这是一篇来自已证抗体库的有关大鼠 Zeb1的综述,是根据50篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Zeb1 抗体。
Zeb1 同义词: Tcf8; Zfhx1a; deltaEF1

Novus Biologicals
domestic rabbit 多克隆(6C8)
  • 免疫印迹; 小鼠; 1:500; 图 1e
Novus Biologicals Zeb1抗体(Novus, NBP1-05987)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1e). Nat Commun (2020) ncbi
domestic rabbit 多克隆(6C8)
  • 免疫细胞化学; 人类; 图 6d
Novus Biologicals Zeb1抗体(Novus Biologicals, NBP1-05987)被用于被用于免疫细胞化学在人类样本上 (图 6d). EBioMedicine (2017) ncbi
domestic rabbit 多克隆(6C8)
  • 免疫印迹; 人类; 图 4a
Novus Biologicals Zeb1抗体(Novus Biologicals, NBP-1-05987)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆(6C8)
  • 免疫组化-冰冻切片; 小鼠; 图 7h
Novus Biologicals Zeb1抗体(Novus Biologicals, NBP1-05987)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7h). Cell Res (2016) ncbi
北京傲锐东源
小鼠 单克隆(OTI7E12)
  • 免疫印迹; 人类; 1:500; 图 3a
北京傲锐东源 Zeb1抗体(OriGene Technologies, TA802313)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Anticancer Res (2016) ncbi
小鼠 单克隆(OTI7E12)
  • 免疫印迹; 人类; 1:500; 图 5
北京傲锐东源 Zeb1抗体(OriGene Technologies, TA802313)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(OTI3G6)
  • 免疫印迹; 人类; 1:2000; 表 4
北京傲锐东源 Zeb1抗体(Origene, TA802298)被用于被用于免疫印迹在人类样本上浓度为1:2000 (表 4). Sci Rep (2015) ncbi
赛默飞世尔
小鼠 单克隆(3G6)
  • 免疫组化-石蜡切片; 小鼠; 图 s4c
赛默飞世尔 Zeb1抗体(eBioscience, 14-9741-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4c). Cell (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 2g: 2h, 2i
赛信通(上海)生物试剂有限公司 Zeb1抗体(CST, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2g: 2h, 2i). Am J Cancer Res (2020) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technology, 3396S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 4b, s1b
赛信通(上海)生物试剂有限公司 Zeb1抗体(CST, 3396S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, s1b). Biol Open (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Zeb1抗体(CST, 3396)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Zeb1抗体(CST, 3396)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 2a). elife (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:500; 图 s2a
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 3b). J Cell Mol Med (2018) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 s6i
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6i). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 7j
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7j). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 ex7b
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell signaling, D80D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex7b). Nature (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Vis (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nature (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上. Neoplasia (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signalling, 3396)被用于被用于免疫印迹在人类样本上 (图 7d). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫组化; 小鼠; 图 8l
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫组化在小鼠样本上 (图 8l). Oncogene (2017) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Science (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, D80D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 8b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, D80D3)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nucleic Acids Res (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell signaling, 3396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 其他; 人类; 图 4a, 4d
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于其他在人类样本上 (图 4a, 4d). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technologies, 3396)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell signaling, 3396)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technology, 3396)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling Technologies, 3396)被用于被用于免疫印迹在小鼠样本上 (图 2e). Oncogene (2015) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396p)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
domestic rabbit 单克隆(D80D3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Zeb1抗体(Cell Signaling, 3396S)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
文章列表
  1. Song M, YEKU O, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298 pubmed 出版商
  2. Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10:38-59 pubmed
  3. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  4. Tan P, Xu Y, Du Y, Wu L, Guo B, Huang S, et al. SPOP suppresses pancreatic cancer progression by promoting the degradation of NANOG. Cell Death Dis. 2019;10:794 pubmed 出版商
  5. Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed 出版商
  6. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  7. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  8. Smestad J, Maher L. Master regulator analysis of paragangliomas carrying SDHx, VHL, or MAML3 genetic alterations. BMC Cancer. 2019;19:619 pubmed 出版商
  9. Adams C, Htwe H, Marsh T, Wang A, Montoya M, Subbaraj L, et al. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. elife. 2019;8: pubmed 出版商
  10. Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed 出版商
  11. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  12. Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed 出版商
  13. Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun. 2017;8:2207 pubmed 出版商
  14. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  15. Viswanathan V, Ryan M, Dhruv H, Gill S, Eichhoff O, Seashore Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453-457 pubmed 出版商
  16. Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002 pubmed 出版商
  17. Liang X, Yuan X, Yu J, Wu Y, Li K, Sun C, et al. Histone Chaperone ASF1A Predicts Poor Outcomes for Patients With Gastrointestinal Cancer and Drives Cancer Progression by Stimulating Transcription of β-Catenin Target Genes. EBioMedicine. 2017;21:104-116 pubmed 出版商
  18. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  19. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  20. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  21. Li X, Liu W, Chen X, Wang Y, Shi D, Zhang H, et al. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int J Mol Med. 2017;39:927-935 pubmed 出版商
  22. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  23. Fletcher C, Godfrey J, Shibakawa A, Bushell M, Bevan C. A novel role for GSK3? as a modulator of Drosha microprocessor activity and MicroRNA biogenesis. Nucleic Acids Res. 2016;: pubmed
  24. Chiang K, Hsu S, Lin S, Yeh C, Pang J, Wang S, et al. PTEN Insufficiency Increases Breast Cancer Cell Metastasis In Vitro and In Vivo in a Xenograft Zebrafish Model. Anticancer Res. 2016;36:3997-4005 pubmed
  25. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  26. Yu Q, Song W, Wang D, Zeng Y. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res. 2016;26:1079-1098 pubmed 出版商
  27. Chiang K, Yeh T, Chen S, Pang J, Yeh C, Hsu J, et al. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential. Int J Mol Sci. 2016;17: pubmed 出版商
  28. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  29. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  30. Haraguchi T, Kondo M, Uchikawa R, Kobayashi K, Hiramatsu H, Kobayashi K, et al. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition. Sci Rep. 2016;6:21117 pubmed 出版商
  31. Fazio C, Piazzi G, Vitaglione P, Fogliano V, Munarini A, Prossomariti A, et al. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells. Sci Rep. 2016;6:20670 pubmed 出版商
  32. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  33. Chen C, Zhu C, Huang J, Zhao X, Deng R, Zhang H, et al. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency. Nat Commun. 2015;6:8899 pubmed 出版商
  34. Nath A, Li I, Roberts L, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752 pubmed 出版商
  35. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  36. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  37. Zhu C, Chen C, Huang J, Zhang H, Zhao X, Deng R, et al. SUMOylation at K707 of DGCR8 controls direct function of primary microRNA. Nucleic Acids Res. 2015;43:7945-60 pubmed 出版商
  38. Zucha M, Wu A, Lee W, Wang L, Lin W, Yuan C, et al. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget. 2015;6:13255-68 pubmed
  39. Yamada A, Aki T, Unuma K, Funakoshi T, Uemura K. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS ONE. 2015;10:e0120192 pubmed 出版商
  40. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  41. Knezevic J, Pfefferle A, Petrovic I, Greene S, Perou C, Rosen J. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34:5997-6006 pubmed 出版商
  42. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  43. Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684 pubmed 出版商
  44. Gong X, Yi J, Carmon K, Crumbley C, Xiong W, Thomas A, et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene. 2015;34:4692-701 pubmed 出版商
  45. Xu M, Zhu C, Zhao X, Chen C, Zhang H, Yuan H, et al. Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget. 2015;6:979-94 pubmed
  46. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  47. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  48. Feuerborn A, Mathow D, Srivastava P, Gretz N, Grone H. Basonuclin-1 modulates epithelial plasticity and TGF-?1-induced loss of epithelial cell integrity. Oncogene. 2015;34:1185-95 pubmed 出版商
  49. Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74:829-39 pubmed 出版商
  50. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS ONE. 2013;8:e62757 pubmed 出版商