这是一篇来自已证抗体库的有关rhesus mac.. 神经细胞粘附分子1 (NCAM1) 的综述,是根据89篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合神经细胞粘附分子1 抗体。
BioLegend
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 3e
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 3e). J Immunother Cancer (2021) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上. Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 3b
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 3b). Acta Neuropathol (2021) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1). Front Immunol (2020) ncbi
小鼠 单克隆(HCD56)
  • 其他; 小鼠
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于其他在小鼠样本上. Nat Commun (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:100; 图 1s1e
BioLegend神经细胞粘附分子1抗体(Biolegend, 318332)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1s1e). elife (2020) ncbi
小鼠 单克隆(HCD56)
  • 其他; 人类; 1:100
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于其他在人类样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:100; 图 1b, 2e, 7b
BioLegend神经细胞粘附分子1抗体(Biolegend, 318328)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1b, 2e, 7b). elife (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s2
BioLegend神经细胞粘附分子1抗体(Biolegend, 318348)被用于被用于流式细胞仪在人类样本上 (图 s2). Cell (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1a). JCI Insight (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4b
BioLegend神经细胞粘附分子1抗体(BioLegend, 318328)被用于被用于流式细胞仪在人类样本上 (图 4b). Stem Cell Reports (2020) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s2o
BioLegend神经细胞粘附分子1抗体(Biolegend, 318318)被用于被用于流式细胞仪在人类样本上 (图 s2o). JCI Insight (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s3
BioLegend神经细胞粘附分子1抗体(BioLegend, 318303)被用于被用于流式细胞仪在人类样本上 (图 s3). Stem Cell Res Ther (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 ex1
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 ex1). Nature (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1f
  • 免疫细胞化学; 人类; 图 1g
BioLegend神经细胞粘附分子1抗体(BioLegend, 318306)被用于被用于流式细胞仪在人类样本上 (图 1f) 和 被用于免疫细胞化学在人类样本上 (图 1g). J Exp Med (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). Front Immunol (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:100; 图 s1a, s3b
BioLegend神经细胞粘附分子1抗体(Biolegend, 318336)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s1a, s3b). Cancer Cell (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 2 ug/ml; 图 s13
BioLegend神经细胞粘附分子1抗体(BioLegend, 318305)被用于被用于流式细胞仪在人类样本上浓度为2 ug/ml (图 s13). Science (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend神经细胞粘附分子1抗体(BioLegend, 318322)被用于被用于流式细胞仪在人类样本上 (图 1a). Sci Rep (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2a
BioLegend神经细胞粘附分子1抗体(Biolegend, 318317)被用于被用于流式细胞仪在人类样本上 (图 2a). elife (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1a). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1b
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Stem Cell (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s3
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s3). PLoS Pathog (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s3
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s3). J Infect Dis (2019) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4a
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a, 5b
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a, 5b). Front Immunol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4a
BioLegend神经细胞粘附分子1抗体(Biolegend, 318332)被用于被用于流式细胞仪在人类样本上 (图 4a). Stem Cell Reports (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 2a). J Cell Biol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 小鼠; 1:60; 图 7a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在小鼠样本上浓度为1:60 (图 7a). J Virol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 猕猴; 图 1b
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在猕猴样本上 (图 1b). AIDS (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 3a
BioLegend神经细胞粘附分子1抗体(BioLegend, 318306)被用于被用于流式细胞仪在人类样本上 (图 3a). Biol Reprod (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 e1b
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 e1b). J Allergy Clin Immunol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 5j
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 5j). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). Immun Inflamm Dis (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1). Eur J Immunol (2018) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 6
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 6). PLoS ONE (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend神经细胞粘附分子1抗体(biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2e
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 2e). J Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4b
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4b). J Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1). J Exp Med (2017) ncbi
小鼠 单克隆(SHM14)
  • 流式细胞仪; 人类; 图 4a
BioLegend神经细胞粘附分子1抗体(BioLegend, 352702)被用于被用于流式细胞仪在人类样本上 (图 4a). Scand J Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 st12
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend神经细胞粘附分子1抗体(Biolegend, 318310)被用于被用于流式细胞仪在人类样本上 (图 1a). F1000Res (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1
BioLegend神经细胞粘附分子1抗体(Biolegend, 318310)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Cell Biol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1). Clin Exp Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s2a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4b
BioLegend神经细胞粘附分子1抗体(Biolegend, 318328)被用于被用于流式细胞仪在人类样本上 (图 4b). Sci Rep (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s2
BioLegend神经细胞粘附分子1抗体(Biolegend, 31805)被用于被用于流式细胞仪在人类样本上 (图 s2). Retrovirology (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:20; 图 2a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2a). J Leukoc Biol (2017) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1b
BioLegend神经细胞粘附分子1抗体(Biolegend, 318340)被用于被用于流式细胞仪在人类样本上 (图 1b). Front Physiol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1b
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2016) ncbi
小鼠 单克隆(SHM14)
  • 流式细胞仪; 人类; 图 3
BioLegend神经细胞粘附分子1抗体(Biolegend, 352702)被用于被用于流式细胞仪在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 7
BioLegend神经细胞粘附分子1抗体(Biolegend, 318334)被用于被用于流式细胞仪在人类样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1b
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 1a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 免疫细胞化学; 人类; 图 3a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于免疫细胞化学在人类样本上 (图 3a). Mol Ther (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 6a
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 6a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 6a
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 6a). J Biol Chem (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(BioLegend, 318319)被用于被用于流式细胞仪在人类样本上. Nat Biotechnol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 6a
BioLegend神经细胞粘附分子1抗体(Biolegend, 318310)被用于被用于流式细胞仪在人类样本上 (图 6a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 2). J Virol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 3c
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 3c). Clin Cancer Res (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s4a
BioLegend神经细胞粘附分子1抗体(biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s4a). J Immunol (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1). Analyst (2016) ncbi
小鼠 单克隆(SHM14)
  • 流式细胞仪; 人类; 图 2
BioLegend神经细胞粘附分子1抗体(BioLegend, SHM14)被用于被用于流式细胞仪在人类样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 s1b
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Immunol (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 表 1
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:200; 图 s3
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 s3). Nat Commun (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:200
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上浓度为1:200. J Immunol Methods (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(Biolegend, 318332)被用于被用于流式细胞仪在人类样本上. Blood Cancer J (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(BioLegend, 318331)被用于被用于流式细胞仪在人类样本上. J Exp Med (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
  • 免疫细胞化学; roundworm
BioLegend神经细胞粘附分子1抗体(Biolegend, clone HCD56)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在roundworm 样本上. Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD 56)被用于被用于流式细胞仪在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(SHM14)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(Biolegend, 352704)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4). Infect Immun (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 4
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 4). J Exp Med (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 1:25; 图 s1
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 s1). Nat Commun (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上. Clin Immunol (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类
BioLegend神经细胞粘附分子1抗体(BioLegend, HCD56)被用于被用于流式细胞仪在人类样本上. Rheumatology (Oxford) (2015) ncbi
小鼠 单克隆(HCD56)
  • 流式细胞仪; 人类; 图 2
BioLegend神经细胞粘附分子1抗体(Biolegend, HCD56)被用于被用于流式细胞仪在人类样本上 (图 2). J Infect Dis (2015) ncbi
赛默飞世尔
小鼠 单克隆(TULY56)
  • 流式细胞仪; 人类; 图 6a, s11, s12c
赛默飞世尔神经细胞粘附分子1抗体(eBiosciences, 17-0566-42)被用于被用于流式细胞仪在人类样本上 (图 6a, s11, s12c). Nat Commun (2019) ncbi
小鼠 单克隆(TULY56)
  • 流式细胞仪; 人类; 图 s2
赛默飞世尔神经细胞粘附分子1抗体(eBioscience, 11-0566-42)被用于被用于流式细胞仪在人类样本上 (图 s2). BMC Cancer (2019) ncbi
文章列表
  1. Dalla Pietà A, Cappuzzello E, Palmerini P, Ventura A, Visentin A, Astori G, et al. Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. J Immunother Cancer. 2021;9: pubmed 出版商
  2. Bohannon C, Ende Z, Cao W, Mboko W, Ranjan P, Kumar A, et al. Influenza Virus Infects and Depletes Activated Adaptive Immune Responders. Adv Sci (Weinh). 2021;8:e2100693 pubmed 出版商
  3. Ingelfinger F, Krishnarajah S, Kramer M, Utz S, Galli E, Lutz M, et al. Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature. Acta Neuropathol. 2021;141:901-915 pubmed 出版商
  4. Katano I, Ito R, Kawai K, Takahashi T. Improved Detection of in vivo Human NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity Using a Novel NOG-FcγR-Deficient Human IL-15 Transgenic Mouse. Front Immunol. 2020;11:532684 pubmed 出版商
  5. Tseng H, Xiong W, Badeti S, Yang Y, Ma M, Liu T, et al. Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. Nat Commun. 2020;11:4810 pubmed 出版商
  6. Bennstein S, Weinhold S, Manser A, Scherenschlich N, Noll A, Raba K, et al. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. elife. 2020;9: pubmed 出版商
  7. Leelatian N, Sinnaeve J, Mistry A, Barone S, Brockman A, Diggins K, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. elife. 2020;9: pubmed 出版商
  8. Gunesch J, Dixon A, Ebrahim T, Berrien Elliott M, Tatineni S, Kumar T, et al. CD56 regulates human NK cell cytotoxicity through Pyk2. elife. 2020;9: pubmed 出版商
  9. Grifoni A, Weiskopf D, Ramirez S, Mateus J, Dan J, Moderbacher C, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.e15 pubmed 出版商
  10. Martin E, Minet N, Boschat A, Sanquer S, Sobrino S, Lenoir C, et al. Impaired lymphocyte function and differentiation in CTPS1-deficient patients result from a hypomorphic homozygous mutation. JCI Insight. 2020;5: pubmed 出版商
  11. Suzuki D, Flahou C, Yoshikawa N, Stirblyte I, Hayashi Y, Sawaguchi A, et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports. 2020;14:49-59 pubmed 出版商
  12. Zou F, Lu L, Liu J, Xia B, Zhang W, Hu Q, et al. Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nat Commun. 2019;10:4109 pubmed 出版商
  13. Choi J, Lee E, Kim S, Park S, Oh S, Kang J, et al. Cytotoxic effects of ex vivo-expanded natural killer cell-enriched lymphocytes (MYJ1633) against liver cancer. BMC Cancer. 2019;19:817 pubmed 出版商
  14. Wirsching H, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino P, et al. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight. 2019;4: pubmed 出版商
  15. Okumura T, Horie Y, Lai C, Lin H, Shoda H, Natsumoto B, et al. Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Res Ther. 2019;10:185 pubmed 出版商
  16. Ardain A, Domingo Gonzalez R, Das S, Kazer S, Howard N, Singh A, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 2019;: pubmed 出版商
  17. Fernandez I, Baxter R, Garcia Perez J, Vendrame E, Ranganath T, Kong D, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med. 2019;216:1255-1267 pubmed 出版商
  18. Lim S, Kim J, Jeon S, Shin M, Kwon J, Kim T, et al. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol. 2019;10:496 pubmed 出版商
  19. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  20. Sweere J, Van Belleghem J, Ishak H, Bach M, Popescu M, Sunkari V, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science. 2019;363: pubmed 出版商
  21. de Jonge K, Ebering A, Nassiri S, Maby El Hajjami H, Ouertatani Sakouhi H, Baumgaertner P, et al. Circulating CD56bright NK cells inversely correlate with survival of melanoma patients. Sci Rep. 2019;9:4487 pubmed 出版商
  22. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  23. Muller Durovic B, Grählert J, Devine O, Akbar A, Hess C. CD56-negative NK cells with impaired effector function expand in CMV and EBV co-infected healthy donors with age. Aging (Albany NY). 2019;11:724-740 pubmed 出版商
  24. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  25. Ye W, Chew M, Hou J, Lai F, Leopold S, Loo H, et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5 pathway. PLoS Pathog. 2018;14:e1007298 pubmed 出版商
  26. van Erp E, Feyaerts D, Duijst M, Mulder H, Wicht O, Luytjes W, et al. Respiratory Syncytial Virus Infects Primary Neonatal and Adult Natural Killer Cells and Affects Their Antiviral Effector Function. J Infect Dis. 2019;219:723-733 pubmed 出版商
  27. Walwyn Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald A, et al. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. J Immunol. 2018;201:2028-2041 pubmed 出版商
  28. Cooper G, Ostridge K, Khakoo S, Wilkinson T, Staples K. Human CD49a+ Lung Natural Killer Cell Cytotoxicity in Response to Influenza A Virus. Front Immunol. 2018;9:1671 pubmed 出版商
  29. Yang X, Zhou J, He J, Liu J, Wang H, Liu Y, et al. An Immune System-Modified Rat Model for Human Stem Cell Transplantation Research. Stem Cell Reports. 2018;11:514-521 pubmed 出版商
  30. Srpan K, Ambrose A, Karampatzakis A, Saeed M, Cartwright A, Guldevall K, et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J Cell Biol. 2018;217:3267-3283 pubmed 出版商
  31. Kiener R, Fleischmann M, Wiegand M, Lemmermann N, Schwegler C, Kaufmann C, et al. Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors. J Virol. 2018;92: pubmed 出版商
  32. Manickam C, Nwanze C, Ram D, Shah S, Smith S, Jones R, et al. Progressive lentivirus infection induces natural killer cell receptor-expressing B cells in the gastrointestinal tract. AIDS. 2018;32:1571-1578 pubmed 出版商
  33. Warthan M, Washington S, Franzese S, Ramus R, Kim K, York T, et al. The role of endoplasmic reticulum aminopeptidase 2 in modulating immune detection of choriocarcinoma. Biol Reprod. 2018;98:309-322 pubmed 出版商
  34. Maric J, Ravindran A, Mazzurana L, Björklund Ã, Van Acker A, Rao A, et al. Prostaglandin E2 suppresses human group 2 innate lymphoid cell function. J Allergy Clin Immunol. 2018;141:1761-1773.e6 pubmed 出版商
  35. Herndler Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114:E9626-E9634 pubmed 出版商
  36. Hydes T, Noll A, Salinas Riester G, Abuhilal M, Armstrong T, Hamady Z, et al. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immun Inflamm Dis. 2018;6:34-46 pubmed 出版商
  37. Chan Y, Zuo J, Inman C, Croft W, Begum J, Croudace J, et al. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol. 2018;48:316-329 pubmed 出版商
  38. Jackson E, Zhang C, Kiani Z, Lisovsky I, Tallon B, Del Corpo A, et al. HIV exposed seronegative (HESN) compared to HIV infected individuals have higher frequencies of telomeric Killer Immunoglobulin-like Receptor (KIR) B motifs; Contribution of KIR B motif encoded genes to NK cell responsiveness. PLoS ONE. 2017;12:e0185160 pubmed 出版商
  39. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  40. Jensen H, Potempa M, Gotthardt D, Lanier L. Cutting Edge: IL-2-Induced Expression of the Amino Acid Transporters SLC1A5 and CD98 Is a Prerequisite for NKG2D-Mediated Activation of Human NK Cells. J Immunol. 2017;199:1967-1972 pubmed 出版商
  41. Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32?: A Novel Inhibitory Cytokine of NK Cell Function. J Immunol. 2017;199:1290-1300 pubmed 出版商
  42. Djaoud Z, Guethlein L, Horowitz A, Azzi T, Nemat Gorgani N, Olive D, et al. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and ?? T cells. J Exp Med. 2017;214:1827-1841 pubmed 出版商
  43. Pérez Martínez C, Maravillas Montero J, Meza Herrera I, Vences Catalan F, Zlotnik A, Santos Argumedo L. Tspan33 is Expressed in Transitional and Memory B Cells, but is not Responsible for High ADAM10 Expression. Scand J Immunol. 2017;86:23-30 pubmed 出版商
  44. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  45. Llibre A, Garner L, Partridge A, Freeman G, Klenerman P, Willberg C. Expression of lectin-like transcript-1 in human tissues. F1000Res. 2016;5:2929 pubmed 出版商
  46. Kaczmarek D, Kokordelis P, Kramer B, Glässner A, Wolter F, Goeser F, et al. Alterations of the NK cell pool in HIV/HCV co-infection. PLoS ONE. 2017;12:e0174465 pubmed 出版商
  47. Lopes F, Bálint Å, Valvo S, Felce J, Hessel E, Dustin M, et al. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages. J Cell Biol. 2017;216:1123-1141 pubmed 出版商
  48. Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed 出版商
  49. Jensen H, Chen S, Folkersen L, Nolan G, Lanier L. EBI3 regulates the NK cell response to mouse cytomegalovirus infection. Proc Natl Acad Sci U S A. 2017;114:1625-1630 pubmed 出版商
  50. Wentink M, Dalm V, Lankester A, van Schouwenburg P, Schölvinck L, Kalina T, et al. Genetic defects in PI3K? affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin Immunol. 2017;176:77-86 pubmed 出版商
  51. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  52. Spivak A, Larragoite E, Coletti M, Macedo A, Martins L, Bosque A, et al. Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo. Retrovirology. 2016;13:88 pubmed 出版商
  53. Siegers G, Barreira C, Postovit L, Dekaban G. CD11d ?2 integrin expression on human NK, B, and ?? T cells. J Leukoc Biol. 2017;101:1029-1035 pubmed 出版商
  54. Ducret M, Fabre H, Degoul O, Atzeni G, McGuckin C, Forraz N, et al. Immunophenotyping Reveals the Diversity of Human Dental Pulp Mesenchymal Stromal Cells In vivo and Their Evolution upon In vitro Amplification. Front Physiol. 2016;7:512 pubmed
  55. Kadivar M, Petersson J, Svensson L, Marsal J. CD8??+ ?? T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. J Immunol. 2016;197:4584-4592 pubmed
  56. Ju X, Silveira P, Hsu W, Elgundi Z, Alingcastre R, Verma N, et al. The Analysis of CD83 Expression on Human Immune Cells Identifies a Unique CD83+-Activated T Cell Population. J Immunol. 2016;197:4613-4625 pubmed
  57. Lorenzen I, Lokau J, Korpys Y, Oldefest M, Flynn C, Künzel U, et al. Control of ADAM17 activity by regulation of its cellular localisation. Sci Rep. 2016;6:35067 pubmed 出版商
  58. Muller Durovic B, Lanna A, Covre L, Mills R, Henson S, Akbar A. Killer Cell Lectin-like Receptor G1 Inhibits NK Cell Function through Activation of Adenosine 5'-Monophosphate-Activated Protein Kinase. J Immunol. 2016;197:2891-2899 pubmed 出版商
  59. Kritikou J, Dahlberg C, Baptista M, Wagner A, Banerjee P, Gwalani L, et al. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep. 2016;6:30636 pubmed 出版商
  60. Rölle A, Halenius A, Ewen E, Cerwenka A, Hengel H, Momburg F. CD2-CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. Eur J Immunol. 2016;46:2420-2425 pubmed 出版商
  61. Sadallah S, Schmied L, Eken C, Charoudeh H, Amicarella F, Schifferli J. Platelet-Derived Ectosomes Reduce NK Cell Function. J Immunol. 2016;197:1663-71 pubmed 出版商
  62. Marshall D, Harried S, Murphy J, Hall C, Shekhani M, Pain C, et al. Extracellular Antibody Drug Conjugates Exploiting the Proximity of Two Proteins. Mol Ther. 2016;24:1760-1770 pubmed 出版商
  63. Suliman S, Geldenhuys H, Johnson J, Hughes J, Smit E, Murphy M, et al. Bacillus Calmette-Guérin (BCG) Revaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces Long-Lived BCG-Reactive NK Cell Responses. J Immunol. 2016;197:1100-1110 pubmed 出版商
  64. Wittmann A, Lamprinaki D, Bowles K, Katzenellenbogen E, Knirel Y, Whitfield C, et al. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells. J Biol Chem. 2016;291:17629-38 pubmed 出版商
  65. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  66. Reches A, Nachmani D, Berhani O, Duev Cohen A, Shreibman D, Ophir Y, et al. HNRNPR Regulates the Expression of Classical and Nonclassical MHC Class I Proteins. J Immunol. 2016;196:4967-76 pubmed 出版商
  67. Offersen R, Nissen S, Rasmussen T, Østergaard L, Denton P, Søgaard O, et al. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells. J Virol. 2016;90:4441-4453 pubmed 出版商
  68. Ludigs K, Jandus C, Utzschneider D, Staehli F, Bessoles S, Dang A, et al. NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun. 2016;7:10554 pubmed 出版商
  69. Vallera D, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl J, et al. IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clin Cancer Res. 2016;22:3440-50 pubmed 出版商
  70. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  71. Jackson J, Taylor J, Witek M, Hunsucker S, Waugh J, Fedoriw Y, et al. Microfluidics for the detection of minimal residual disease in acute myeloid leukemia patients using circulating leukemic cells selected from blood. Analyst. 2016;141:640-51 pubmed 出版商
  72. Popov L, Marceau C, Starkl P, Lumb J, Shah J, Guerrera D, et al. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. Proc Natl Acad Sci U S A. 2015;112:14337-42 pubmed 出版商
  73. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  74. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed 出版商
  75. Adoro S, Cubillos Ruiz J, Chen X, Deruaz M, Vrbanac V, Song M, et al. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun. 2015;6:7562 pubmed 出版商
  76. Lee J, Breton G, Aljoufi A, Zhou Y, PUHR S, Nussenzweig M, et al. Clonal analysis of human dendritic cell progenitor using a stromal cell culture. J Immunol Methods. 2015;425:21-6 pubmed 出版商
  77. Kim S, Theunissen J, Balibalos J, Liao Chan S, Babcock M, Wong T, et al. A novel antibody-drug conjugate targeting SAIL for the treatment of hematologic malignancies. Blood Cancer J. 2015;5:e316 pubmed 出版商
  78. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939-51 pubmed 出版商
  79. Boer M, Prins C, van Meijgaarden K, van Dissel J, Ottenhoff T, Joosten S. Mycobacterium bovis BCG Vaccination Induces Divergent Proinflammatory or Regulatory T Cell Responses in Adults. Clin Vaccine Immunol. 2015;22:778-88 pubmed 出版商
  80. Zhou J, Amran F, Kramski M, Angelovich T, Elliott J, Hearps A, et al. An NK Cell Population Lacking FcRγ Is Expanded in Chronically Infected HIV Patients. J Immunol. 2015;194:4688-97 pubmed 出版商
  81. Richter E, Harms M, Ventz K, Gierok P, Chilukoti R, Hildebrandt J, et al. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS ONE. 2015;10:e0122089 pubmed 出版商
  82. Obiero J, Shekalaghe S, Hermsen C, Mpina M, Bijker E, Roestenberg M, et al. Impact of malaria preexposure on antiparasite cellular and humoral immune responses after controlled human malaria infection. Infect Immun. 2015;83:2185-96 pubmed 出版商
  83. Lee J, Breton G, Oliveira T, Zhou Y, Aljoufi A, PUHR S, et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J Exp Med. 2015;212:385-99 pubmed 出版商
  84. Zimmermann M, Aguilera F, Castellucci M, Rossato M, Costa S, Lunardi C, et al. Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun. 2015;6:6061 pubmed 出版商
  85. Renauer P, Coit P, Sawalha A. The DNA methylation signature of human TCRαβ+CD4-CD8- double negative T cells reveals CG demethylation and a unique epigenetic architecture permissive to a broad stimulatory immune response. Clin Immunol. 2015;156:19-27 pubmed 出版商
  86. Luetke Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog. 2014;10:e1004441 pubmed 出版商
  87. Armour K, Smith C, Ip N, Ellison C, Kirton C, Wilkes A, et al. Clearance of human IgG1-sensitised red blood cells in vivo in humans relates to the in vitro properties of antibodies from alternative cell lines. PLoS ONE. 2014;9:e109463 pubmed 出版商
  88. Jansen D, Hameetman M, van Bergen J, Huizinga T, van der Heijde D, Toes R, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford). 2015;54:728-35 pubmed 出版商
  89. Madhavi V, Ana Sosa Batiz F, Jegaskanda S, Center R, Winnall W, Parsons M, et al. Antibody-dependent effector functions against HIV decline in subjects receiving antiretroviral therapy. J Infect Dis. 2015;211:529-38 pubmed 出版商