这是一篇来自已证抗体库的有关大鼠 突触I (synapsin I) 的综述,是根据63篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合突触I 抗体。
Synaptic Systems
小鼠 单克隆(46.1)
  • 免疫细胞化学; 大鼠; 图 3b
Synaptic Systems突触I抗体(SySy, 106-011)被用于被用于免疫细胞化学在大鼠样本上 (图 3b). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 大鼠; 1:20,000; 图 5a
Synaptic Systems突触I抗体(Synaptic Systems, 106 011)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20,000 (图 5a). elife (2020) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
Synaptic Systems突触I抗体(Synaptic Systems, 106011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). Brain Sci (2020) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1b
Synaptic Systems突触I抗体(Synaptic Systems, 106 004)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). Physiol Rep (2020) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 小鼠; 1:5000; 图 4d
Synaptic Systems突触I抗体(Sysy, 106011)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
Synaptic Systems突触I抗体(SYSY, 106103)被用于被用于免疫细胞化学在人类样本上 (图 1b). Science (2019) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 人类; 1:500; 图 3s2a
Synaptic Systems突触I抗体(Synaptic Systems, 106 011)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3s2a). elife (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 7i
Synaptic Systems突触I抗体(Synaptic Systems, 106006)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 7i). Cell Rep (2019) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2c
Synaptic Systems突触I抗体(Synaptic Systems, 106004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2c). J Neurosci (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:500; 图 4a
Synaptic Systems突触I抗体(Synaptic Systems, 106 104)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). elife (2019) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 3c
Synaptic Systems突触I抗体(Synaptic Systems, 106004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3c). elife (2019) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 小鼠; 图 6a
Synaptic Systems突触I抗体(Synaptic Systems, 106 011)被用于被用于免疫印迹在小鼠样本上 (图 6a). Food Funct (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 3i
Synaptic Systems突触I抗体(Synaptic Systems, 106 103)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3i). Nat Commun (2017) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 小鼠; 图 2a
Synaptic Systems突触I抗体(Synaptic Systems, 106021)被用于被用于免疫印迹在小鼠样本上 (图 2a). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 6b
Synaptic Systems突触I抗体(Synaptic Systems, 106103)被用于被用于免疫细胞化学在大鼠样本上 (图 6b). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3a
  • 免疫印迹; 小鼠; 1:2000; 图 1a
Synaptic Systems突触I抗体(Synaptic Systems, 106 103)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). J Neurosci Methods (2017) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
Synaptic Systems突触I抗体(SySy, 106011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). EMBO Mol Med (2017) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 小鼠; 1:500; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 2
Synaptic Systems突触I抗体(SySy, 106 011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5
Synaptic Systems突触I抗体(Synaptic Systems, 106103)被用于被用于免疫细胞化学在人类样本上 (图 5). J Neurosci (2016) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 大鼠; 图 2
Synaptic Systems突触I抗体(Synaptic Systems, 106 011)被用于被用于免疫细胞化学在大鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(46.1)
  • 免疫组化; 人类; 1:500; 图 3a
Synaptic Systems突触I抗体(Synaptic Systems, 106 011)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3a). Methods (2016) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 人类
Synaptic Systems突触I抗体(Synaptic Systems, 160 001)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
艾博抗(上海)贸易有限公司
  • 免疫印迹; 小鼠; 图 6f
艾博抗(上海)贸易有限公司突触I抗体(Abcam, ab18814)被用于被用于免疫印迹在小鼠样本上 (图 6f). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 5a, 5b
艾博抗(上海)贸易有限公司突触I抗体(Abcam, ab64581)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a, 5b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司突触I抗体(Abcam, ab64581)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司突触I抗体(Abcam, ab8)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 9q
艾博抗(上海)贸易有限公司突触I抗体(Abcam, ab64581)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 9q). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司突触I抗体(Abcam, ab64581)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 表 s4
艾博抗(上海)贸易有限公司突触I抗体(Abcam, ab64581)被用于被用于免疫印迹在人类样本上浓度为1:200 (表 s4). Stem Cell Res (2016) ncbi
  • 免疫印迹; 大鼠; 1:1000; 图 9
艾博抗(上海)贸易有限公司突触I抗体(Abcam, ab18814)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9). Int J Neuropsychopharmacol (2015) ncbi
domestic rabbit 单克隆(EP2162Y)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司突触I抗体(Abcam, ab76260)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4c
赛默飞世尔突触I抗体(Thermofisher, OPA1-04001)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c). J Neurochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s5a
  • 免疫印迹; 小鼠; 图 5h
赛默飞世尔突触I抗体(Affinity Bioreagents, PA1-4673)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s5a) 和 被用于免疫印迹在小鼠样本上 (图 5h). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 5b
赛默飞世尔突触I抗体(Thermo Fisher Scientific, A6442)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5b). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4
  • 免疫组化; 大鼠; 1:200; 图 4
赛默飞世尔突触I抗体(生活技术, A6442)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4) 和 被用于免疫组化在大鼠样本上浓度为1:200 (图 4). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 1
赛默飞世尔突触I抗体(Invitrogen, 51-5200)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 1). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔突触I抗体(Invitrogen, 51-5200)被用于. Epilepsy Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔突触I抗体(Invitrogen, 515200)被用于被用于免疫印迹在人类样本上. Neuropharmacology (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔突触I抗体(Invitrogen, A6442)被用于. Tissue Eng Part A (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔突触I抗体(Invitrogen, 515200)被用于. Biology (Basel) (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔突触I抗体(Invitrogen, A6442)被用于. PLoS ONE (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化; 小鼠; 1:100; 图 3b
圣克鲁斯生物技术突触I抗体(Santa Cruz, sc-398849)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3b). Front Neurosci (2020) ncbi
小鼠 单克隆(B-11)
  • 免疫印迹; 人类; 图 1E
圣克鲁斯生物技术突触I抗体(Santa Cruz, sc-376622)被用于被用于免疫印迹在人类样本上 (图 1E). FEBS Open Bio (2015) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 6a
  • 免疫印迹; 人类; 1:1000; 图 1c
西格玛奥德里奇突触I抗体(SIGMA, S193)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Stem Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6b
西格玛奥德里奇突触I抗体(Sigma-Aldrich, S193)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6b). Cereb Cortex (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D12G5)
  • 免疫组化; 小鼠; 1:500; 图 4c
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297S)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4c). elife (2020) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫细胞化学; 小鼠; 图 3e
  • 免疫组化; 小鼠; 图 11a
  • 免疫印迹; 小鼠; 图 3a, 8c
赛信通(上海)生物试剂有限公司突触I抗体(CST, 5297)被用于被用于免疫细胞化学在小鼠样本上 (图 3e), 被用于免疫组化在小鼠样本上 (图 11a) 和 被用于免疫印迹在小鼠样本上 (图 3a, 8c). Theranostics (2020) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫组化; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297s)被用于被用于免疫组化在小鼠样本上 (图 3a). Cell Discov (2020) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫组化; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling Technology, 5297)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). elife (2019) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫细胞化学; 人类; 1:200; 图 1d
  • 免疫印迹; 人类; 1:2000; 图 1b
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Stem Cell Res (2019) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫组化; 小鼠; 1:400; 图 3c
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3c). Mol Psychiatry (2019) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1d
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling Technology, 5297S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1d). Science (2018) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫细胞化学; 小鼠; 1:300; 图 4d
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 4d). Exp Mol Med (2018) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫组化; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297)被用于被用于免疫组化在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫组化; 人类; 1:500; 图 s10d
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297S)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s10d). Nature (2017) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫细胞化学; 大鼠; 1:2000; 图 s8d
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 s8d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st2
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 2311)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st2). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫印迹; 小鼠; 1:1000; 图 st2
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st2). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signalling, 5297)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫细胞化学; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling Technology, D12G5)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). BMC Biol (2016) ncbi
domestic rabbit 单克隆(D13C1)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 6710S)被用于被用于免疫印迹在大鼠样本上 (图 6). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫细胞化学; 人类; 1:100; 图 5
赛信通(上海)生物试剂有限公司突触I抗体(Cell signaling, 5297)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s8
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling, 5297S)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s8). Nature (2015) ncbi
domestic rabbit 单克隆(D12G5)
  • 免疫组化; 小鼠; 1:400
赛信通(上海)生物试剂有限公司突触I抗体(Cell Signaling Technology, 5297)被用于被用于免疫组化在小鼠样本上浓度为1:400. Mol Vis (2014) ncbi
文章列表
  1. Cho I, Panzera L, Chin M, Alpizar S, Olveda G, Hill R, et al. The potassium channel subunit Kvβ1 serves as a major control point for synaptic facilitation. Proc Natl Acad Sci U S A. 2020;117:29937-29947 pubmed 出版商
  2. Cui X, Zhang F, Zhang H, Huang X, Wang K, Huang T, et al. Neuroprotective Effect of Optogenetics Varies With Distance From Channelrhodopsin-2 Expression in an Amyloid-β-Injected Mouse Model of Alzheimer's Disease. Front Neurosci. 2020;14:583628 pubmed 出版商
  3. Oku S, Feng H, Connor S, Toledo A, Zhang P, Zhang Y, et al. Alternative splicing at neuroligin site A regulates glycan interaction and synaptogenic activity. elife. 2020;9: pubmed 出版商
  4. Granger A, Wang W, Robertson K, El Rifai M, Zanello A, Bistrong K, et al. Cortical ChAT+ neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. elife. 2020;9: pubmed 出版商
  5. Schoepf C, Zeidler M, Spiecker L, Kern G, Lechner J, Kummer K, et al. Selected Ionotropic Receptors and Voltage-Gated Ion Channels: More Functional Competence for Human Induced Pluripotent Stem Cell (iPSC)-Derived Nociceptors. Brain Sci. 2020;10: pubmed 出版商
  6. Arias Hervert E, Xu N, Njus M, Murphy G, Hou Y, Williams J, et al. Actions of Rab27B-GTPase on mammalian central excitatory synaptic transmission. Physiol Rep. 2020;8:e14428 pubmed 出版商
  7. Zhang R, Liakath Ali K, Sudhof T. Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. elife. 2020;9: pubmed 出版商
  8. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  9. Fu X, Peng J, Wang A, Luo Z. Tumor necrosis factor alpha mediates neuromuscular synapse elimination. Cell Discov. 2020;6:9 pubmed 出版商
  10. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  11. Cha M, Lee K, Lee B. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep. 2020;10:943 pubmed 出版商
  12. Sun A, Yuan Q, Fukuda M, Yu W, Yan H, Lim G, et al. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science. 2019;366:1486-1492 pubmed 出版商
  13. Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, et al. Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. elife. 2019;8: pubmed 出版商
  14. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  15. Fricke S, Metzdorf K, Ohm M, Haak S, Heine M, Korte M, et al. Fast Regulation of GABAAR Diffusion Dynamics by Nogo-A Signaling. Cell Rep. 2019;29:671-684.e6 pubmed 出版商
  16. Xing G, Jing H, Zhang L, Cao Y, Li L, Zhao K, et al. A mechanism in agrin signaling revealed by a prevalent Rapsyn mutation in congenital myasthenic syndrome. elife. 2019;8: pubmed 出版商
  17. Dierich M, Hartmann S, Dietrich N, Moeser P, Brede F, Johnson Chacko L, et al. β-Secretase BACE1 Is Required for Normal Cochlear Function. J Neurosci. 2019;39:9013-9027 pubmed 出版商
  18. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  19. Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F. Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing. elife. 2019;8: pubmed 出版商
  20. Vogel S, Schäfer C, Hess S, Folz Donahue K, Nelles M, Minassian A, et al. The in vivo timeline of differentiation of engrafted human neural progenitor cells. Stem Cell Res. 2019;37:101429 pubmed 出版商
  21. Rademacher N, Kuropka B, Kunde S, Wahl M, Freund C, Shoichet S. Intramolecular domain dynamics regulate synaptic MAGUK protein interactions. elife. 2019;8: pubmed 出版商
  22. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  23. Soiza Reilly M, Meye F, Olusakin J, Telley L, Petit E, Chen X, et al. SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behavior. Mol Psychiatry. 2019;24:726-745 pubmed 出版商
  24. Kaelberer M, Buchanan K, Klein M, Barth B, Montoya M, Shen X, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361: pubmed 出版商
  25. Xiao D, Liu X, Zhang M, Zou M, Deng Q, Sun D, et al. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun. 2018;9:2865 pubmed 出版商
  26. Wang S, Ko S, Kim Y, Jo S, Lee S, Jung S, et al. Capsaicin upregulates HDAC2 via TRPV1 and impairs neuronal maturation in mice. Exp Mol Med. 2018;50:e455 pubmed 出版商
  27. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  28. Cicvaric A, Bulat T, Bormann D, Yang J, Auer B, Milenkovic I, et al. Sustained consumption of cocoa-based dark chocolate enhances seizure-like events in the mouse hippocampus. Food Funct. 2018;9:1532-1544 pubmed 出版商
  29. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  30. Kim J, Kim H, Yu D, Kweon H, Huh Y, Kim H. Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field. PLoS ONE. 2017;12:e0186416 pubmed 出版商
  31. Daniel J, Cooper B, Palvimo J, Zhang F, Brose N, Tirard M. Analysis of SUMO1-conjugation at synapses. elife. 2017;6: pubmed 出版商
  32. Efimova N, Korobova F, Stankewich M, Moberly A, Stolz D, Wang J, et al. ?III Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons. J Neurosci. 2017;37:6442-6459 pubmed 出版商
  33. Frank R, Zhu F, Komiyama N, Grant S. Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes. J Neurochem. 2017;142:504-511 pubmed 出版商
  34. Birey F, Andersen J, Makinson C, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54-59 pubmed 出版商
  35. Kim S, Im S, Oh S, Jeong S, Yoon E, Lee C, et al. Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun. 2017;8:14346 pubmed 出版商
  36. Zhu L, Almaca J, Dadi P, Hong H, Sakamoto W, Rossi M, et al. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions. Nat Commun. 2017;8:14295 pubmed 出版商
  37. Horvath P, Kavalali E, Monteggia L. CRISPR/Cas9 system-mediated impairment of synaptobrevin/VAMP function in postmitotic hippocampal neurons. J Neurosci Methods. 2017;278:57-64 pubmed 出版商
  38. Sambri I, D Alessio R, Ezhova Y, Giuliano T, Sorrentino N, Cacace V, et al. Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents neurodegeneration in lysosomal storage diseases. EMBO Mol Med. 2017;9:112-132 pubmed 出版商
  39. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  40. Yan S, Du F, Wu L, Zhang Z, Zhong C, Yu Q, et al. F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline. Diabetes. 2016;65:3482-3494 pubmed
  41. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  42. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  43. Mazzulli J, Zunke F, Tsunemi T, Toker N, Jeon S, Burbulla L, et al. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci. 2016;36:7693-706 pubmed 出版商
  44. Kuzuya A, Zoltowska K, Post K, Arimon M, Li X, Svirsky S, et al. Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta. BMC Biol. 2016;14:25 pubmed 出版商
  45. Gunewardene N, Crombie D, Dottori M, Nayagam B. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro. Stem Cells Int. 2016;2016:1781202 pubmed 出版商
  46. Mahn M, Prigge M, Ron S, Levy R, Yizhar O. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat Neurosci. 2016;19:554-6 pubmed 出版商
  47. Bonini S, Mastinu A, Maccarinelli G, Mitola S, Premoli M, La Rosa L, et al. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice. Cereb Cortex. 2016;26:2832-49 pubmed 出版商
  48. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  49. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商
  50. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  51. Ho S, Hartley B, TCW J, Beaumont M, Stafford K, Slesinger P, et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods. 2016;101:113-24 pubmed 出版商
  52. Xiong T, Liu J, Dai G, Hou Y, Tan B, Zhang Y, et al. The progressive changes of filamentous actin cytoskeleton in the hippocampal neurons after pilocarpine-induced status epilepticus. Epilepsy Res. 2015;118:55-67 pubmed 出版商
  53. Coleman W, Kulp A, Venditti J. Functional distribution of synapsin I in human sperm. FEBS Open Bio. 2015;5:801-8 pubmed 出版商
  54. Osborne C, West E, Nolan W, McHale Owen H, Williams A, Bate C. Glimepiride protects neurons against amyloid-β-induced synapse damage. Neuropharmacology. 2016;101:225-36 pubmed 出版商
  55. Struzyna L, Wolf J, Mietus C, Adewole D, Chen H, Smith D, et al. Rebuilding Brain Circuitry with Living Micro-Tissue Engineered Neural Networks. Tissue Eng Part A. 2015;21:2744-56 pubmed 出版商
  56. Pellett S, Schwartz M, Tepp W, Josephson R, Scherf J, Pier C, et al. Human Induced Pluripotent Stem Cell Derived Neuronal Cells Cultured on Chemically-Defined Hydrogels for Sensitive In Vitro Detection of Botulinum Neurotoxin. Sci Rep. 2015;5:14566 pubmed 出版商
  57. Bate C, Williams A. cAMP-Inhibits Cytoplasmic Phospholipase Aâ‚‚ and Protects Neurons against Amyloid-β-Induced Synapse Damage. Biology (Basel). 2015;4:591-606 pubmed 出版商
  58. Zhou J, Liu Z, Yu J, Han X, Fan S, Shao W, et al. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  59. Cuesto G, Jordán Álvarez S, Enriquez Barreto L, Ferrús A, Morales M, Acebes A. GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS ONE. 2015;10:e0118475 pubmed 出版商
  60. Saunders A, Oldenburg I, Berezovskii V, Johnson C, Kingery N, Elliott H, et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature. 2015;521:85-9 pubmed 出版商
  61. de Andrade G, Kunzelman L, Merrill M, Fuerst P. Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Mol Vis. 2014;20:1422-33 pubmed
  62. Semerdjieva S, Abdul Razak H, Salim S, Yáñez Muñoz R, Chen P, Tarabykin V, et al. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors. Mol Cell Biol. 2013;33:1442-55 pubmed 出版商
  63. Coyle D, Li J, Baccei M. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons. PLoS ONE. 2011;6:e16174 pubmed 出版商