗体(Encor Biotechnologies, CPCA-Vim)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4a). Cell (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 1:1000; 图 5g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5g). Cell Rep (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3b). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3e
  • 免疫印迹; 大鼠; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3e) 和 被用于免疫印迹在大鼠样本上 (图 3c). Stem Cell Res Ther (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 s4a). Nat Cancer (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 5j
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在小鼠样本上 (图 5j) 和 被用于免疫印迹在人类样本上 (图 5i). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:100; 图 6g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6g). Front Oncol (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 2g
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell SignalingTechnology, 5741)被用于被用于免疫细胞化学在人类样本上 (图 2g) 和 被用于免疫印迹在人类样本上 (图 2f). J Cell Mol Med (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 7g, 7h
  • 免疫细胞化学; 人类; 图 2c, 2d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7g, 7h) 和 被用于免疫细胞化学在人类样本上 (图 2c, 2d). JBMR Plus (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 57415)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 大鼠; 1:200; 图 3k
  • 免疫印迹; 大鼠; 1:1000; 图 3i
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6i, 6j
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3k), 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3i) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6i, 6j). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 流式细胞仪; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 9856)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Mol Med (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s9b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s9b). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 5a). Transl Oncol (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:3000; 图 4m
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 4m). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 图 1a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫组化在人类样本上 (图 1a). iScience (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹; 大鼠; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741S)被用于被用于免疫印迹在小鼠样本上 (图 2a) 和 被用于免疫印迹在大鼠样本上 (图 3b). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 图 7a
  • 免疫印迹; 人类; 图 9b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫组化在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 9b). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 5a, 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a, 5c). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6c, 6f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 6c, 6f). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:100; 图 6a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signalling, 5741)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6a). Development (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6a, 6b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741S)被用于被用于免疫印迹在人类样本上 (图 6a, 6b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Int J Biol Sci (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:200; 图 4c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 9854)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). J Am Heart Assoc (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4c, 4d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4d). Acta Pharm Sin B (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 5a). Cells (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 1e). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 s3e). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). J Mol Med (Berl) (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫印迹在小鼠样本上 (图 6d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 猕猴; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741T)被用于被用于免疫组化在猕猴样本上浓度为1:1000 (图 4a). BMC Biol (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Oncogene (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Cancer Gene Ther (2022) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). Front Oncol (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 s10a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 3b). Biomol Ther (Seoul) (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 图 s1e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫组化在小鼠样本上 (图 s1e). Cancer Discov (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST (Cell Signaling Technology), 5741)被用于被用于免疫印迹在人类样本上 (图 3e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2e). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:500; 图 s1a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 1d). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2h
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 9856)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2h). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫组化在小鼠样本上 (图 s3b). Cell Rep (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3e, 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e, 5c). Neoplasma (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 2l
  • 免疫印迹; 人类; 图 2k
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2l) 和 被用于免疫印迹在人类样本上 (图 2k). Theranostics (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 小鼠; 图 s7b
  • 免疫印迹; 小鼠; 1:500; 图 s7a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫细胞化学在小鼠样本上 (图 s7b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s7a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 s3a). Oncogene (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:2000; 图 3c
  • 免疫组化; 小鼠; 1:50; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 5c). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 s4g, s4h
  • 免疫印迹; 人类; 1:1000; 图 s4d, s4e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s4g, s4h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s4d, s4e). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 s2h
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 s2h). Mol Oncol (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 ev1c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 ev1c). EMBO Mol Med (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2g). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 3c). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 1b, 1c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 1b, 1c). Theranostics (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741T)被用于被用于免疫印迹在小鼠样本上 (图 4c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 3932)被用于被用于免疫细胞化学在人类样本上 (图 1e). elife (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3a, 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a, 3b). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 57415)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1c). Theranostics (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 小鼠; 图 s6b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在小鼠样本上 (图 s6b). Biol Open (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 7c
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). J Cancer (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:200; 图 2d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741S)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). Neoplasia (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:100; 图 1f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f). Life Sci Alliance (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在小鼠样本上 (图 3a). Oxid Med Cell Longev (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 7d
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7d) 和 被用于免疫印迹在小鼠样本上 (图 7b). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). MBio (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上 (图 5b). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Int J Oncol (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). World J Surg Oncol (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-冰冻切片; 小鼠; 图 9f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9f). J Exp Med (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Prolif (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 5c). Biomed Res Int (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:500; 图 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2g). Oncogene (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 5i). CNS Neurosci Ther (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 大鼠; 1:100; 图 1g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1g). Mol Vis (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3b, 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b, 3d). Cell Div (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 图 2m
  • 免疫印迹; 人类; 图 2f, 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在人类样本上 (图 2m) 和 被用于免疫印迹在人类样本上 (图 2f, 2g). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 3932)被用于被用于免疫印迹在人类样本上 (图 5e). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 3c). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 7d). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 大鼠; 图 s10
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在大鼠样本上 (图 s10). JACC Basic Transl Sci (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 3f). Int J Biol Sci (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6f). Dis Model Mech (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 2f). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3c
  • 免疫细胞化学; 小鼠; 1:500; 图 3i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3i). Cancer Cell (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). J Cancer (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2g
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2i). Front Oncol (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 3c). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 3i). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 e4c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 e4c). Nature (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5e
  • 免疫印迹; 小鼠; 1:1000; 图 s5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741T)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 10a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 10a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741P)被用于被用于免疫印迹在人类样本上 (图 6c). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 6b). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogene (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:1000; 图 8g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8g). Mol Biol Cell (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫细胞化学在人类样本上 (图 2g). Oncogene (2020) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 e2b
  • 免疫组化-石蜡切片; 小鼠; 图 e3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 9854)被用于被用于免疫组化-石蜡切片在人类样本上 (图 e2b) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 e3a). Nature (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Med Sci Monit (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 5a). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:250; 图 s3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s3a). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2d). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫细胞化学在人类样本上 (图 2a). Theranostics (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 2b). Theranostics (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 2a). elife (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:500; 图 7d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4i). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 6b
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3s1f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3s1f). elife (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:250; 图 s3e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 s3e). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 s6). Mol Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Science (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:400; 图 1d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1d). Front Neurosci (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:500; 图 e1i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741s)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 e1i). Nature (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 犬; 图 6a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在犬样本上 (图 6a). Nature (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Med Rep (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在小鼠样本上 (图 6c). Gastroenterology (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 3c). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:1000; 图 s1e
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1e). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5c). Development (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 7j
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7j). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2j
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, 5741)被用于被用于免疫印迹在人类样本上 (图 2j). Mol Cancer (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 ex1a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex1a). Nature (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4b). Nat Genet (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • proximity ligation assay; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹基因敲除验证; 人类; 图 1c
  • 免疫细胞化学; 人类; 图 s2f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于proximity ligation assay在小鼠样本上 (图 1b), 被用于免疫细胞化学在小鼠样本上 (图 1a), 被用于免疫印迹在小鼠样本上 (图 2a), 被用于免疫印迹基因敲除验证在人类样本上 (图 1c) 和 被用于免疫细胞化学在人类样本上 (图 s2f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technolog, 3932 S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 1c). J Pathol (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, 3932)被用于被用于免疫印迹在人类样本上 (图 2g). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 小鼠; 1:100; 图 s4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s4b). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Nature (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 流式细胞仪; 人类; 图 S3a
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于流式细胞仪在人类样本上 (图 S3a) 和 被用于免疫印迹在人类样本上 (图 4c). Neoplasia (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Rep (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4f). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 5a). Biomed Pharmacother (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 4d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 3932)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, D21H3)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 2b). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:500; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1i). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3c). J Am Acad Dermatol (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上 (图 10). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 1:500; 图 2g
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2g). Dis Model Mech (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:5000; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 6a
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 5c). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, D21H3)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Cell (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, D2H3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Eur J Rheumatol (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 s12
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 9856S)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 5a
  • 免疫印迹; 人类; 1:500; 图 5b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 1:200; 图 3g
  • 免疫印迹; 人类; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3g) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Neoplasia (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 s8
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在小鼠样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 1:100; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2c). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741S)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 9854)被用于被用于免疫组化在人类样本上 (图 2c). J Proteomics (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在小鼠样本上 (图 4d). Oncogene (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21h3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6c). Oncogene (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上. Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:200; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Tech, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). BMC Biol (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:3000; 图 1d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3a). Cell Signal (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, 5741S)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:3000; 图 5b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5b). Oncogene (2017) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(cell signalling, 5741P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4a). Oncol Rep (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, D21H3-XP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:75; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 3932)被用于被用于免疫细胞化学在人类样本上浓度为1:75 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Tech, R28)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 小鼠; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Int J Cancer (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 1
  • 免疫组化; 小鼠; 图 1
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫组化; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1), 被用于免疫组化在小鼠样本上 (图 1), 被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫组化在人类样本上 (图 1). Cancer Discov (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, R28)被用于被用于免疫印迹在人类样本上 (图 s4b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:100; 图 5
  • 免疫印迹; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). J Gastrointest Surg (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 流式细胞仪; 人类; 1:500; 表 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 9856)被用于被用于流式细胞仪在人类样本上浓度为1:500 (表 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 4). Endocrinology (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Oncogene (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:3000; 图 3d
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3d). Dig Dis Sci (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 8). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS Med (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signal, D21H3)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Tech, 50741S)被用于被用于免疫印迹在人类样本上 (图 s1). Cancer Biol Ther (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 1:100; 图 s4c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 s4c). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signalling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 流式细胞仪; 大鼠; 1:50
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, #9854)被用于被用于流式细胞仪在大鼠样本上浓度为1:50. Andrology (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 1:3000; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Tech, 5741)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741S)被用于被用于免疫印迹在人类样本上 (图 2c). J Exp Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cancer Res (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司弹性蛋白抗体(CST, D21H3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). BMC Complement Altern Med (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 图 5a
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫细胞化学在人类样本上 (图 5a). J Biomed Mater Res B Appl Biomater (2016) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 3). Int J Gynecol Cancer (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, D21H3)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 流式细胞仪; 人类; 图 2
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1), 被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫细胞化学在人类样本上 (图 2). J Transl Med (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化; 人类; 图 5
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫组化在人类样本上 (图 5). Oncogene (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫组化; 小鼠; 图 3
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2) 和 被用于免疫组化在小鼠样本上 (图 3). J Exp Med (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741s)被用于被用于免疫印迹在人类样本上浓度为1:500. Urol Oncol (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 人类; 1:600
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, #5741)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Am J Pathol (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, 5741)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology, D21H3)被用于被用于免疫印迹在人类样本上. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling technology, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technology Japan, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling Technologies, 5741P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Kidney Int (2014) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上浓度为1:500. Autophagy (2013) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, 5741)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2013) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell signaling, D21H3)被用于被用于免疫组化-石蜡切片在小鼠样本上. EMBO Mol Med (2013) ncbi
domestic rabbit 单克隆(D21H3)
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司弹性蛋白抗体(Cell Signaling, 5741)被用于被用于免疫印迹在人类样本上 (图 9). PLoS ONE (2013) ncbi
西格玛奥德里奇
小鼠 单克隆(VIM-13.2)
西格玛奥德里奇弹性蛋白抗体(Sigma, V5255)被用于. NPJ Aging Mech Dis (2021) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:100; 图 5a
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 3d
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹在人类样本上 (图 3d). J Immunother Cancer (2021) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:200; 图 4
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V6630)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). NPJ Parkinsons Dis (2020) ncbi
小鼠 单克隆(VIM-13.2)
  • 免疫印迹; 人类; 1:1000; 图 3a
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V5255)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Br J Pharmacol (2020) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 大鼠; 1:200; 图 8
西格玛奥德里奇弹性蛋白抗体(Sigma, V6630)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 8). Int J Mol Sci (2020) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 1a
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, v6389)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cell Death Dis (2019) ncbi
小鼠 单克隆(V9)
  • 免疫组化; black ferret; 1:200; 图 11
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫组化在black ferret样本上浓度为1:200 (图 11). J Comp Neurol (2019) ncbi
小鼠 单克隆(LN-6)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7b
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V2258)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7b). Development (2019) ncbi
小鼠 单克隆(V9)
  • 免疫印迹基因敲除验证; 人类; 1:100; 图 4a
  • 免疫沉淀; 人类; 图 1a
  • 免疫细胞化学; 人类; 1:100; 图 1b
  • 免疫印迹; 人类; 1:100; 图 4a
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:100 (图 4a), 被用于免疫沉淀在人类样本上 (图 1a), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 4a). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 图 3d
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V6389)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3d). Cell Death Differ (2019) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇弹性蛋白抗体(Sigma Life Sciences, V6389)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2018) ncbi
小鼠 单克隆(V9)
  • 免疫印迹基因敲除验证; 人类; 图 1f
西格玛奥德里奇弹性蛋白抗体(Sigma, V9)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1f). Genes Cells (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:50; 图 1b
西格玛奥德里奇弹性蛋白抗体(Sigma, v6389)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 1:100; 图 s2b
西格玛奥德里奇弹性蛋白抗体(Sigma, V9)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s2b). J Cell Sci (2017) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 5f
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹在人类样本上 (图 5f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:500; 图 1b
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Cancer Sci (2017) ncbi
小鼠 单克隆(LN-6)
  • 免疫组化; 小鼠; 1:2000; 图 3f
  • 免疫印迹; 人类; 1:2000; 图 1b
西格玛奥德里奇弹性蛋白抗体(Sigma, V2258)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3f) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; African green monkey; 图 3a
  • 免疫细胞化学; 人类; 图 4
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫细胞化学在African green monkey样本上 (图 3a) 和 被用于免疫细胞化学在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇弹性蛋白抗体(Sigma, V9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 小鼠; 图 1
西格玛奥德里奇弹性蛋白抗体(Sigma, V9)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Proteomics (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇弹性蛋白抗体(sigma, V6389)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). J Exp Clin Cancer Res (2016) ncbi
小鼠 单克隆(LN-6)
  • 免疫细胞化学; 小鼠; 1:200; 图 1
西格玛奥德里奇弹性蛋白抗体(Sigma, V2258)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1). Small Gtpases (2017) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 图 2b
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹在大鼠样本上 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). elife (2016) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 小鼠; 1:100; 图 2
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 2). Cell Death Differ (2016) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类; 图 s1a
  • 免疫印迹; 人类; 1:1000; 图 2d
西格玛奥德里奇弹性蛋白抗体(Sigma Aldrich, V6389)被用于被用于免疫细胞化学在人类样本上 (图 s1a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Sci Rep (2016) ncbi
小鼠 单克隆(LN-6)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V2258)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V6389)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 大鼠; 图 2
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹在大鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(LN-6)
  • 免疫印迹; 犬; 图 1c
西格玛奥德里奇弹性蛋白抗体(Sigma, V2258)被用于被用于免疫印迹在犬样本上 (图 1c). BMC Genomics (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V6389)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS Med (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V9)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(LN-6)
  • 免疫组化-石蜡切片; 人类; 图 8
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V2258)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8). Breast Cancer Res (2015) ncbi
小鼠 单克隆(LN-6)
  • 免疫细胞化学; 人类; 图 s1
  • 免疫印迹; 人类; 图 s1
西格玛奥德里奇弹性蛋白抗体(Sigma, V2258)被用于被用于免疫细胞化学在人类样本上 (图 s1) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 犬; 1:1600
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫细胞化学在犬样本上浓度为1:1600. Vet J (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V6389)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2015) ncbi
小鼠 单克隆(LN-6)
  • 免疫印迹; 人类; 1:500; 图 3d
西格玛奥德里奇弹性蛋白抗体(Sigma, V2258)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). Hum Mol Genet (2015) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于免疫印迹在人类样本上 (图 3). COPD (2015) ncbi
小鼠 单克隆(LN-6)
  • 免疫细胞化学; 小鼠; 1:500
西格玛奥德里奇弹性蛋白抗体(Sigma, V2258)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Front Genet (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化; 人类; 1:30
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V6389)被用于被用于免疫组化在人类样本上浓度为1:30. Reproduction (2014) ncbi
小鼠 单克隆(V9)
  • 免疫印迹; 人类
西格玛奥德里奇弹性蛋白抗体(Sigma Aldrich, V6389)被用于被用于免疫印迹在人类样本上. Acta Biomater (2014) ncbi
小鼠 单克隆(V9)
  • 免疫组化-石蜡切片; 人类; 1:20,000
西格玛奥德里奇弹性蛋白抗体(Sigma, V9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20,000. Biomed Res Int (2014) ncbi
小鼠 单克隆(V9)
  • 免疫细胞化学; 人类
西格玛奥德里奇弹性蛋白抗体(Sigma-Aldrich, V9)被用于被用于免疫细胞化学在人类样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(V9)
  • reverse phase protein lysate microarray; 人类; 1:500
西格玛奥德里奇弹性蛋白抗体(Sigma, V6389)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为1:500. Pulm Pharmacol Ther (2014) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(3CB2)
  • 免疫组化-冰冻切片; 鸡
Developmental Studies Hybridoma Bank弹性蛋白抗体(DSHB, 3CB2)被用于被用于免疫组化-冰冻切片在鸡样本上. PLoS ONE (2014) ncbi
文章列表
  1. Ghochani Y, Muthukrishnan S, Sohrabi A, Kawaguchi R, Condro M, Bastola S, et al. A molecular interactome of the glioblastoma perivascular niche reveals integrin binding sialoprotein as a mediator of tumor cell migration. Cell Rep. 2022;41:111511 pubmed 出版商
  2. Huang Q, Xiao R, Lu J, Zhang Y, Xu L, Gao J, et al. Endoglin aggravates peritoneal fibrosis by regulating the activation of TGF-β/ALK/Smads signaling. Front Pharmacol. 2022;13:973182 pubmed 出版商
  3. Pi xf1 eiro Hermida S, Mart xed nez P, Bosso G, Flores J, Saraswati S, Connor J, et al. Consequences of telomere dysfunction in fibroblasts, club and basal cells for lung fibrosis development. Nat Commun. 2022;13:5656 pubmed 出版商
  4. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  5. Hern xe1 ndez Jard xf3 n N, Rojas Casta xf1 eda J, Landero Huerta D, Reyes Cruz E, Reynoso Robles R, Ju xe1 rez Mosqueda M, et al. Cryptorchidism: The dog as a study model. Front Vet Sci. 2022;9:935307 pubmed 出版商
  6. O Shea T, Ao Y, Wang S, Wollenberg A, Kim J, Ramos Espinoza R, et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun. 2022;13:5702 pubmed 出版商
  7. Chen F, Xiao M, Feng J, Wufur R, Liu K, Hu S, et al. Different Inhibition of Nrf2 by Two Keap1 Isoforms α and β to Shape Malignant Behaviour of Human Hepatocellular Carcinoma. Int J Mol Sci. 2022;23: pubmed 出版商
  8. Al Zikri P, Huat T, Khan A, Patar A, Reza M, Idris F, et al. Transplantation of IGF-1-induced BMSC-derived NPCs promotes tissue repair and motor recovery in a rat spinal cord injury model. Heliyon. 2022;8:e10384 pubmed 出版商
  9. Wang H, Segersv xe4 rd H, Siren J, Perttunen S, Immonen K, Kosonen R, et al. Tankyrase Inhibition Attenuates Cardiac Dilatation and Dysfunction in Ischemic Heart Failure. Int J Mol Sci. 2022;23: pubmed 出版商
  10. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  11. Deng S, Wang C, Wang Y, Xu Y, Li X, Johnson N, et al. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. Nat Cancer. 2022;3:1071-1087 pubmed 出版商
  12. Pham T, Panda A, Kagawa H, To S, Ertekin C, Georgolopoulos G, et al. Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell. 2022;29:1346-1365.e10 pubmed 出版商
  13. Deng H, Gao Y, Trappetti V, Hertig D, Karatkevich D, Losmanová T, et al. Targeting lactate dehydrogenase B-dependent mitochondrial metabolism affects tumor initiating cells and inhibits tumorigenesis of non-small cell lung cancer by inducing mtDNA damage. Cell Mol Life Sci. 2022;79:445 pubmed 出版商
  14. Wu T, Wang W, Shi G, Hao M, Wang Y, Yao M, et al. Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis. 2022;13:624 pubmed 出版商
  15. Chi R, Yao C, Chen S, Liu Y, He Y, Zhang J, et al. Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Front Oncol. 2022;12:887257 pubmed 出版商
  16. Song M, Meng Q, Jiang X, Liu J, Xiao M, Zhang Z, et al. Phospholipase D1 promotes cervical cancer progression by activating the RAS pathway. J Cell Mol Med. 2022;26:4244-4253 pubmed 出版商
  17. El Darzi N, Mast N, Buchner D, Saadane A, Dailey B, Trichonas G, et al. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer's Disease. Front Pharmacol. 2022;13:902254 pubmed 出版商
  18. Li J, Camirand A, Zakikhani M, Sellin K, Guo Y, Luan X, et al. Parathyroid Hormone-Related Protein Inhibition Blocks Triple-Negative Breast Cancer Expansion in Bone Through Epithelial to Mesenchymal Transition Reversal. JBMR Plus. 2022;6:e10587 pubmed 出版商
  19. Larue M, Parker S, Puccini J, Cammer M, Kimmelman A, Bar Sagi D. Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proc Natl Acad Sci U S A. 2022;119:e2119168119 pubmed 出版商
  20. Zheng C, Xuan W, Chen Z, Zhang R, Huang X, Zhu Y, et al. CX3CL1 Worsens Cardiorenal Dysfunction and Serves as a Therapeutic Target of Canagliflozin for Cardiorenal Syndrome. Front Pharmacol. 2022;13:848310 pubmed 出版商
  21. Wu S, Yuan W, Luo W, Nie K, Wu X, Meng X, et al. miR-126 downregulates CXCL12 expression in intestinal epithelial cells to suppress the recruitment and function of macrophages and tumorigenesis in a murine model of colitis-associated colorectal cancer. Mol Oncol. 2022;16:3465-3489 pubmed 出版商
  22. Liu S, Han D, Xu C, Yang F, Li Y, Zhang K, et al. Antibody-drug conjugates targeting CD248 inhibits liver fibrosis through specific killing on myofibroblasts. Mol Med. 2022;28:37 pubmed 出版商
  23. Zhu X, Guo Y, Chu C, Liu D, Duan K, Yin Y, et al. BRN2 as a key gene drives the early primate telencephalon development. Sci Adv. 2022;8:eabl7263 pubmed 出版商
  24. Araujo A, Abaurrea A, Azcoaga P, L xf3 pez Velazco J, Manzano S, Rodriguez J, et al. Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment. J Clin Invest. 2022;132: pubmed 出版商
  25. Wang J, Wang W, Huang X, Cao J, Hou S, Ni X, et al. m6A-dependent upregulation of TRAF6 by METTL3 is associated with metastatic osteosarcoma. J Bone Oncol. 2022;32:100411 pubmed 出版商
  26. Wu C, Wang Y, Hu S, Wu W, Yeh C, Bamodu O. MED10 Drives the Oncogenicity and Refractory Phenotype of Bladder Urothelial Carcinoma Through the Upregulation of hsa-miR-590. Front Oncol. 2021;11:744937 pubmed 出版商
  27. Li P, Li L, Li Z, Wang S, Li R, Zhao W, et al. Annexin A1 promotes the progression of bladder cancer via regulating EGFR signaling pathway. Cancer Cell Int. 2022;22:7 pubmed 出版商
  28. Yang J, Liao Q, Price M, Moriarity B, Wolf N, Felices M, et al. Chondroitin sulfate proteoglycan 4, a targetable oncoantigen that promotes ovarian cancer growth, invasion, cisplatin resistance and spheroid formation. Transl Oncol. 2022;16:101318 pubmed 出版商
  29. Yoshida J, Ohishi T, Abe H, Ohba S, Inoue H, Usami I, et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience. 2021;24:103497 pubmed 出版商
  30. Xia R, Liu T, Li W, Xu X. RNA-binding protein RBM24 represses colorectal tumourigenesis by stabilising PTEN mRNA. Clin Transl Med. 2021;11:e383 pubmed 出版商
  31. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  32. Fu H, Gui Y, Liu S, Wang Y, Bastacky S, Qiao Y, et al. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience. 2021;24:103112 pubmed 出版商
  33. Jung S, Kim D, Choi Y, Kim S, Park H, Lee H, et al. Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep. 2021;11:19667 pubmed 出版商
  34. Sun W, Byon C, Kim D, Choi H, Park J, Joo S, et al. Renoprotective Effects of Maslinic Acid on Experimental Renal Fibrosis in Unilateral Ureteral Obstruction Model via Targeting MyD88. Front Pharmacol. 2021;12:708575 pubmed 出版商
  35. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  36. Fang L, Wang W, Chen J, Zuo A, Gao H, Yan T, et al. Osthole Attenuates Bleomycin-Induced Pulmonary Fibrosis by Modulating NADPH Oxidase 4-Derived Oxidative Stress in Mice. Oxid Med Cell Longev. 2021;2021:3309944 pubmed 出版商
  37. Chen R, Sheng C, Ma R, Zhang L, Yang L, Chen Y. PLAC1 is an independent predictor of poor survival, and promotes cell proliferation and invasion in cervical cancer. Mol Med Rep. 2021;24: pubmed 出版商
  38. Sun Z, Sun D, Feng Y, Zhang B, Sun P, Zhou B, et al. Exosomal linc-ROR mediates crosstalk between cancer cells and adipocytes to promote tumor growth in pancreatic cancer. Mol Ther Nucleic Acids. 2021;26:253-268 pubmed 出版商
  39. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  40. Cui M, Atmanli A, Morales M, Tan W, Chen K, Xiao X, et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021;12:5270 pubmed 出版商
  41. Liu N, Qadri F, Busch H, Huegel S, Sihn G, Chuykin I, et al. Kpna6 deficiency causes infertility in male mice by disrupting spermatogenesis. Development. 2021;148: pubmed 出版商
  42. Wang C, Yang Z, Xu E, Shen X, Wang X, Li Z, et al. Apolipoprotein C-II induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway. Clin Transl Med. 2021;11:e522 pubmed 出版商
  43. Li X, Yang H, Zhang Y, Du X, Yan Z, Li J, et al. CGFe and TGF-β1 enhance viability and osteogenic differentiation of human dental pulp stem cells through the MAPK pathway. Exp Ther Med. 2021;22:1048 pubmed 出版商
  44. Wei X, Meel M, Breur M, Bugiani M, Hulleman E, Phoenix T. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun. 2021;9:142 pubmed 出版商
  45. Zhao C, Ling X, Xia Y, Yan B, Guan Q. The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 2021;21:441 pubmed 出版商
  46. Vanhunsel S, Bergmans S, Beckers A, Etienne I, Van Houcke J, Seuntjens E, et al. The killifish visual system as an in vivo model to study brain aging and rejuvenation. NPJ Aging Mech Dis. 2021;7:22 pubmed 出版商
  47. Yang M, Jian L, Fan W, Chen X, Zou H, Huang Y, et al. Axon regeneration after optic nerve injury in rats can be improved via PirB knockdown in the retina. Cell Biosci. 2021;11:158 pubmed 出版商
  48. Yew W, Djukic N, Jayaseelan J, Woodman R, Muyderman H, Sims N. Differential effects of the cell cycle inhibitor, olomoucine, on functional recovery and on responses of peri-infarct microglia and astrocytes following photothrombotic stroke in rats. J Neuroinflammation. 2021;18:168 pubmed 出版商
  49. Mao C, Jiang S, Wang X, Tao S, Jiang B, Mao C, et al. BCAR1 plays critical roles in the formation and immunoevasion of invasive circulating tumor cells in lung adenocarcinoma. Int J Biol Sci. 2021;17:2461-2475 pubmed 出版商
  50. Chen C, Abdian N, Maussion G, Thomas R, Demirova I, Cai E, et al. A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods Protoc. 2021;4: pubmed 出版商
  51. Zehender A, Li Y, Lin N, Stefanica A, Nüchel J, Chen C, et al. TGFβ promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nat Commun. 2021;12:4404 pubmed 出版商
  52. Cao W, Song S, Fang G, Li Y, Wang Y, Wang Q. Cadherin-11 Deficiency Attenuates Ang-II-Induced Atrial Fibrosis and Susceptibility to Atrial Fibrillation. J Inflamm Res. 2021;14:2897-2911 pubmed 出版商
  53. Yamamoto Y, Minami M, Yoshida K, Nagata M, Miyata T, Yang T, et al. Irradiation Accelerates Plaque Formation and Cellular Senescence in Flow-Altered Carotid Arteries of Apolipoprotein E Knock-Out Mice. J Am Heart Assoc. 2021;10:e020712 pubmed 出版商
  54. Zou J, Zhu X, Xiang D, Zhang Y, Li J, Su Z, et al. LIX1-like protein promotes liver cancer progression via miR-21-3p-mediated inhibition of fructose-1,6-bisphosphatase. Acta Pharm Sin B. 2021;11:1578-1591 pubmed 出版商
  55. Winter M, Meignan S, Volkel P, Angrand P, Chopin V, Bidan N, et al. Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment. Cells. 2021;10: pubmed 出版商
  56. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  57. Luo C, Xu X, Liu C, He S, Chen J, Feng Y, et al. RBFOX2/GOLIM4 Splicing Axis Activates Vesicular Transport Pathway to Promote Nasopharyngeal Carcinogenesis. Adv Sci (Weinh). 2021;8:e2004852 pubmed 出版商
  58. Zhang Y, Hu M, Yang F, Zhang Y, Ma S, Zhang D, et al. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J Mol Med (Berl). 2021;99:1427-1446 pubmed 出版商
  59. Samuel M, Fonseka P, Sanwlani R, Gangoda L, Chee S, Keerthikumar S, et al. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat Commun. 2021;12:3950 pubmed 出版商
  60. Zhang Y, Ding L, Ni Q, Tao R, Qin J. Transcription factor PAX4 facilitates gastric cancer progression through interacting with miR-27b-3p/Grb2 axis. Aging (Albany NY). 2021;13:16786-16803 pubmed 出版商
  61. Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 2021;40:199 pubmed 出版商
  62. Rosenkrantz J, Gaffney J, Roberts V, Carbone L, CHAVEZ S. Transcriptomic analysis of primate placentas and novel rhesus trophoblast cell lines informs investigations of human placentation. BMC Biol. 2021;19:127 pubmed 出版商
  63. Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, et al. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene. 2021;40:4770-4782 pubmed 出版商
  64. Liu Q, Li H, Yang M, Mei Y, Niu T, Zhou Z, et al. Suppression of tumor growth and metastasis in Shkbp1 knockout mice. Cancer Gene Ther. 2022;29:709-721 pubmed 出版商
  65. Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong L, et al. Adipocyte Fatty Acid Binding Protein Promotes the Onset and Progression of Liver Fibrosis via Mediating the Crosstalk between Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells. Adv Sci (Weinh). 2021;8:e2003721 pubmed 出版商
  66. Huang S, Luo W, Wu G, Shen Q, Zhuang Z, Yang D, et al. Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging (Albany NY). 2021;13:14892-14909 pubmed 出版商
  67. Jiang H, Deng W, Zhu K, Zeng Z, Hu B, Zhou Z, et al. LINC00467 Promotes Prostate Cancer Progression via M2 Macrophage Polarization and the miR-494-3p/STAT3 Axis. Front Oncol. 2021;11:661431 pubmed 出版商
  68. Qin X, Li J, Wang S, Lv J, Luan F, Liu Y, et al. Serotonin/HTR1E signaling blocks chronic stress-promoted progression of ovarian cancer. Theranostics. 2021;11:6950-6965 pubmed 出版商
  69. Wojnarowicz P, Escolano M, Huang Y, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58 pubmed 出版商
  70. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  71. Yao J, Yang Z, Yang J, Wang Z, Zhang Z. Long non-coding RNA FEZF1-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma via targeting miR-107/Wnt/β-catenin axis. Aging (Albany NY). 2021;13:13726-13738 pubmed 出版商
  72. Flowers B, Xu H, Mulligan A, Hanson K, Seoane J, Vogel H, et al. Cell of Origin Influences Pancreatic Cancer Subtype. Cancer Discov. 2021;11:660-677 pubmed 出版商
  73. Tan S, Liu X, Chen L, Wu X, Tao L, Pan X, et al. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 2021;12:474 pubmed 出版商
  74. Xu Y, Pan S, Chen H, Qian H, Wang Z, Zhu X. MEX3A suppresses proliferation and EMT via inhibiting Akt signaling pathway in cervical cancer. Am J Cancer Res. 2021;11:1446-1462 pubmed
  75. Li X, Lin P, Tao Y, Jiang X, Li T, Wang Y, et al. LECT 2 Antagonizes FOXM1 Signaling via Inhibiting MET to Retard PDAC Progression. Front Cell Dev Biol. 2021;9:661122 pubmed 出版商
  76. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  77. Shen K, Li R, Zhang X, Qu G, Li R, Wang Y, et al. Acetyl oxygen benzoate engeletin ester promotes KLF4 degradation leading to the attenuation of pulmonary fibrosis via inhibiting TGFβ1-smad/p38MAPK-lnc865/lnc556-miR-29b-2-5p-STAT3 signal pathway. Aging (Albany NY). 2021;13:13807-13821 pubmed 出版商
  78. Ni N, Fang X, Li Q. Functional similarity between TGF-beta type 2 and type 1 receptors in the female reproductive tract. Sci Rep. 2021;11:9294 pubmed 出版商
  79. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  80. Oh T, Lee M, Lee Y, Kim G, Lee D, You J, et al. PGC1α Loss Promotes Lung Cancer Metastasis through Epithelial-Mesenchymal Transition. Cancers (Basel). 2021;13: pubmed 出版商
  81. Srivastava S, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, et al. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun. 2021;12:2368 pubmed 出版商
  82. Tian C, Huang Y, Clauser K, Rickelt S, Lau A, Carr S, et al. Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells. Nat Commun. 2021;12:2328 pubmed 出版商
  83. Mu W, Li S, Xu J, Guo X, Wu H, Chen Z, et al. Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat Commun. 2021;12:2288 pubmed 出版商
  84. Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12:2281 pubmed 出版商
  85. Carstens J, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews K, et al. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep. 2021;35:108990 pubmed 出版商
  86. Fayad R, Rojas M, Partisani M, Finetti P, Dib S, Abélanet S, et al. EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun. 2021;12:2198 pubmed 出版商
  87. Niu Y, Lin Z, Wan A, Sun L, Yan S, Liang H, et al. Loss-of-function genetic screening identifies ALDOA as an essential driver for liver cancer cell growth under hypoxia. Hepatology. 2021;: pubmed 出版商
  88. Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, et al. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis. 2021;8: pubmed 出版商
  89. Ganig N, Baenke F, Thepkaysone M, Lin K, Rao V, Wong F, et al. Proteomic Analyses of Fibroblast- and Serum-Derived Exosomes Identify QSOX1 as a Marker for Non-invasive Detection of Colorectal Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  90. Zhang L, Li M, Tian C, Wang T, Mi S. CCAAT enhancer binding protein α suppresses proliferation, metastasis, and epithelial-mesenchymal transition of ovarian cancer cells via suppressing the Wnt/β-catenin signaling. Neoplasma. 2021;68:602-612 pubmed 出版商
  91. Wan L, Wang Y, Zhang Z, Wang J, Niu M, Wu Y, et al. Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis. 2021;12:325 pubmed 出版商
  92. Du J, Yu Q, Liu Y, Du S, Huang L, Xu D, et al. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics. 2021;11:4207-4231 pubmed 出版商
  93. Sun Y, Jing J, Xu H, Xu L, Hu H, Tang C, et al. N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J Immunother Cancer. 2021;9: pubmed 出版商
  94. Swiader A, Camaré C, Guerby P, Salvayre R, Negre Salvayre A. 4-Hydroxynonenal Contributes to Fibroblast Senescence in Skin Photoaging Evoked by UV-A Radiation. Antioxidants (Basel). 2021;10: pubmed 出版商
  95. Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962-4975 pubmed 出版商
  96. Zhang C, Chen L, Liu Y, Huang J, Liu A, Xu Y, et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Theranostics. 2021;11:3676-3693 pubmed 出版商
  97. Mrouj K, Andrés Sánchez N, Dubra G, Singh P, Sobecki M, Chahar D, et al. Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  98. Galbraith L, Mui E, Nixon C, Hedley A, Strachan D, Mackay G, et al. PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene. 2021;40:2355-2366 pubmed 出版商
  99. Baek S, Lee S, Kim T, Choi S, Yun S, Lee W, et al. Senescence Marker Protein 30 (SMP30): A Novel Pan-Species Diagnostic Marker for the Histopathological Diagnosis of Breast Cancer in Humans and Animals. Int J Mol Sci. 2021;22: pubmed 出版商
  100. Matsuzawa F, Kamachi H, Mizukami T, Einama T, Kawamata F, Fujii Y, et al. Mesothelin blockage by Amatuximab suppresses cell invasiveness, enhances gemcitabine sensitivity and regulates cancer cell stemness in mesothelin-positive pancreatic cancer cells. BMC Cancer. 2021;21:200 pubmed 出版商
  101. He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, et al. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med. 2021;11:e289 pubmed 出版商
  102. Kumar B, Ahmad R, Giannico G, Zent R, Talmon G, Harris R, et al. Claudin-2 inhibits renal clear cell carcinoma progression by inhibiting YAP-activation. J Exp Clin Cancer Res. 2021;40:77 pubmed 出版商
  103. O Leary L, Belliveau C, Davoli M, Ma J, Tanti A, Turecki G, et al. Widespread Decrease of Cerebral Vimentin-Immunoreactive Astrocytes in Depressed Suicides. Front Psychiatry. 2021;12:640963 pubmed 出版商
  104. Fu C, Zhang Q, Wang A, Yang S, Jiang Y, Bai L, et al. EWI-2 controls nucleocytoplasmic shuttling of EGFR signaling molecules and miRNA sorting in exosomes to inhibit prostate cancer cell metastasis. Mol Oncol. 2021;15:1543-1565 pubmed 出版商
  105. Mondal T, Shivange G, Tihagam R, Lyerly E, Battista M, Talwar D, et al. Unexpected PD-L1 immune evasion mechanism in TNBC, ovarian, and other solid tumors by DR5 agonist antibodies. EMBO Mol Med. 2021;13:e12716 pubmed 出版商
  106. Yokomizo R, Fujiki Y, Kishigami H, Kishi H, Kiyono T, Nakayama S, et al. Endometrial regeneration with endometrial epithelium: homologous orchestration with endometrial stroma as a feeder. Stem Cell Res Ther. 2021;12:130 pubmed 出版商
  107. Blasiak J, Koskela A, Pawlowska E, Liukkonen M, Ruuth J, Toropainen E, et al. Epithelial-Mesenchymal Transition and Senescence in the Retinal Pigment Epithelium of NFE2L2/PGC-1α Double Knock-Out Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  108. Dufeys C, Daskalopoulos E, Castanares Zapatero D, Conway S, Ginion A, Bouzin C, et al. AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Res Cardiol. 2021;116:10 pubmed 出版商
  109. Lyu L, Chen J, Wang W, Yan T, Lin J, Gao H, et al. Scoparone alleviates Ang II-induced pathological myocardial hypertrophy in mice by inhibiting oxidative stress. J Cell Mol Med. 2021;25:3136-3148 pubmed 出版商
  110. Ding L, Fang Y, Li Y, Hu Q, Ai M, Deng K, et al. AIMP3 inhibits cell growth and metastasis of lung adenocarcinoma through activating a miR-96-5p-AIMP3-p53 axis. J Cell Mol Med. 2021;25:3019-3030 pubmed 出版商
  111. Chen J, Sivan U, Tan S, Lippo L, De Angelis J, Labella R, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci Adv. 2021;7: pubmed 出版商
  112. Fazio M, van Rooijen E, Dang M, van de Hoek G, Ablain J, Mito J, et al. SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. elife. 2021;10: pubmed 出版商
  113. Wang Z, Cheng J, Liu B, Xie F, Li C, Qiao W, et al. Protein deglycase DJ-1 deficiency induces phenotypic switching in vascular smooth muscle cells and exacerbates atherosclerotic plaque instability. J Cell Mol Med. 2021;25:2816-2827 pubmed 出版商
  114. Wang H, Guo S, Kim S, Shao F, Ho J, Wong K, et al. Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics. 2021;11:2442-2459 pubmed 出版商
  115. Huang S, You S, Qian J, Dai C, Shen S, Wang J, et al. Myeloid differentiation 2 deficiency attenuates AngII-induced arterial vascular oxidative stress, inflammation, and remodeling. Aging (Albany NY). 2021;13:4409-4427 pubmed 出版商
  116. Rudloff S, Janot M, Rodriguez S, Dessalle K, Jahnen Dechent W, Huynh Do U. Fetuin-A is a HIF target that safeguards tissue integrity during hypoxic stress. Nat Commun. 2021;12:549 pubmed 出版商
  117. Chen Y, Jhao P, Hung C, Wu Y, Lin S, Chiang W, et al. Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts. J Clin Invest. 2021;131: pubmed 出版商
  118. Chen W, Wu Y, Tsai T, Li R, Lai A, Li L, et al. Group 2 innate lymphoid cells contribute to IL-33-mediated alleviation of cardiac fibrosis. Theranostics. 2021;11:2594-2611 pubmed 出版商
  119. Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur R, Travnickova J, et al. MITF reprograms the extracellular matrix and focal adhesion in melanoma. elife. 2021;10: pubmed 出版商
  120. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:72 pubmed 出版商
  121. Zhang K, Wang D, Cai H, Cao M, Zhang Y, Zhuang P, et al. IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncol Rep. 2021;45:1105-1117 pubmed 出版商
  122. Sarvestani S, SIGNS S, Hu B, Yeu Y, Feng H, Ni Y, et al. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun. 2021;12:262 pubmed 出版商
  123. Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, et al. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics. 2021;11:1795-1813 pubmed 出版商
  124. Chiavarina B, Costanza B, Ronca R, Blomme A, Rezzola S, Chiodelli P, et al. Metastatic colorectal cancer cells maintain the TGFβ program and use TGFBI to fuel angiogenesis. Theranostics. 2021;11:1626-1640 pubmed 出版商
  125. Qiao F, Law H, Krieger K, Clement E, Xiao Y, Buckley S, et al. Ctdp1 deficiency leads to early embryonic lethality in mice and defects in cell cycle progression in MEFs. Biol Open. 2021;10: pubmed 出版商
  126. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13 pubmed 出版商
  127. Ha B, Heo J, Jang Y, Park T, Choi J, Jang W, et al. Depletion of Mitochondrial Components from Extracellular Vesicles Secreted from Astrocytes in a Mouse Model of Fragile X Syndrome. Int J Mol Sci. 2021;22: pubmed 出版商
  128. Ye D, Wang S, Huang Y, Wang X, Chi P. USP43 directly regulates ZEB1 protein, mediating proliferation and metastasis of colorectal cancer. J Cancer. 2021;12:404-416 pubmed 出版商
  129. He L, Bhat K, Duhacheck Muggy S, Ioannidis A, Zhang L, Nguyen N, et al. Tumor necrosis factor receptor signaling modulates carcinogenesis in a mouse model of breast cancer. Neoplasia. 2021;23:197-209 pubmed 出版商
  130. Kano M, Takanashi M, Oyama G, Yoritaka A, Hatano T, Shiba Fukushima K, et al. Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations. NPJ Parkinsons Dis. 2020;6:33 pubmed 出版商
  131. Song M, YEKU O, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298 pubmed 出版商
  132. Liu J, Xie Y, Cui Z, Xia T, Wan L, Zhou H, et al. Bnip3 interacts with vimentin, an intermediate filament protein, and regulates autophagy of hepatic stellate cells. Aging (Albany NY). 2020;13:957-972 pubmed 出版商
  133. Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, et al. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. elife. 2020;9: pubmed 出版商
  134. Chung W, Challagundla L, Zhou Y, Li M, Atfi A, Xu K. Loss of Jag1 cooperates with oncogenic Kras to induce pancreatic cystic neoplasms. Life Sci Alliance. 2021;4: pubmed 出版商
  135. Sun Q, Chen J, Xu L, Kang J, Wu X, Ren Y, et al. MUTYH Deficiency Is Associated with Attenuated Pulmonary Fibrosis in a Bleomycin-Induced Model. Oxid Med Cell Longev. 2020;2020:4828256 pubmed 出版商
  136. Islam M, Maeda N, Miyasato E, Jahan M, Tarif A, Ishino T, et al. Expression of huntingtin-associated protein 1 in adult mouse dorsal root ganglia and its neurochemical characterization in reference to sensory neuron subpopulations. IBRO Rep. 2020;9:258-269 pubmed 出版商
  137. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci. 2021;112:1822-1838 pubmed 出版商
  138. Harrison C, Trevelin S, Richards D, Santos C, Sawyer G, Markovinovic A, et al. Fibroblast Nox2 (NADPH Oxidase-2) Regulates ANG II (Angiotensin II)-Induced Vascular Remodeling and Hypertension via Paracrine Signaling to Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2021;41:698-710 pubmed 出版商
  139. Aggio Bruce R, Chu Tan J, Wooff Y, Cioanca A, Schumann U, Natoli R. Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration. Mol Neurobiol. 2021;58:835-854 pubmed 出版商
  140. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  141. Wang T, Gao X, Zhou K, Jiang T, Gao S, Liu P, et al. Role of ARID1A in epithelial‑mesenchymal transition in breast cancer and its effect on cell sensitivity to 5‑FU. Int J Mol Med. 2020;46:1683-1694 pubmed 出版商
  142. Sepe L, Hartl K, Iftekhar A, Berger H, Kumar N, Goosmann C, et al. Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells. MBio. 2020;11: pubmed 出版商
  143. Lauver M, Goetschius D, Netherby Winslow C, Ayers K, Jin G, Haas D, et al. Antibody escape by polyomavirus capsid mutation facilitates neurovirulence. elife. 2020;9: pubmed 出版商
  144. He Z, Duan Z, Chen L, Li B, Zhou Y. Long non-coding RNA Loc490 inhibits gastric cancer cell proliferation and metastasis by upregulating RNA-binding protein Quaking. Aging (Albany NY). 2020;12:17681-17693 pubmed 出版商
  145. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  146. Shi H, Tao T, Abraham B, Durbin A, Zimmerman M, Kadoch C, et al. ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. Sci Adv. 2020;6:eaaz3440 pubmed 出版商
  147. Cui P, Jing P, Liu X, Xu W. Prognostic Significance of PD-L1 Expression and Its Tumor-Intrinsic Functions in Hypopharyngeal Squamous Cell Carcinoma. Cancer Manag Res. 2020;12:5893-5902 pubmed 出版商
  148. Huang F, Zheng C, Huang L, Lin C, Wang J. USP18 directly regulates Snail1 protein through ubiquitination pathway in colorectal cancer. Cancer Cell Int. 2020;20:346 pubmed 出版商
  149. Jiang Z, Zhang C, Liu X, Ma X, Bian X, Xiao X, et al. Dexamethasone inhibits stemness maintenance and enhances chemosensitivity of hepatocellular carcinoma stem cells by inducing deSUMOylation of HIF‑1α and Oct4. Int J Oncol. 2020;57:780-790 pubmed 出版商
  150. Li Y, He J, Wang F, Wang X, Yang F, Zhao C, et al. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol. 2020;18:181 pubmed 出版商
  151. Kaaij M, van Tok M, Blijdorp I, Ambarus C, Stock M, Pots D, et al. Transmembrane TNF drives osteoproliferative joint inflammation reminiscent of human spondyloarthritis. J Exp Med. 2020;217: pubmed 出版商
  152. Ledein L, Leger B, Dees C, Beyer C, Distler A, Vettori S, et al. Translational engagement of lysophosphatidic acid receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin 1 mouse. Br J Pharmacol. 2020;177:4296-4309 pubmed 出版商
  153. Dias A, Lozovska A, Wymeersch F, Novoa A, Binagui Casas A, Sobral D, et al. A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation. elife. 2020;9: pubmed 出版商
  154. Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, et al. ITGBL1 promotes cell migration and invasion through stimulating the TGF-β signalling pathway in hepatocellular carcinoma. Cell Prolif. 2020;53:e12836 pubmed 出版商
  155. Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int. 2020;20:228 pubmed 出版商
  156. Wen X, Wan J, He Q, Wang M, Li S, Jiang M, et al. p190A inactivating mutations cause aberrant RhoA activation and promote malignant transformation via the Hippo-YAP pathway in endometrial cancer. Signal Transduct Target Ther. 2020;5:81 pubmed 出版商
  157. Yang Y, Mei Q. Accumulation of AGO2 Facilitates Tumorigenesis of Human Hepatocellular Carcinoma. Biomed Res Int. 2020;2020:1631843 pubmed 出版商
  158. Gualandi M, Iorio M, Engeler O, Serra Roma A, Gasparre G, Schulte J, et al. Oncogenic ALK F1174L drives tumorigenesis in cutaneous squamous cell carcinoma. Life Sci Alliance. 2020;3: pubmed 出版商
  159. Qi J, Liu S, Liu W, Cai G, Liao G. Identification of UAP1L1 as tumor promotor in gastric cancer through regulation of CDK6. Aging (Albany NY). 2020;12:6904-6927 pubmed 出版商
  160. Tian Q, Yuan P, Quan C, Li M, Xiao J, Zhang L, et al. Phosphorylation of BCKDK of BCAA catabolism at Y246 by Src promotes metastasis of colorectal cancer. Oncogene. 2020;39:3980-3996 pubmed 出版商
  161. Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett. 2020;19:2272-2280 pubmed 出版商
  162. Alafate W, Li X, Zuo J, Zhang H, Xiang J, Wu W, et al. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther. 2020;26:475-485 pubmed 出版商
  163. Deng C, Chen S, Li X, Luo H, Zhang Q, Hu P, et al. Role of the PGE2 receptor in ischemia-reperfusion injury of the rat retina. Mol Vis. 2020;26:36-47 pubmed
  164. Guo Y, Zhang Z, Wang Z, Liu G, Liu Y, Wang H. Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep. 2020;40: pubmed 出版商
  165. Prado N, Muñoz E, Farias Altamirano L, Aguiar F, Ponce Zumino A, Sánchez F, et al. Reperfusion Arrhythmias Increase after Superior Cervical Ganglionectomy Due to Conduction Disorders and Changes in Repolarization. Int J Mol Sci. 2020;21: pubmed 出版商
  166. Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, et al. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol. 2020;10:170 pubmed 出版商
  167. Chen J, Chen S, Zhuo L, Zhu Y, Zheng H. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis. 2020;11:173 pubmed 出版商
  168. Wang X, Shan Y, Tan Q, Tan C, Zhang H, Liu J, et al. MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma. Cancer Cell Int. 2020;20:63 pubmed 出版商
  169. Chen Z, Zhang J, Xue H, Qian M, Guo X, Gao X, et al. Nitidine Chloride Is a Potential Alternative Therapy for Glioma Through Inducing Endoplasmic Reticulum Stress and Alleviating Epithelial-Mesenchymal Transition. Integr Cancer Ther. 2020;19:1534735419900927 pubmed 出版商
  170. Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells. Cell Div. 2020;15:4 pubmed 出版商
  171. Wang S, Qi Y, Gao X, Qiu W, Liu Q, Guo X, et al. Hypoxia-induced lncRNA PDIA3P1 promotes mesenchymal transition via sponging of miR-124-3p in glioma. Cell Death Dis. 2020;11:168 pubmed 出版商
  172. Nayakawde N, Methe K, Banerjee D, Berg M, Premaratne G, Olausson M. In Vitro Regeneration of Decellularized Pig Esophagus Using Human Amniotic Stem Cells. Biores Open Access. 2020;9:22-36 pubmed 出版商
  173. Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40 pubmed 出版商
  174. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  175. Zhang Y, Du P, Li Y, Zhu Q, Song X, Liu S, et al. TASP1 Promotes Gallbladder Cancer Cell Proliferation and Metastasis by Up-regulating FAM49B via PI3K/AKT Pathway. Int J Biol Sci. 2020;16:739-751 pubmed 出版商
  176. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  177. Liu K, Yu Q, Li H, Xie C, Wu Y, Ma D, et al. BIRC7 promotes epithelial-mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy. Am J Cancer Res. 2020;10:78-94 pubmed
  178. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  179. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  180. Guo X, Kolpakov M, Hooshdaran B, Schappell W, Wang T, Eguchi S, et al. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic Transl Sci. 2020;5:69-83 pubmed 出版商
  181. Tan S, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578:437-443 pubmed 出版商
  182. Feng Y, Ji D, Huang Y, Ji B, Zhang Y, Li J, et al. TGM3 functions as a tumor suppressor by repressing epithelial‑to‑mesenchymal transition and the PI3K/AKT signaling pathway in colorectal cancer. Oncol Rep. 2020;43:864-876 pubmed 出版商
  183. Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020;12:2333-2346 pubmed 出版商
  184. Guoren Z, Zhaohui F, Wei Z, Mei W, Yuan W, Lin S, et al. TFAP2A Induced ITPKA Serves as an Oncogene and Interacts with DBN1 in Lung Adenocarcinoma. Int J Biol Sci. 2020;16:504-514 pubmed 出版商
  185. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117:3748-3758 pubmed 出版商
  186. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  187. Carpinelli M, de Vries M, Auden A, Butt T, Deng Z, Partridge D, et al. Inactivation of Zeb1 in GRHL2-deficient mouse embryos rescues mid-gestation viability and secondary palate closure. Dis Model Mech. 2020;13: pubmed 出版商
  188. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  189. Vetuschi A, Pompili S, Di Marco G, Calvaruso F, Iacomino E, Angelosante L, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?. Eur J Histochem. 2020;64: pubmed 出版商
  190. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  191. Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, et al. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer. 2020;11:1257-1269 pubmed 出版商
  192. Wang H, Ren Y, Qian C, Liu J, Li G, Li Z. Over-expression of CDX2 alleviates breast cancer by up-regulating microRNA let-7b and inhibiting COL11A1 expression. Cancer Cell Int. 2020;20:13 pubmed 出版商
  193. Yoshida K, Miyoshi T, Murakami T. Multicystic peritoneal tumor in two layer hens. J Vet Med Sci. 2020;82:294-298 pubmed 出版商
  194. del Toro D, Carrasquero Ordaz M, Chu A, Ruff T, Shahin M, Jackson V, et al. Structural Basis of Teneurin-Latrophilin Interaction in Repulsive Guidance of Migrating Neurons. Cell. 2020;180:323-339.e19 pubmed 出版商
  195. Cai H, Li J, Zhang Y, Liao Y, Zhu Y, Wang C, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition. Front Oncol. 2019;9:1446 pubmed 出版商
  196. Rabé M, Dumont S, Álvarez Arenas A, Janati H, Belmonte Beitia J, Calvo G, et al. Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis. 2020;11:19 pubmed 出版商
  197. Liu X, Ma F, Liu C, Zhu K, Li W, Xu Y, et al. UBE2O promotes the proliferation, EMT and stemness properties of breast cancer cells through the UBE2O/AMPKα2/mTORC1-MYC positive feedback loop. Cell Death Dis. 2020;11:10 pubmed 出版商
  198. Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62-73 pubmed 出版商
  199. Liang L, Wu J, Luo J, Wang L, Chen Z, Han C, et al. Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling in vitro. Oncol Lett. 2020;19:519-526 pubmed 出版商
  200. Li B, Li M, Li X, Li H, Lai Y, Huang S, et al. Sirt1-inducible deacetylation of p21 promotes cardiomyocyte proliferation. Aging (Albany NY). 2019;11:12546-12567 pubmed 出版商
  201. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  202. Tasdogan A, Faubert B, Ramesh V, Ubellacker J, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature. 2020;577:115-120 pubmed 出版商
  203. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  204. Perri A, Agosti V, Olivo E, Concolino A, Angelis M, Tammè L, et al. Histone proteomics reveals novel post-translational modifications in breast cancer. Aging (Albany NY). 2019;11:11722-11755 pubmed 出版商
  205. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  206. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  207. Yang X, Jiang J, Zhang C, Li Y. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Braz J Med Biol Res. 2019;52:e8934 pubmed 出版商
  208. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  209. Li X, Wang F, Ren M, Du M, Zhou J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol. 2019;19:219 pubmed 出版商
  210. Lodes N, Seidensticker K, Perniss A, Nietzer S, Oberwinkler H, May T, et al. Investigation on Ciliary Functionality of Different Airway Epithelial Cell Lines in Three-Dimensional Cell Culture. Tissue Eng Part A. 2020;26:432-440 pubmed 出版商
  211. Zhou S, da Silva S, Siegel P, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317 pubmed 出版商
  212. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  213. Vohnoutka R, Gulvady A, Goreczny G, Alpha K, Handelman S, Sexton J, et al. The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol Biol Cell. 2019;30:3037-3056 pubmed 出版商
  214. Chen Q, Yang C, Chen L, Zhang J, Ge W, Yuan H, et al. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer. 2019;121:912-921 pubmed 出版商
  215. Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794 pubmed 出版商
  216. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  217. Meertens L, Hafirassou M, Couderc T, Bonnet Madin L, Kril V, Kummerer B, et al. FHL1 is a major host factor for chikungunya virus infection. Nature. 2019;: pubmed 出版商
  218. Bi J, Yang S, Li L, Dai Q, Borcherding N, Wagner B, et al. Metadherin enhances vulnerability of cancer cells to ferroptosis. Cell Death Dis. 2019;10:682 pubmed 出版商
  219. Aghajanian H, Kimura T, Rurik J, Hancock A, Leibowitz M, Li L, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573:430-433 pubmed 出版商
  220. Jiao X, Ye J, Wang X, Yin X, Zhang G, Cheng X. KIAA1199, a Target of MicoRNA-486-5p, Promotes Papillary Thyroid Cancer Invasion by Influencing Epithelial-Mesenchymal Transition (EMT). Med Sci Monit. 2019;25:6788-6796 pubmed 出版商
  221. Li L, Yan S, Zhang H, Zhang M, Huang G, Chen M. Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer. 2019;19:894 pubmed 出版商
  222. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  223. Ruffenach G, Umar S, Vaillancourt M, Hong J, Cao N, Sarji S, et al. Histological hallmarks and role of Slug/PIP axis in pulmonary hypertension secondary to pulmonary fibrosis. EMBO Mol Med. 2019;11:e10061 pubmed 出版商
  224. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  225. Ramani V, Lemaire C, Triboulet M, Casey K, Heirich K, Renier C, et al. Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res. 2019;21:98 pubmed 出版商
  226. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed 出版商
  227. Seki M, Furukawa N, Koitabashi N, Obokata M, Conway S, Arakawa H, et al. Periostin-expressing cell-specific transforming growth factor-β inhibition in pulmonary artery prevents pulmonary arterial hypertension. PLoS ONE. 2019;14:e0220795 pubmed 出版商
  228. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  229. Chung K, Hsu C, Fan L, Huang Z, Bhatia D, Chen Y, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019;10:3390 pubmed 出版商
  230. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  231. Chang Z. Downregulation of SOX2 may be targeted by miR-590-5p and inhibits epithelial-to-mesenchymal transition in non-small-cell lung cancer. Exp Ther Med. 2019;18:1189-1195 pubmed 出版商
  232. Vazquez Iglesias L, Barcia Castro L, Rodríguez Quiroga M, Páez de la Cadena M, Rodríguez Berrocal J, Cordero O. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biol Open. 2019;8: pubmed 出版商
  233. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  234. Xie X, Wang Y, Xia Y, Mao Y. Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep. 2019;39: pubmed 出版商
  235. Saatcioglu H, Kano M, Horn H, Zhang L, Samore W, Nagykery N, et al. Single-cell sequencing of neonatal uterus reveals an Misr2+ endometrial progenitor indispensable for fertility. elife. 2019;8: pubmed 出版商
  236. Adams C, Htwe H, Marsh T, Wang A, Montoya M, Subbaraj L, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. elife. 2019;8: pubmed 出版商
  237. Rubio K, Singh I, Dobersch S, Sarvari P, Günther S, Cordero J, et al. Inactivation of nuclear histone deacetylases by EP300 disrupts the MiCEE complex in idiopathic pulmonary fibrosis. Nat Commun. 2019;10:2229 pubmed 出版商
  238. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  239. Fan M, Zou Y, He P, Zhang S, Sun X, Li C. Long non-coding RNA SPRY4-IT1 promotes epithelial-mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis. Biosci Rep. 2019;: pubmed 出版商
  240. Norwood J, Zhang Q, CARD D, Craine A, Ryan T, Drew P. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. elife. 2019;8: pubmed 出版商
  241. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  242. Szvicsek Z, Oszvald Á, Szabó L, Sándor G, Kelemen A, Soós A, et al. Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors. Cell Mol Life Sci. 2019;76:2463-2476 pubmed 出版商
  243. Gao X, Liu X, Lu Y, Wang Y, Cao W, Liu X, et al. PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation. Breast Cancer. 2019;: pubmed 出版商
  244. Hausott B, Park J, Valovka T, Offterdinger M, Hess M, Geley S, et al. Subcellular Localization of Sprouty2 in Human Glioma Cells. Front Mol Neurosci. 2019;12:73 pubmed 出版商
  245. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  246. Gao R, Kanasaki K, Li J, Kitada M, Okazaki T, Koya D. βklotho is essential for the anti-endothelial mesenchymal transition effects of N-acetyl-seryl-aspartyl-lysyl-proline. FEBS Open Bio. 2019;9:1029-1038 pubmed 出版商
  247. Liu Y, Xue M, Du S, Feng W, Zhang K, Zhang L, et al. Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat Commun. 2019;10:1637 pubmed 出版商
  248. An S, Raju I, Surenkhuu B, Kwon J, Gulati S, Karaman M, et al. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: Implications for novel biomarkers and therapeutic strategies. Ocul Surf. 2019;: pubmed 出版商
  249. Li Y, Lu Y, Chen Y. Long non-coding RNA SNHG16 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer via sponging miR-200a-3p. Biosci Rep. 2019;39: pubmed 出版商
  250. Saykali B, Mathiah N, Nahaboo W, Racu M, Hammou L, Defrance M, et al. Distinct mesoderm migration phenotypes in extra-embryonic and embryonic regions of the early mouse embryo. elife. 2019;8: pubmed 出版商
  251. Zhang D, Zhou H, Liu J, Mao J. Long Noncoding RNA ASB16-AS1 Promotes Proliferation, Migration, and Invasion in Glioma Cells. Biomed Res Int. 2019;2019:5437531 pubmed 出版商
  252. Costa B, Eisemann T, Strelau J, Spaan I, Korshunov A, Liu H, et al. Intratumoral platelet aggregate formation in a murine preclinical glioma model depends on podoplanin expression on tumor cells. Blood Adv. 2019;3:1092-1102 pubmed 出版商
  253. Rodriques S, Stickels R, Goeva A, Martin C, Murray E, Vanderburg C, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363:1463-1467 pubmed 出版商
  254. Li L, Kang H, Zhang Q, D Agati V, Al Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129:2374-2389 pubmed 出版商
  255. Lodge E, Santambrogio A, Russell J, Xekouki P, Jacques T, Johnson R, et al. Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade. elife. 2019;8: pubmed 出版商
  256. Li Y, Li H, Duan Y, Cai X, You D, Zhou F, et al. Blockage of TGF-α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. Biomed Res Int. 2019;2019:8231267 pubmed 出版商
  257. Kaschula C, Tuveri R, Ngarande E, Dzobo K, Barnett C, Kusza D, et al. The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer. 2019;19:248 pubmed 出版商
  258. Fuziwara C, Saito K, Leoni S, Waitzberg A, Kimura E. The Highly Expressed FAM83F Protein in Papillary Thyroid Cancer Exerts a Pro-Oncogenic Role in Thyroid Follicular Cells. Front Endocrinol (Lausanne). 2019;10:134 pubmed 出版商
  259. Telegina D, Kolosova N, Kozhevnikova O. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12:48 pubmed 出版商
  260. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  261. Jalal S, Shi S, Acharya V, Huang R, Viasnoff V, Bershadsky A, et al. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J Cell Sci. 2019;132: pubmed 出版商
  262. Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, et al. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature. 2019;567:43-48 pubmed 出版商
  263. Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, et al. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 2019;216:688-703 pubmed 出版商
  264. Hutchinson E, Chatterjee M, Reyes L, Djankpa F, Valiant W, Dardzinski B, et al. The effect of Zika virus infection in the ferret. J Comp Neurol. 2019;527:1706-1719 pubmed 出版商
  265. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  266. Gao R, Asano S, Upadhyayula S, Pisarev I, Milkie D, Liu T, et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science. 2019;363: pubmed 出版商
  267. Shinozuka T, Takada R, Yoshida S, Yonemura S, Takada S. Wnt produced by stretched roof-plate cells is required for the promotion of cell proliferation around the central canal of the spinal cord. Development. 2019;146: pubmed 出版商
  268. Liu Z, Liu J, Dong X, Hu X, Jiang Y, Li L, et al. Tn antigen promotes human colorectal cancer metastasis via H-Ras mediated epithelial-mesenchymal transition activation. J Cell Mol Med. 2019;23:2083-2092 pubmed 出版商
  269. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  270. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  271. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018;362: pubmed 出版商
  272. Flood B, Manils J, Nulty C, Flis E, Kenealy S, Barber G, et al. Caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis. Oncogene. 2019;38:2658-2674 pubmed 出版商
  273. Lee C, Cheng Y, Chang C, Lin C, Chang J. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep. 2018;8:17477 pubmed 出版商
  274. Tang Z, Ding Y, Shen Q, Zhang C, Li J, Nazar M, et al. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl). 2019;97:127-140 pubmed 出版商
  275. Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, et al. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep. 2018;8:16749 pubmed 出版商
  276. Jiu Y. Vimentin intermediate filaments function as a physical barrier during intracellular trafficking of caveolin-1. Biochem Biophys Res Commun. 2018;507:161-167 pubmed 出版商
  277. Song S, Zhang R, Cao W, Fang G, Yu Y, Wan Y, et al. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol. 2019;234:9052-9064 pubmed 出版商
  278. Deissler H, Lang G, Lang G. Fate of the Fc fusion protein aflibercept in retinal endothelial cells: competition of recycling and degradation. Graefes Arch Clin Exp Ophthalmol. 2019;257:83-94 pubmed 出版商
  279. Ke X, Do D, Li C, Zhao Y, Kollarik M, Fu Q, et al. Ras homolog family member A/Rho-associated protein kinase 1 signaling modulates lineage commitment of mesenchymal stem cells in asthmatic patients through lymphoid enhancer-binding factor 1. J Allergy Clin Immunol. 2019;143:1560-1574.e6 pubmed 出版商
  280. Robbins J, Perfect L, Ribe E, Maresca M, Dangla Valls A, Foster E, et al. Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons. Front Neurosci. 2018;12:504 pubmed 出版商
  281. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  282. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  283. Zhu Y, Qu C, Hong X, Jia Y, Lin M, Luo Y, et al. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ. 2019;26:306-320 pubmed 出版商
  284. Rademaker G, Hennequière V, Brohée L, Nokin M, Lovinfosse P, Durieux F, et al. Myoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness. Oncogene. 2018;37:4398-4412 pubmed 出版商
  285. Chen W, Yang J, Wu Y, Li L, Li R, Chang Y, et al. IL-33/ST2 axis mediates hyperplasia of intrarenal urothelium in obstructive renal injury. Exp Mol Med. 2018;50:36 pubmed 出版商
  286. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  287. Johnson M, Sun X, Kodani A, Borges Monroy R, Girskis K, Ryu S, et al. Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature. 2018;556:370-375 pubmed 出版商
  288. Liakath Ali K, Mills E, Sequeira I, Lichtenberger B, Pisco A, Sipilä K, et al. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature. 2018;556:376-380 pubmed 出版商
  289. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  290. Nguyen H, Noguchi S, Sugie K, Matsuo Y, Nguyen C, Koito H, et al. Small-Vessel Vasculopathy Due to Aberrant Autophagy in LAMP-2 Deficiency. Sci Rep. 2018;8:3326 pubmed 出版商
  291. Fang L, Wu J, Huang T, Zhang P, Xin X, Shi Y. TGF-?1 stimulates epithelial-mesenchymal transition mediated by ADAM33. Exp Ther Med. 2018;15:985-992 pubmed 出版商
  292. Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, et al. Neural crest-derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen. 2018;26:54-63 pubmed 出版商
  293. Schwab A, Siddiqui A, Vazakidou M, Napoli F, Böttcher M, Menchicchi B, et al. Polyol Pathway Links Glucose Metabolism to the Aggressiveness of Cancer Cells. Cancer Res. 2018;78:1604-1618 pubmed 出版商
  294. Palesch D, Bosinger S, Tharp G, Vanderford T, Paiardini M, Chahroudi A, et al. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature. 2018;553:77-81 pubmed 出版商
  295. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  296. Liu L, Wu B, Cai H, Li D, Ma Y, Zhu X, et al. Tiam1 promotes thyroid carcinoma metastasis by modulating EMT via Wnt/?-catenin signaling. Exp Cell Res. 2018;362:532-540 pubmed 出版商
  297. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  298. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  299. You S, Guan Y, Li W. Epithelial?mesenchymal transition in colorectal carcinoma cells is mediated by DEK/IMP3. Mol Med Rep. 2017;: pubmed 出版商
  300. Li Y, Zhong C, Liu D, Yu W, Chen W, Wang Y, et al. Evidence for Kaposi Sarcoma Originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition. Cancer Res. 2018;78:230-245 pubmed 出版商
  301. Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, et al. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget. 2017;8:70130-70141 pubmed 出版商
  302. Peuhu E, Salomaa S, De Franceschi N, Potter C, Sundberg J, Pouwels J. Integrin beta 1 inhibition alleviates the chronic hyperproliferative dermatitis phenotype of SHARPIN-deficient mice. PLoS ONE. 2017;12:e0186628 pubmed 出版商
  303. Hazim R, Karumbayaram S, Jiang M, Dimashkie A, Lopes V, Li D, et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8:217 pubmed 出版商
  304. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  305. Ise H, Yamasaki S, Sueyoshi K, Miura Y. Elucidation of GlcNAc-binding properties of type III intermediate filament proteins, using GlcNAc-bearing polymers. Genes Cells. 2017;22:900-917 pubmed 出版商
  306. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  307. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  308. Wang W, Liu F, Wang C, Wang C, Tang Y, Jiang Z. Glutathione S-transferase A1 mediates nicotine-induced lung cancer cell metastasis by promoting epithelial-mesenchymal transition. Exp Ther Med. 2017;14:1783-1788 pubmed 出版商
  309. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  310. Ren D, Yang Q, Dai Y, Guo W, Du H, Song L, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-?B signaling pathway. Mol Cancer. 2017;16:117 pubmed 出版商
  311. Viswanathan V, Ryan M, Dhruv H, Gill S, Eichhoff O, Seashore Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453-457 pubmed 出版商
  312. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  313. Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002 pubmed 出版商
  314. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  315. Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong S, et al. IKBKE regulates cell proliferation and epithelial-mesenchymal transition of human malignant glioma via the Hippo pathway. Oncotarget. 2017;8:49502-49514 pubmed 出版商
  316. Antfolk D, Sjöqvist M, Cheng F, Isoniemi K, Duran C, Rivero Muller A, et al. Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proc Natl Acad Sci U S A. 2017;114:E4574-E4581 pubmed 出版商
  317. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  318. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  319. Kannan A, Hertweck K, Philley J, Wells R, Dasgupta S. Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer. Sci Rep. 2017;7:46102 pubmed 出版商
  320. Matějů D, Franzmann T, Patel A, Kopach A, Boczek E, Maharana S, et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 2017;36:1669-1687 pubmed 出版商
  321. Liao Z, Zhao L, Cai M, Xi M, He L, Yu F, et al. P300 promotes migration, invasion and epithelial-mesenchymal transition in a nasopharyngeal carcinoma cell line. Oncol Lett. 2017;13:763-769 pubmed 出版商
  322. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  323. Siddiqui A, Vazakidou M, Schwab A, Napoli F, Fernandez Molina C, Rapa I, et al. Thymidylate synthase is functionally associated with ZEB1 and contributes to the epithelial-to-mesenchymal transition of cancer cells. J Pathol. 2017;242:221-233 pubmed 出版商
  324. Ji H, Xiong Y, Zhang E, Song W, Gao Z, Yao F, et al. Which has more stem-cell characteristics: Müller cells or Müller cells derived from in vivo culture in neurospheres?. Am J Transl Res. 2017;9:611-619 pubmed
  325. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  326. Wang X, Xia Q, Ni H, Ye S, Li R, Wang X, et al. SFPQ/PSF-TFE3 renal cell carcinoma: a clinicopathologic study emphasizing extended morphology and reviewing the differences between SFPQ-TFE3 RCC and the corresponding mesenchymal neoplasm despite an identical gene fusion. Hum Pathol. 2017;63:190-200 pubmed 出版商
  327. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  328. Sun L, Liu T, Li L, Tang W, Zou J, Chen X, et al. Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces ?-cell proliferation in diabetic mice. Int J Mol Med. 2017;39:936-948 pubmed 出版商
  329. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  330. Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med. 2017;39:900-906 pubmed 出版商
  331. Li X, Liu W, Chen X, Wang Y, Shi D, Zhang H, et al. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med. 2017;39:927-935 pubmed 出版商
  332. Zhang L, Liu H, Mu X, Cui J, Peng Z. Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition. Biosci Rep. 2017;37: pubmed 出版商
  333. Vermillion M, Lei J, Shabi Y, Baxter V, Crilly N, McLane M, et al. Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nat Commun. 2017;8:14575 pubmed 出版商
  334. Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans Borgmeyer I, Liu B, et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017;65:773-789 pubmed 出版商
  335. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:14228 pubmed 出版商
  336. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  337. Carey S, MARTIN K, Reinhart King C. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci Rep. 2017;7:42088 pubmed 出版商
  338. Saha D, Koli S, Patgaonkar M, Reddy K. Expression of hemoglobin-α and β subunits in human vaginal epithelial cells and their functional significance. PLoS ONE. 2017;12:e0171084 pubmed 出版商
  339. Genovese G, Carugo A, TEPPER J, Robinson F, Li L, Svelto M, et al. Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature. 2017;542:362-366 pubmed 出版商
  340. Borghesi J, Mario L, Carreira A, Miglino M, Favaron P. Phenotype and multipotency of rabbit (Oryctolagus cuniculus) amniotic stem cells. Stem Cell Res Ther. 2017;8:27 pubmed 出版商
  341. Qiu X, Pascal L, Song Q, Zang Y, Ai J, O Malley K, et al. Physical and Functional Interactions between ELL2 and RB in the Suppression of Prostate Cancer Cell Proliferation, Migration, and Invasion. Neoplasia. 2017;19:207-215 pubmed 出版商
  342. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  343. Gonzalez M, Martin E, Anwar T, Arellano Garcia C, Medhora N, Lama A, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep. 2017;18:1215-1228 pubmed 出版商
  344. Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, et al. The pattern of hMENA isoforms is regulated by TGF-?1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556 pubmed 出版商
  345. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  346. Das S, Jackson W, Prasain J, Hanna A, Bailey S, Tucker J, et al. Loss of Merlin induces metabolomic adaptation that engages dependence on Hedgehog signaling. Sci Rep. 2017;7:40773 pubmed 出版商
  347. Zhang Y, An J, Lv W, Lou T, Liu Y, Kang W. miRNA-129-5p suppresses cell proliferation and invasion in lung cancer by targeting microspherule protein 1, E-cadherin and vimentin. Oncol Lett. 2016;12:5163-5169 pubmed 出版商
  348. Jiu Y, Peranen J, Schaible N, Cheng F, Eriksson J, Krishnan R, et al. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J Cell Sci. 2017;130:892-902 pubmed 出版商
  349. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  350. Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun. 2017;8:13923 pubmed 出版商
  351. Beigi F, Patel M, Morales Garza M, Winebrenner C, Gobin A, Chau E, et al. Optimized method for isolating highly purified and functional porcine aortic endothelial and smooth muscle cells. J Cell Physiol. 2017;232:3139-3145 pubmed 出版商
  352. Rivera Serrano E, Sherry B. NF-?B activation is cell type-specific in the heart. Virology. 2017;502:133-143 pubmed 出版商
  353. Nguyen K, Lee E, Yue Y, Stork J, Pock L, North J, et al. Human polyomavirus 6 and 7 are associated with pruritic and dyskeratotic dermatoses. J Am Acad Dermatol. 2017;76:932-940.e3 pubmed 出版商
  354. Boylan K, Buchanan P, Manion R, Shukla D, Braumberger K, Bruggemeyer C, et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8:9717-9738 pubmed 出版商
  355. Bordeleau F, Mason B, Lollis E, Mazzola M, Zanotelli M, Somasegar S, et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci U S A. 2017;114:492-497 pubmed 出版商
  356. Kusumoto H, Shintani Y, Kanzaki R, Kawamura T, Funaki S, Minami M, et al. Podocalyxin influences malignant potential by controlling epithelial-mesenchymal transition in lung adenocarcinoma. Cancer Sci. 2017;108:528-535 pubmed 出版商
  357. Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, et al. MicroRNA-182 targets SMAD7 to potentiate TGF?-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun. 2016;7:13884 pubmed 出版商
  358. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  359. Han X, Fang Z, Wang H, Jiao R, Zhou J, Fang N. CUL4A functions as an oncogene in ovarian cancer and is directly regulated by miR-494. Biochem Biophys Res Commun. 2016;480:675-681 pubmed 出版商
  360. Tang Z, Li J, Shen Q, Feng J, Liu H, Wang W, et al. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer. 2017;140:1620-1632 pubmed 出版商
  361. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  362. Yang Z, Peng Y, Gopalan A, Gao D, Chen Y, Joyner A. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech. 2017;10:39-52 pubmed 出版商
  363. Xia Q, Wang Z, Chen N, Gan H, Teng X, Shi S, et al. Xp11.2 translocation renal cell carcinoma with NONO-TFE3 gene fusion: morphology, prognosis, and potential pitfall in detecting TFE3 gene rearrangement. Mod Pathol. 2017;30:416-426 pubmed 出版商
  364. Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun. 2016;7:13602 pubmed 出版商
  365. Tiwari A, Copeland C, Han B, Hanson C, Raghunathan K, Kenworthy A. Caveolin-1 is an aggresome-inducing protein. Sci Rep. 2016;6:38681 pubmed 出版商
  366. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  367. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  368. Wu M, Tang W, Zhan X, Li Y, Peng Y, Huang X, et al. FOXK1 interaction with FHL2 promotes proliferation, invasion and metastasis in colorectal cancer. Oncogenesis. 2016;5:e271 pubmed 出版商
  369. Bryson B, Junk D, Cipriano R, Jackson M. STAT3-mediated SMAD3 activation underlies Oncostatin M-induced Senescence. Cell Cycle. 2017;16:319-334 pubmed 出版商
  370. Chaudhury A, Cheema S, Fachini J, Kongchan N, Lu G, Simon L, et al. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362 pubmed 出版商
  371. Yang S, Ji Q, Chang B, Wang Y, Zhu Y, Li D, et al. STC2 promotes head and neck squamous cell carcinoma metastasis through modulating the PI3K/AKT/Snail signaling. Oncotarget. 2017;8:5976-5991 pubmed 出版商
  372. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  373. Cirillo N, Hassona Y, Celentano A, Lim K, Manchella S, Parkinson E, et al. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis. 2017;38:76-85 pubmed 出版商
  374. Sauvegarde C, Paul D, Bridoux L, Jouneau A, Degrelle S, Hue I, et al. Dynamic Pattern of HOXB9 Protein Localization during Oocyte Maturation and Early Embryonic Development in Mammals. PLoS ONE. 2016;11:e0165898 pubmed 出版商
  375. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  376. Naylor R, McGhee C, Cowan C, Davidson A, Holm T, Sherwin T. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells. PLoS ONE. 2016;11:e0165464 pubmed 出版商
  377. Lin Y, Mori E, Kato M, Xiang S, Wu L, Kwon I, et al. Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers. Cell. 2016;167:789-802.e12 pubmed 出版商
  378. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  379. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  380. Gay O, Gilquin B, Assard N, Stuelsatz P, Delphin C, Lachuer J, et al. Refilins are short-lived Actin-bundling proteins that regulate lamellipodium protrusion dynamics. Biol Open. 2016;5:1351-1361 pubmed 出版商
  381. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia. 2017;65:231-249 pubmed 出版商
  382. Badillo Soto M, Rodríguez Rodríguez M, Pérez Pérez M, Daza Benítez L, Bollain Y Goytia J, Carrillo Jiménez M, et al. Potential protein targets of the peptidylarginine deiminase 2 and peptidylarginine deiminase 4 enzymes in rheumatoid synovial tissue and its possible meaning. Eur J Rheumatol. 2016;3:44-49 pubmed
  383. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  384. Wizeman J, Nicholas A, Ishigami A, Mohan R. Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis. 2016;22:1137-1155 pubmed
  385. Little A, Sham D, Hristova M, Danyal K, Heppner D, Bauer R, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016;5:e261 pubmed 出版商
  386. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed 出版商
  387. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  388. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  389. Lund P, Elias J, Davis M. Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells. J Immunol. 2016;197:3086-3098 pubmed
  390. Tonyali S, Yazici S, Yeşilırmak A, Ergen A. The Ewing's Sarcoma Family of Tumors of Urinary Bladder: A Case Report and Review of the Literature. Balkan Med J. 2016;33:462-6 pubmed 出版商
  391. Kong X, Liu F, Gao J. MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget. 2016;7:66051-66060 pubmed 出版商
  392. Wang L, Xu D, Qiao Z, Shen L, Dai H, Ji Y. Follicular dendritic cell sarcoma of the spleen: A case report and review of the literature. Oncol Lett. 2016;12:2062-2064 pubmed
  393. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016;16:67 pubmed 出版商
  394. Chung I, Reichelt M, Shao L, Akita R, Koeppen H, Rangell L, et al. High cell-surface density of HER2 deforms cell membranes. Nat Commun. 2016;7:12742 pubmed 出版商
  395. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  396. Xiaojun W, Yan L, Hong X, Xianghong Z, Shifeng L, Dingjie X, et al. Acetylated ?-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep. 2016;6:32257 pubmed 出版商
  397. Jones R, Robinson T, Liu J, Shrestha M, Voisin V, Ju Y, et al. RB1 deficiency in triple-negative breast cancer induces mitochondrial protein translation. J Clin Invest. 2016;126:3739-3757 pubmed 出版商
  398. Li N, Lee W, Cheng C. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier. Spermatogenesis. 2016;6:e1206353 pubmed 出版商
  399. Zeng Y, Yao X, Chen L, Yan Z, Liu J, Zhang Y, et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. Oncotarget. 2016;7:63324-63337 pubmed 出版商
  400. Liu C, Guo C, Wang W, Zhu P, Li W, Mi Y, et al. Inhibition of Lysyl Oxidase by Cortisol Regeneration in Human Amnion: Implications for Rupture of Fetal Membranes. Endocrinology. 2016;157:4055-4065 pubmed
  401. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  402. Liu L, Phua Y, Lee R, Ma X, Jenkins Y, Novy K, et al. Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases. J Biol Chem. 2016;291:21571-21583 pubmed
  403. Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, et al. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol. 2016;118:18-30 pubmed 出版商
  404. Deskin B, Lasky J, Zhuang Y, Shan B. Requirement of HDAC6 for activation of Notch1 by TGF-?1. Sci Rep. 2016;6:31086 pubmed 出版商
  405. Liu S, Tian Z, Zhang L, Hou S, Hu S, Wu J, et al. Combined cell surface carbonic anhydrase 9 and CD147 antigens enable high-efficiency capture of circulating tumor cells in clear cell renal cell carcinoma patients. Oncotarget. 2016;7:59877-59891 pubmed 出版商
  406. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  407. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  408. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  409. Portillo J, Lopez Corcino Y, Miao Y, Tang J, Sheibani N, Kern T, et al. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy. Diabetes. 2017;66:483-493 pubmed 出版商
  410. Iacovides D, Rizki G, Lapathitis G, Strati K. Direct conversion of mouse embryonic fibroblasts into functional keratinocytes through transient expression of pluripotency-related genes. Stem Cell Res Ther. 2016;7:98 pubmed 出版商
  411. Li N, Mruk D, Chen H, Wong C, Lee W, Cheng C. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. Sci Rep. 2016;6:29667 pubmed 出版商
  412. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  413. Pailler E, Oulhen M, Billiot F, Galland A, Auger N, Faugeroux V, et al. Method for semi-automated microscopy of filtration-enriched circulating tumor cells. BMC Cancer. 2016;16:477 pubmed 出版商
  414. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  415. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  416. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  417. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  418. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  419. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  420. Mo A, Jackson S, Varma K, Carpino A, Giardina C, Devers T, et al. Distinct Transcriptional Changes and Epithelial-Stromal Interactions Are Altered in Early-Stage Colon Cancer Development. Mol Cancer Res. 2016;14:795-804 pubmed 出版商
  421. Zhang J, Sun D, Fu Q, Cao Q, Zhang H, Zhang K. Bone mesenchymal stem cells differentiate into myofibroblasts in the tumor microenvironment. Oncol Lett. 2016;12:644-650 pubmed
  422. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  423. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  424. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  425. Toneff M, Sreekumar A, Tinnirello A, Hollander P, Habib S, Li S, et al. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol. 2016;14:47 pubmed 出版商
  426. Cui L, Wang Y, Yu R, Li B, Xie S, Gao Y, et al. Jia-Shen decoction-medicated serum inhibits angiotensin-II induced cardiac fibroblast proliferation via the TGF-?1/Smad signaling pathway. Mol Med Rep. 2016;14:1610-6 pubmed 出版商
  427. Li Y, Zhang S, Li Y, Wang Y. Isolation, culture, purification and ultrastructural investigation of cardiac telocytes. Mol Med Rep. 2016;14:1194-200 pubmed 出版商
  428. Mokhtari S, Colletti E, Atala A, Zanjani E, Porada C, Almeida Porada G. Boosting Hematopoietic Engraftment after in Utero Transplantation through Vascular Niche Manipulation. Stem Cell Reports. 2016;6:957-969 pubmed 出版商
  429. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  430. Cerman E, Akkoç T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, et al. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495 pubmed 出版商
  431. Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed 出版商
  432. Zheng X, Xu M, Yao B, Wang C, Jia Y, Liu Q. IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment. Cell Signal. 2016;28:1314-24 pubmed 出版商
  433. Zeng L, Yang X, Wen Y, Mail S, Wang M, Zhang M, et al. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY). 2016;8:1236-49 pubmed 出版商
  434. Wan F, Bai H, Liu J, Tian M, Wang Y, Niu X, et al. Proliferation and Glia-Directed Differentiation of Neural Stem Cells in the Subventricular Zone of the Lateral Ventricle and the Migratory Pathway to the Lesions after Cortical Devascularization of Adult Rats. Biomed Res Int. 2016;2016:3625959 pubmed 出版商
  435. Qi Y, Yu J, Han W, Fan X, Qian H, Wei H, et al. A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation. Nat Commun. 2016;7:ncomms11840 pubmed 出版商
  436. Kizuka Y, Nakano M, Miura Y, Taniguchi N. Epigenetic regulation of neural N-glycomics. Proteomics. 2016;16:2854-2863 pubmed 出版商
  437. Guo Y, Wang L, Li B, Xu H, Yang J, Zheng L, et al. Wnt/?-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 2016;7:42513-42526 pubmed 出版商
  438. Bakshi M, Azimzadeh O, Merl Pham J, Verreet T, Hauck S, Benotmane M, et al. In-Utero Low-Dose Irradiation Leads to Persistent Alterations in the Mouse Heart Proteome. PLoS ONE. 2016;11:e0156952 pubmed 出版商
  439. Chen H, Lorton B, Gupta V, Shechter D. A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene. 2017;36:373-386 pubmed 出版商
  440. De Cian M, Pauper E, Bandiera R, Vidal V, Sacco S, Gregoire E, et al. Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary. Oncogene. 2017;36:208-218 pubmed 出版商
  441. Lin S, Gou G, Hsia C, Ho C, Huang K, Wu Y, et al. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev. 2016;25:1172-93 pubmed 出版商
  442. Kuang J, Li L, Guo L, Su Y, Wang Y, Xu Y, et al. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. J Exp Clin Cancer Res. 2016;35:88 pubmed 出版商
  443. Farrugia A, Calvo F. Cdc42 regulates Cdc42EP3 function in cancer-associated fibroblasts. Small Gtpases. 2017;8:49-57 pubmed 出版商
  444. He Y, Ou Z, Chen X, Zu X, Liu L, Li Y, et al. LPS/TLR4 Signaling Enhances TGF-β Response Through Downregulating BAMBI During Prostatic Hyperplasia. Sci Rep. 2016;6:27051 pubmed 出版商
  445. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  446. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  447. He F, Wei L, Luo W, Liao Z, Li B, Zhou X, et al. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget. 2016;7:37000-37012 pubmed 出版商
  448. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  449. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  450. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  451. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  452. Bell C, Hendriks D, Moro S, Ellis E, Walsh J, Renblom A, et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep. 2016;6:25187 pubmed 出版商
  453. Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, et al. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods. 2016;22:621-35 pubmed 出版商
  454. Fu Q, Huang Y, Wang Z, Chen F, Huang D, Lu Y, et al. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development. Int J Mol Sci. 2016;17: pubmed 出版商
  455. Roulois D, Deshayes S, Guilly M, Nader J, Liddell C, Robard M, et al. Characterization of preneoplastic and neoplastic rat mesothelial cell lines: the involvement of TETs, DNMTs, and 5-hydroxymethylcytosine. Oncotarget. 2016;7:34664-87 pubmed 出版商
  456. Nakamura R, Koshiba Takeuchi K, Tsuchiya M, Kojima M, Miyazawa A, Ito K, et al. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice. Dev Growth Differ. 2016;58:367-82 pubmed 出版商
  457. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  458. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  459. Lin S, Kao C, Lee H, Creighton C, Ittmann M, Tsai S, et al. Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat Commun. 2016;7:11418 pubmed 出版商
  460. Yan M, Li X, Tong D, Han C, Zhao R, He Y, et al. miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep. 2016;36:65-71 pubmed 出版商
  461. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  462. Sato K, Suda K, Shimizu S, Sakai K, Mizuuchi H, Tomizawa K, et al. Clinical, Pathological, and Molecular Features of Lung Adenocarcinomas with AXL Expression. PLoS ONE. 2016;11:e0154186 pubmed 出版商
  463. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  464. Liang H, Zhang Q, Lu J, Yang G, Tian N, Wang X, et al. MSX2 Induces Trophoblast Invasion in Human Placenta. PLoS ONE. 2016;11:e0153656 pubmed 出版商
  465. E L, Xu W, Feng L, Liu Y, Cai D, Wen N, et al. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Int J Mol Med. 2016;37:1475-86 pubmed 出版商
  466. Montalbano M, Curcurù G, Shirafkan A, Vento R, Rastellini C, Cicalese L. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion. PLoS ONE. 2016;11:e0153613 pubmed 出版商
  467. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  468. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  469. Choi S, Kim M, Lee H, Kim E, Kim C, Lee Y. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation?induced pulmonary fibrosis. Mol Med Rep. 2016;13:4135-42 pubmed 出版商
  470. Li J, Cen B, Chen S, He Y. MicroRNA-29b inhibits TGF-?1-induced fibrosis via regulation of the TGF-?1/Smad pathway in primary human endometrial stromal cells. Mol Med Rep. 2016;13:4229-37 pubmed 出版商
  471. Fuente Martín E, García Cáceres C, Argente Arizón P, Diaz F, Granado M, Freire Regatillo A, et al. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep. 2016;6:23673 pubmed 出版商
  472. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed 出版商
  473. Morrow C, Trapani F, Metcalf R, Bertolini G, Hodgkinson C, Khandelwal G, et al. Tumourigenic non-small-cell lung cancer mesenchymal circulating tumour cells: a clinical case study. Ann Oncol. 2016;27:1155-60 pubmed 出版商
  474. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  475. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  476. Bassey Archibong B, Kwiecien J, Milosavljevic S, Hallett R, Rayner L, Erb M, et al. Kaiso depletion attenuates transforming growth factor-? signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208 pubmed 出版商
  477. Hes O, Condom Mundo E, Peckova K, Lopez J, Martinek P, Vanecek T, et al. Biphasic Squamoid Alveolar Renal Cell Carcinoma: A Distinctive Subtype of Papillary Renal Cell Carcinoma?. Am J Surg Pathol. 2016;40:664-75 pubmed 出版商
  478. Lao X, Liang Y, Su Y, Zhang S, Zhou X, Liao G. Distribution and significance of interstitial fibrosis and stroma-infiltrating B cells in tongue squamous cell carcinoma. Oncol Lett. 2016;11:2027-2034 pubmed
  479. Salzman D, Nakamura K, Nallur S, Dookwah M, Metheetrairut C, Slack F, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7:10954 pubmed 出版商
  480. Yin S, Fan Y, Zhang H, Zhao Z, Hao Y, Li J, et al. Differential TGF? pathway targeting by miR-122 in humans and mice affects liver cancer metastasis. Nat Commun. 2016;7:11012 pubmed 出版商
  481. Palermo G, Neri Q, Cozzubbo T, Cheung S, Pereira N, Rosenwaks Z. Shedding Light on the Nature of Seminal Round Cells. PLoS ONE. 2016;11:e0151640 pubmed 出版商
  482. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  483. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  484. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  485. Fogl C, Mohammed F, Al Jassar C, Jeeves M, Knowles T, Rodriguez Zamora P, et al. Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin. Nat Commun. 2016;7:10827 pubmed 出版商
  486. Checa M, Hagood J, Velázquez Cruz R, Ruiz V, García de Alba C, Rangel Escareño C, et al. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells. PLoS ONE. 2016;11:e0150383 pubmed 出版商
  487. Hazra S, Nandi S, Naskar D, Guha R, Chowdhury S, Pradhan N, et al. Non-mulberry Silk Fibroin Biomaterial for Corneal Regeneration. Sci Rep. 2016;6:21840 pubmed 出版商
  488. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  489. Matsuda Y, Miura K, Yamane J, Shima H, Fujibuchi W, Ishida K, et al. SERPINI1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer. Cancer Sci. 2016;107:619-28 pubmed 出版商
  490. Ambade A, Satishchandran A, Szabo G. Alcoholic hepatitis accelerates early hepatobiliary cancer by increasing stemness and miR-122-mediated HIF-1α activation. Sci Rep. 2016;6:21340 pubmed 出版商
  491. Haraguchi T, Kondo M, Uchikawa R, Kobayashi K, Hiramatsu H, Kobayashi K, et al. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep. 2016;6:21117 pubmed 出版商
  492. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  493. Chojnacka K, Bilinska B, Mruk D. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal. 2016;28:469-480 pubmed 出版商
  494. Hammam O, Elkhafif N, Attia Y, Mansour M, Elmazar M, Abdelsalam R, et al. Wharton's jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis. Sci Rep. 2016;6:21005 pubmed 出版商
  495. Tong L, Zhou J, Rong L, Seeley E, Pan J, Zhu X, et al. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci Rep. 2016;6:21642 pubmed 出版商
  496. O Sullivan C, Schubart A, Mir A, Dev K. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31 pubmed 出版商
  497. Li J, Pan Q, Rowan P, Trotter T, Peker D, Regal K, et al. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget. 2016;7:11299-309 pubmed 出版商
  498. Ouyang F, Huang H, Zhang M, Chen M, Huang H, Huang F, et al. HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes. Int J Mol Med. 2016;37:679-89 pubmed 出版商
  499. Li M, Li M, Yin T, Shi H, Wen Y, Zhang B, et al. Targeting of cancer‑associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol Med Rep. 2016;13:2476-84 pubmed 出版商
  500. Sun H, Chen J, Qian W, Kang J, Wang J, Jiang L, et al. Integrated long non-coding RNA analyses identify novel regulators of epithelial-mesenchymal transition in the mouse model of pulmonary fibrosis. J Cell Mol Med. 2016;20:1234-46 pubmed 出版商
  501. Nassour J, Martien S, Martin N, Deruy E, Tomellini E, Malaquin N, et al. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells. Nat Commun. 2016;7:10399 pubmed 出版商
  502. Zhang W, St Clair D, Butterfield A, Vore M. Loss of Mrp1 Potentiates Doxorubicin-Induced Cytotoxicity in Neonatal Mouse Cardiomyocytes and Cardiac Fibroblasts. Toxicol Sci. 2016;151:44-56 pubmed 出版商
  503. Wang S, Liu J, Kim D, Datti A, Zacksenhaus E. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer. Breast Cancer Res. 2016;18:9 pubmed 出版商
  504. Ruiz A, Rockfield S, Taran N, Haller E, Engelman R, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059 pubmed 出版商
  505. Allaire J, Roy S, Ouellet C, Lemieux Ã, Jones C, Paquet M, et al. Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. Int J Cancer. 2016;138:2700-12 pubmed 出版商
  506. Ke W, Chen C, Luo H, Tang J, Zhang Y, Gao W, et al. Histone Deacetylase 1 Regulates the Expression of Progesterone Receptor A During Human Parturition by Occupying the Progesterone Receptor A Promoter. Reprod Sci. 2016;23:955-64 pubmed 出版商
  507. Chen Y, Statt S, Wu R, Chang H, Liao J, Wang C, et al. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep. 2016;6:18815 pubmed 出版商
  508. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  509. Pylayeva Gupta Y, Das S, Handler J, Hajdu C, Coffre M, Koralov S, et al. IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia. Cancer Discov. 2016;6:247-55 pubmed 出版商
  510. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  511. Silva M, Matheus W, Garcia P, Stopiglia R, Billis A, Ferreira U, et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int Braz J Urol. 2015;41:849-58 pubmed 出版商
  512. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  513. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  514. Choe C, Shin Y, Kim C, Choi S, Lee J, Kim S, et al. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition. Onco Targets Ther. 2015;8:3665-78 pubmed 出版商
  515. Osorio L, Farfán N, Castellón E, Contreras H. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 2016;13:778-86 pubmed 出版商
  516. Batchelder C, Martinez M, Tarantal A. Natural Scaffolds for Renal Differentiation of Human Embryonic Stem Cells for Kidney Tissue Engineering. PLoS ONE. 2015;10:e0143849 pubmed 出版商
  517. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989 pubmed 出版商
  518. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  519. Qi D, Kaur Gill N, Santiskulvong C, Sifuentes J, Dorigo O, Rao J, et al. Screening cell mechanotype by parallel microfiltration. Sci Rep. 2015;5:17595 pubmed 出版商
  520. Fleury H, Communal L, Carmona E, Portelance L, Arcand S, Rahimi K, et al. Novel high-grade serous epithelial ovarian cancer cell lines that reflect the molecular diversity of both the sporadic and hereditary disease. Genes Cancer. 2015;6:378-398 pubmed
  521. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  522. Eakins R, Walsh J, Randle L, Jenkins R, Schuppe Koistinen I, Rowe C, et al. Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome. Sci Rep. 2015;5:16423 pubmed 出版商
  523. Shah F, Berggren D, Holmlund T, Levring Jäghagen E, StÃ¥l P. Unique expression of cytoskeletal proteins in human soft palate muscles. J Anat. 2016;228:487-94 pubmed 出版商
  524. Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, et al. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget. 2016;7:293-307 pubmed 出版商
  525. Majumder K, Arora N, Modi S, Chugh R, Nomura A, Giri B, et al. A Novel Immunocompetent Mouse Model of Pancreatic Cancer with Robust Stroma: a Valuable Tool for Preclinical Evaluation of New Therapies. J Gastrointest Surg. 2016;20:53-65; discussion 65 pubmed 出版商
  526. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  527. Fraveto A, Cardinale V, Bragazzi M, Giuliante F, De Rose A, Grazi G, et al. Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures. PLoS ONE. 2015;10:e0142124 pubmed 出版商
  528. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  529. Paccola C, Miraglia S. Prenatal and lactation nicotine exposure affects Sertoli cell and gonadotropin levels in rats. Reproduction. 2016;151:117-33 pubmed 出版商
  530. Dixon D, Coates J, Del Carpio Pons A, Horabin J, Walker A, Abdul N, et al. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty. Sci Rep. 2015;5:16466 pubmed 出版商
  531. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  532. Han Y, Shen P, Chang W. Involvement of epithelial-to-mesenchymal transition and associated transforming growth factor-β/Smad signaling in paraquat-induced pulmonary fibrosis. Mol Med Rep. 2015;12:7979-84 pubmed 出版商
  533. Qin W, Li C, Zheng W, Guo Q, Zhang Y, Kang M, et al. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget. 2015;6:39839-54 pubmed 出版商
  534. Forni M, Ramos Maia Lobba A, Pereira Ferreira A, Sogayar M. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin. PLoS ONE. 2015;10:e0140143 pubmed 出版商
  535. Ou Yang L, Xiao S, Liu P, Yi S, Zhang X, Ou Yang S, et al. Forkhead box C1 induces epithelial‑mesenchymal transition and is a potential therapeutic target in nasopharyngeal carcinoma. Mol Med Rep. 2015;12:8003-9 pubmed 出版商
  536. Abou Kheir W, Eid A, El Merahbi R, Assaf R, Daoud G. A Unique Expression of Keratin 14 in a Subset of Trophoblast Cells. PLoS ONE. 2015;10:e0139939 pubmed 出版商
  537. Nath A, Li I, Roberts L, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752 pubmed 出版商
  538. Dubois V, Simitsidellis I, Laurent M, Jardí F, Saunders P, Vanderschueren D, et al. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage. Endocrinology. 2015;156:4522-33 pubmed 出版商
  539. Asanoma K, Liu G, Yamane T, Miyanari Y, Takao T, Yagi H, et al. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells. Mol Cell Biol. 2015;35:4096-109 pubmed 出版商
  540. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  541. Kuang X, Zhu J, Peng Z, Wang J, Chen Z. Transducin (Beta)-Like 1 X-Linked Receptor 1 Correlates with Clinical Prognosis and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Dig Dis Sci. 2016;61:489-500 pubmed 出版商
  542. Santi A, Caselli A, Ranaldi F, Paoli P, Mugnaioni C, Michelucci E, et al. Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta. 2015;1853:3211-23 pubmed 出版商
  543. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  544. Forbes M, Thornhill B, Galarreta C, Chevalier R. A population of mitochondrion-rich cells in the pars recta of mouse kidney. Cell Tissue Res. 2016;363:791-803 pubmed 出版商
  545. Maris P, Blomme A, Palacios A, Costanza B, Bellahcène A, Bianchi E, et al. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer. PLoS Med. 2015;12:e1001871 pubmed 出版商
  546. Brusgard J, Choe M, Chumsri S, Renoud K, MacKerell A, Sudol M, et al. RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget. 2015;6:28132-50 pubmed 出版商
  547. Chen Y, Chen H, Chien C, Wu S, Ho Y, Yu C, et al. Contribution of Mature Hepatocytes to Biliary Regeneration in Rats with Acute and Chronic Biliary Injury. PLoS ONE. 2015;10:e0134327 pubmed 出版商
  548. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  549. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  550. Zhang Y, Wei X, Liang Y, Chen W, Zhang F, Bai J, et al. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation. PLoS ONE. 2015;10:e0135851 pubmed 出版商
  551. Wang J, Bao L, Yu B, Liu Z, Han W, Deng C, et al. Interleukin-1β Promotes Epithelial-Derived Alveolar Elastogenesis via αvβ6 Integrin-Dependent TGF-β Activation. Cell Physiol Biochem. 2015;36:2198-216 pubmed 出版商
  552. Li H, Yu P, Huang K, Su H, Hsiao T, Chang C, et al. NKX6.1 functions as a metastatic suppressor through epigenetic regulation of the epithelial-mesenchymal transition. Oncogene. 2016;35:2266-78 pubmed 出版商
  553. Cui H, Li Q, Chen J, Na Q, Liu C. Hepatitis B virus X protein modifies invasion, proliferation and the inflammatory response in an HTR-8/SVneo cell model. Oncol Rep. 2015;34:2090-8 pubmed 出版商
  554. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  555. Shah S, Miller P, Garcia Contreras M, Ao Z, Machlin L, Issa E, et al. Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther. 2015;16:1671-81 pubmed 出版商
  556. Liang S, Marti T, Dorn P, Froment L, Hall S, Berezowska S, et al. Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer. Cell Death Dis. 2015;6:e1824 pubmed 出版商
  557. El Zowalaty A, Baumann C, Li R, Chen W, De La Fuente R, Ye X. Seipin deficiency increases chromocenter fragmentation and disrupts acrosome formation leading to male infertility. Cell Death Dis. 2015;6:e1817 pubmed 出版商
  558. Stutz C, Reinz E, Honegger A, Bulkescher J, Schweizer J, Zanier K, et al. Intracellular Analysis of the Interaction between the Human Papillomavirus Type 16 E6 Oncoprotein and Inhibitory Peptides. PLoS ONE. 2015;10:e0132339 pubmed 出版商
  559. Maggiorani D, Dissard R, Belloy M, Saulnier Blache J, Casemayou A, Ducassé L, et al. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE. 2015;10:e0131416 pubmed 出版商
  560. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  561. Nishioka M, Venkatesan N, Dessalle K, Mogas A, Kyoh S, Lin T, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015;16:72 pubmed 出版商
  562. Lokody I, Francis J, Gardiner J, Erler J, Swain A. Pten Regulates Epithelial Cytodifferentiation during Prostate Development. PLoS ONE. 2015;10:e0129470 pubmed 出版商
  563. Engel B, Constantinou P, Sablatura L, Doty N, Carson D, Farach Carson M, et al. Multilayered, Hyaluronic Acid-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures. Adv Healthc Mater. 2015;4:1664-74 pubmed 出版商
  564. Li N, Mruk D, Wong C, Lee W, Han D, Cheng C. Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis. FASEB J. 2015;29:3788-805 pubmed 出版商
  565. Pimenta M, Francisco R, Silva R, Porto C, Lazari M. Relaxin affects cell organization and early and late stages of spermatogenesis in a coculture of rat testicular cells. Andrology. 2015;3:772-86 pubmed 出版商
  566. Huo C, Chew G, Hill P, Huang D, Ingman W, Hodson L, et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015;17:79 pubmed 出版商
  567. Liu D, Xiong H, Ellis A, Northrup N, Dobbin K, Shin D, et al. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level. PLoS Genet. 2015;11:e1005277 pubmed 出版商
  568. Cicchini C, de Nonno V, Battistelli C, Cozzolino A, De Santis Puzzonia M, Ciafrè S, et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919-29 pubmed 出版商
  569. Heubach J, Monsior J, Deenen R, Niegisch G, Szarvas T, Niedworok C, et al. The long noncoding RNA HOTAIR has tissue and cell type-dependent effects on HOX gene expression and phenotype of urothelial cancer cells. Mol Cancer. 2015;14:108 pubmed 出版商
  570. Sato M, Matsubara T, Adachi J, Hashimoto Y, Fukamizu K, Kishida M, et al. Differential Proteome Analysis Identifies TGF-β-Related Pro-Metastatic Proteins in a 4T1 Murine Breast Cancer Model. PLoS ONE. 2015;10:e0126483 pubmed 出版商
  571. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  572. He F, Li J, Xu J, Zhang S, Xu Y, Zhao W, et al. Decreased expression of ARID1A associates with poor prognosis and promotes metastases of hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34:47 pubmed 出版商
  573. Ruscetti M, Quach B, Dadashian E, Mulholland D, Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59 pubmed 出版商
  574. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  575. Bhagirath D, Zhao X, West W, Qiu F, Band H, Band V. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes. Oncotarget. 2015;6:9018-30 pubmed
  576. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  577. Pérez Núñez D, García Urdiales E, Martínez Bonet M, Nogal M, Barroso S, Revilla Y, et al. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection. PLoS ONE. 2015;10:e0123714 pubmed 出版商
  578. Gago Fuentes R, Fernández Puente P, Megias D, Carpintero Fernández P, Mateos J, Acea B, et al. Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis. Mol Cell Proteomics. 2015;14:1831-45 pubmed 出版商
  579. Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15:126 pubmed 出版商
  580. Ho F, Zhang W, Li Y, Chan B. Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix. Biomaterials. 2015;53:392-405 pubmed 出版商
  581. Zhang P, Yang X, Ma X, Ingram D, Lazar A, Torres K, et al. Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway. Mol Cancer. 2015;14:55 pubmed 出版商
  582. Pilli V, Gupta K, Kotha B, Aradhyam G. Snail-mediated Cripto-1 repression regulates the cell cycle and epithelial-mesenchymal transition-related gene expression. FEBS Lett. 2015;589:1249-56 pubmed 出版商
  583. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  584. Chen P, Wu T, Cheng Y, Chen C, Lee H. NKX2-1-mediated p53 expression modulates lung adenocarcinoma progression via modulating IKKβ/NF-κB activation. Oncotarget. 2015;6:14274-89 pubmed
  585. Karbalaie K, Tanhaei S, Rabiei F, Kiani Esfahani A, Masoudi N, Nasr Esfahani M, et al. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. Cell J. 2015;17:37-48 pubmed
  586. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  587. Lund K, Dembinski J, Solberg N, Urbanucci A, Mills I, Krauss S. Slug-dependent upregulation of L1CAM is responsible for the increased invasion potential of pancreatic cancer cells following long-term 5-FU treatment. PLoS ONE. 2015;10:e0123684 pubmed 出版商
  588. Simões A, Pereira D, Gomes S, Brito H, Carvalho T, French A, et al. Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis. 2015;6:e1718 pubmed 出版商
  589. Kubelt C, Hattermann K, Sebens S, Mehdorn H, Held Feindt J. Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. Int J Oncol. 2015;46:2515-25 pubmed 出版商
  590. Lee S, Koh Y, Roh H, Cha H, Kwon Y. Ovarian microcystic stromal tumor: A novel extracolonic tumor in familial adenomatous polyposis. Genes Chromosomes Cancer. 2015;54:353-60 pubmed 出版商
  591. Santoro R, Consolo F, Spiccia M, Piola M, Kassem S, Prandi F, et al. Feasibility of pig and human-derived aortic valve interstitial cells seeding on fixative-free decellularized animal pericardium. J Biomed Mater Res B Appl Biomater. 2016;104:345-56 pubmed 出版商
  592. Chen X, Liu X, Lang H, Zhang S, Luo Y, Zhang J. S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through β-catenin in pancreatic cancer cell line. PLoS ONE. 2015;10:e0121319 pubmed 出版商
  593. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  594. Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep. 2015;12:1050-8 pubmed 出版商
  595. Chang A, Liu Y, Ayyanathan K, Benner C, Jiang Y, Prokop J, et al. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes Dev. 2015;29:603-16 pubmed 出版商
  596. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  597. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  598. Liu M, Flanagan T, Lu C, French A, Argyle D, Corcoran B. Culture and characterisation of canine mitral valve interstitial and endothelial cells. Vet J. 2015;204:32-9 pubmed 出版商
  599. Knezevic J, Pfefferle A, Petrovic I, Greene S, Perou C, Rosen J. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34:5997-6006 pubmed 出版商
  600. Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, et al. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol. 2015;46:1913-23 pubmed 出版商
  601. Tang D, Gao J, Wang S, Yuan Z, Ye N, Chong Y, et al. Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer. Tumour Biol. 2015;36:5617-26 pubmed 出版商
  602. Wang H, Bao W, Jiang F, Che Q, Chen Z, Wang F, et al. Mutant p53 (p53-R248Q) functions as an oncogene in promoting endometrial cancer by up-regulating REGγ. Cancer Lett. 2015;360:269-79 pubmed 出版商
  603. Song E, Yu W, Xiong X, Kuang X, Ai Y, Xiong X. Astrocyte elevated gene-1 promotes progression of cervical squamous cell carcinoma by inducing epithelial-mesenchymal transition via Wnt signaling. Int J Gynecol Cancer. 2015;25:345-55 pubmed 出版商
  604. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  605. Afzal M, Strande J. Generation of induced pluripotent stem cells from muscular dystrophy patients: efficient integration-free reprogramming of urine derived cells. J Vis Exp. 2015;:52032 pubmed 出版商
  606. Ko J, Klimowicz A, Jagdis A, Phan T, Laskin J, Lau H, et al. ATM, THMS, and RRM1 protein expression in nasopharyngeal carcinomas treated with curative intent. Head Neck. 2016;38 Suppl 1:E384-91 pubmed 出版商
  607. Ghiabi P, Jiang J, Pasquier J, Maleki M, Abu Kaoud N, Halabi N, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:27 pubmed 出版商
  608. Gajula R, Chettiar S, Williams R, Nugent K, Kato Y, Wang H, et al. Structure-function studies of the bHLH phosphorylation domain of TWIST1 in prostate cancer cells. Neoplasia. 2015;17:16-31 pubmed 出版商
  609. Wong E, Wong S, Chan C, Lam E, Ho L, Lau C, et al. TP53-induced glycolysis and apoptosis regulator promotes proliferation and invasiveness of nasopharyngeal carcinoma cells. Oncol Lett. 2015;9:569-574 pubmed
  610. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  611. Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684 pubmed 出版商
  612. Yao P, Kang D, Wang X, Lin R, Ye Z. Cell-density-dependent manifestation of partial characteristics for neuronal precursors in a newly established human gliosarcoma cell line. In Vitro Cell Dev Biol Anim. 2015;51:345-52 pubmed 出版商
  613. Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed 出版商
  614. Park S, Bae H, Park J. Osteogenic differentiation and gene expression profile of human dental follicle cells induced by human dental pulp cells. J Mol Histol. 2015;46:93-106 pubmed 出版商
  615. Ulanet D, Couto K, Jha A, Choe S, Wang A, Woo H, et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS ONE. 2014;9:e115144 pubmed 出版商
  616. Okada H, Takemura G, Kanamori H, Tsujimoto A, Goto K, Kawamura I, et al. Phenotype and physiological significance of the endocardial smooth muscle cells in human failing hearts. Circ Heart Fail. 2015;8:149-55 pubmed 出版商
  617. Tang E, Mok K, Lee W, Cheng C. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology. 2015;156:680-93 pubmed 出版商
  618. Jannasch K, Wegwitz F, Lenfert E, Maenz C, Deppert W, Alves F. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination. Int J Cancer. 2015;137:25-36 pubmed 出版商
  619. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  620. Liu X, Giguère V. Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transitions. Nucl Recept Signal. 2014;12:e004 pubmed 出版商
  621. Johnson Kerner B, Ahmad F, Diaz A, Greene J, Gray S, Samulski R, et al. Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin. Hum Mol Genet. 2015;24:1420-31 pubmed 出版商
  622. Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS ONE. 2014;9:e112900 pubmed 出版商
  623. Shriver M, Stroka K, Vitolo M, Martin S, Huso D, Konstantopoulos K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. 2015;34:4248-59 pubmed 出版商
  624. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, et al. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem. 2014;289:34189-204 pubmed 出版商
  625. Zhang X, Liu W, Yang H, Tan L, Ao L, Liu J, et al. Inhibition of PPARα attenuates vimentin phosphorylation on Ser-83 and collapse of vimentin filaments during exposure of rat Sertoli cells in vitro to DBP. Reprod Toxicol. 2014;50:11-8 pubmed 出版商
  626. Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249-63 pubmed 出版商
  627. Joseph J, Conroy S, Tomar T, Eggens Meijer E, Bhat K, Copray S, et al. TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 2014;5:e1443 pubmed 出版商
  628. Zheng Y, Thomas A, Schmidt C, Dann C. Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture. Hum Reprod. 2014;29:2497-511 pubmed 出版商
  629. Sun Y, Hu L, Zheng H, Bagnoli M, Guo Y, Rupaimoole R, et al. MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol. 2015;235:25-36 pubmed 出版商
  630. Milara J, Peiró T, Serrano A, Artigues E, Aparicio J, Tenor H, et al. Simvastatin Increases the Ability of Roflumilast N-oxide to Inhibit Cigarette Smoke-Induced Epithelial to Mesenchymal Transition in Well-differentiated Human Bronchial Epithelial Cells in vitro. COPD. 2015;12:320-31 pubmed 出版商
  631. Li L, Fan X, Xia Q, Rao Q, Liu B, Yu B, et al. Concurrent loss of INI1, PBRM1, and BRM expression in epithelioid sarcoma: implications for the cocontributions of multiple SWI/SNF complex members to pathogenesis. Hum Pathol. 2014;45:2247-54 pubmed 出版商
  632. Costache M, Pătraşcu O, Dumitru A, Costache D, Voinea L, Simionescu O, et al. Histopathological findings concerning ocular melanomas. Rom J Morphol Embryol. 2014;55:649-53 pubmed
  633. García E, Machesky L, Jones G, Antón I. WIP is necessary for matrix invasion by breast cancer cells. Eur J Cell Biol. 2014;93:413-23 pubmed 出版商
  634. Franceschi V, Jacca S, Sassu E, Stellari F, van Santen V, Donofrio G. Generation and characterization of the first immortalized alpaca cell line suitable for diagnostic and immunization studies. PLoS ONE. 2014;9:e105643 pubmed 出版商
  635. Foret M, Sandstrom R, Rhodes C, Wang Y, Berger M, Lin C. Molecular targets of chromatin repressive mark H3K9me3 in primate progenitor cells within adult neurogenic niches. Front Genet. 2014;5:252 pubmed 出版商
  636. Krivega M, Geens M, Van de Velde H. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions. Reproduction. 2014;148:531-44 pubmed 出版商
  637. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  638. Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781-90 pubmed 出版商
  639. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  640. McLane J, Rivet C, Gilbert R, Ligon L. A biomaterial model of tumor stromal microenvironment promotes mesenchymal morphology but not epithelial to mesenchymal transition in epithelial cells. Acta Biomater. 2014;10:4811-4821 pubmed 出版商
  641. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  642. Favaron P, Morini J, Mess A, Miglino M, Ambrosio C. Placentation and fetal membrane development in the South American coati, Nasua nasua (Mammalia, Carnivora, Procyonidae). Reprod Biol Endocrinol. 2014;12:57 pubmed 出版商
  643. Liang W, Hao Z, Han J, Zhu D, Jin Z, Xie W. CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol. 2014;32:855-63 pubmed 出版商
  644. Greaves E, Cousins F, Murray A, Esnal Zufiaurre A, Fassbender A, Horne A, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184:1930-9 pubmed 出版商
  645. van Neerven S, Krings L, Haastert Talini K, Vogt M, Tolba R, Brook G, et al. Human Schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. Biomed Res Int. 2014;2014:493823 pubmed 出版商
  646. Morris K, Nofchissey R, Pinchuk I, Beswick E. Chronic macrophage migration inhibitory factor exposure induces mesenchymal epithelial transition and promotes gastric and colon cancers. PLoS ONE. 2014;9:e98656 pubmed 出版商
  647. Yi X, Li X, Zhou Y, Ren S, Wan W, Feng G, et al. Hepatocyte growth factor regulates the TGF-?1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int J Mol Med. 2014;34:381-90 pubmed 出版商
  648. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  649. Muchkaeva I, Dashinimaev E, Artyuhov A, Myagkova E, Vorotelyak E, Yegorov Y, et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6:45-53 pubmed
  650. Bao Y, Cao X, Luo D, Sun R, Peng L, Wang L, et al. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle. 2014;13:1958-69 pubmed 出版商
  651. Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol. 2014;390:34-44 pubmed 出版商
  652. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  653. Yang Y, Sun W, Wu S, Xiao J, Kong X. Telocytes in human heart valves. J Cell Mol Med. 2014;18:759-65 pubmed 出版商
  654. Yoshida T, Ozawa Y, Kimura T, Sato Y, Kuznetsov G, Xu S, et al. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) states. Br J Cancer. 2014;110:1497-505 pubmed 出版商
  655. Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, et al. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther. 2014;28:138-48 pubmed 出版商
  656. Hesami P, Holzapfel B, Taubenberger A, Roudier M, Fazli L, Sieh S, et al. A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clin Exp Metastasis. 2014;31:435-46 pubmed 出版商
  657. Gao Y, Bayless K, Li Q. TGFBR1 is required for mouse myometrial development. Mol Endocrinol. 2014;28:380-94 pubmed 出版商
  658. Shen L, Qu X, Ma Y, Zheng J, Chu D, Liu B, et al. Tumor suppressor NDRG2 tips the balance of oncogenic TGF-? via EMT inhibition in colorectal cancer. Oncogenesis. 2014;3:e86 pubmed 出版商
  659. Aoshiba K, Tsuji T, Itoh M, Semba S, Yamaguchi K, Nakamura H, et al. A murine model of airway fibrosis induced by repeated naphthalene exposure. Exp Toxicol Pathol. 2014;66:169-77 pubmed 出版商
  660. Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L, Cavatorta A, et al. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol Oncol. 2014;8:533-43 pubmed 出版商
  661. Yan X, Lin J, Talabattula V, Mußmann C, Yang F, Wree A, et al. ADAM10 negatively regulates neuronal differentiation during spinal cord development. PLoS ONE. 2014;9:e84617 pubmed 出版商
  662. Bohonowych J, Hance M, Nolan K, DEFEE M, Parsons C, Isaacs J. Extracellular Hsp90 mediates an NF-?B dependent inflammatory stromal program: implications for the prostate tumor microenvironment. Prostate. 2014;74:395-407 pubmed 出版商
  663. Yu Y, Xiao C, Tan L, Wang Q, Li X, Feng Y. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-? signalling. Br J Cancer. 2014;110:724-32 pubmed 出版商
  664. Chen Y, Pan H, Tseng H, Chu H, Hung Y, Yen Y, et al. Differentiated epithelial- and mesenchymal-like phenotypes in subcutaneous mouse xenografts using diffusion weighted-magnetic resonance imaging. Int J Mol Sci. 2013;14:21943-59 pubmed 出版商
  665. Fretz J, Nelson T, Velazquez H, Xi Y, Moeckel G, Horowitz M. Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation. Kidney Int. 2014;85:1091-102 pubmed 出版商
  666. Peng Y, Shi Y, Ding Z, Ke A, Gu C, Hui B, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9:2056-68 pubmed 出版商
  667. Feng N, Han Q, Li J, Wang S, Li H, Yao X, et al. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev. 2014;23:515-29 pubmed 出版商
  668. Zheng Q, Wang X, Wen Q, Zhang Y, Chen S, Zhang J, et al. Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction. 2014;147:45-52 pubmed 出版商
  669. Dave J, Kang H, Abbey C, Maxwell S, Bayless K. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem. 2013;288:30720-33 pubmed 出版商
  670. Qiu S, Wei X, Huang W, Wu M, Qin Y, Li Y, et al. Diagnostic and therapeutic strategy and the most efficient prognostic factors of breast malignant fibrous histiocytoma. Sci Rep. 2013;3:2529 pubmed 出版商
  671. Xu Y, Xu Y, Liao L, Zhou N, Theissen S, Liao X, et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am J Pathol. 2013;183:1281-1292 pubmed 出版商
  672. Cedervall J, Zhang Y, Ringvall M, Thulin A, Moustakas A, Jahnen Dechent W, et al. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment. Angiogenesis. 2013;16:889-902 pubmed 出版商
  673. Zhang X, Wang Z, Kang Y, Li X, Ma X, Ma L. MCAM expression is associated with poor prognosis in non-small cell lung cancer. Clin Transl Oncol. 2014;16:178-83 pubmed 出版商
  674. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed 出版商
  675. Olsen J, Oyan A, Rostad K, Hellem M, Liu J, Li L, et al. p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS ONE. 2013;8:e62547 pubmed 出版商
  676. Park J, Morley T, Scherer P. Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Mol Med. 2013;5:935-48 pubmed 出版商
  677. Yang G, Li J, Jin H, Ding H. Is mammary not otherwise specified-type sarcoma with CD10 expression a distinct entity? A rare case report with immunohistochemical and ultrastructural study. Diagn Pathol. 2013;8:14 pubmed 出版商
  678. Ford C, Jary E, Ma S, Nixdorf S, Heinzelmann Schwarz V, Ward R. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells. PLoS ONE. 2013;8:e54362 pubmed 出版商
  679. Wright E, Farrell K, Malik N, Kassem M, Lewis A, Wallrapp C, et al. Encapsulated glucagon-like peptide-1-producing mesenchymal stem cells have a beneficial effect on failing pig hearts. Stem Cells Transl Med. 2012;1:759-69 pubmed 出版商
  680. Ezponda T, Popovic R, Shah M, Martinez Garcia E, Zheng Y, Min D, et al. The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer. Oncogene. 2013;32:2882-90 pubmed 出版商
  681. Stoyianni A, Goussia A, Pentheroudakis G, Siozopoulou V, Ioachim E, Krikelis D, et al. Immunohistochemical study of the epithelial-mesenchymal transition phenotype in cancer of unknown primary: incidence, correlations and prognostic utility. Anticancer Res. 2012;32:1273-81 pubmed
  682. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  683. Hu Y, Janitz M. High-throughput subcellular protein localization using transfected-cell arrays. Subcellular protein localization using cell arrays. Methods Mol Biol. 2011;706:53-72 pubmed 出版商
  684. Gil da Costa R, Santos M, Amorim I, Lopes C, Pereira P, Faustino A. An immunohistochemical study of feline endometrial adenocarcinoma. J Comp Pathol. 2009;140:254-9 pubmed 出版商
  685. Fu X, Fang L, Li H, Li X, Cheng B, Sheng Z. Adipose tissue extract enhances skin wound healing. Wound Repair Regen. 2007;15:540-8 pubmed
  686. Hartwell K, Muir B, Reinhardt F, Carpenter A, Sgroi D, Weinberg R. The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci U S A. 2006;103:18969-74 pubmed
  687. Hertig A, Verine J, Mougenot B, Jouanneau C, Ouali N, Sebe P, et al. Risk factors for early epithelial to mesenchymal transition in renal grafts. Am J Transplant. 2006;6:2937-46 pubmed
  688. Baravalle C, Salvetti N, Mira G, Pezzone N, Ortega H. Microscopic characterization of follicular structures in letrozole-induced polycystic ovarian syndrome in the rat. Arch Med Res. 2006;37:830-9 pubmed
  689. Baravalle C, Salvetti N, Mira G, Lorente J, Ortega H. The role of ACTH in the pathogenesis of polycystic ovarian syndrome in rats: hormonal profiles and ovarian morphology. Physiol Res. 2007;56:67-78 pubmed
  690. Guarino M, Ballabio G, Rubino B, Nebuloni M, Tosoni A. Soft tissue sacrococcygeal chordoma with intracytoplasmic filamentous inclusions. Pathol Res Pract. 2005;201:699-704 pubmed
  691. Lu S, Yu G, Zhu Y, Archer M. Cyclooxygenase-2 overexpression in MCF-10F human breast epithelial cells inhibits proliferation, apoptosis and differentiation, and causes partial transformation. Int J Cancer. 2005;116:847-52 pubmed