这是一篇来自已证抗体库的有关rhesus mac.. 紧密连接蛋白-1 (TJP1) 的综述,是根据357篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合紧密连接蛋白-1 抗体。
赛默飞世尔
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a). Int J Mol Sci (2022) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4). iScience (2022) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 6f
  • 免疫组化; 小鼠; 图 6g
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 6f) 和 被用于免疫组化在小鼠样本上 (图 6g). Cell Rep (2022) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 1s1c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1s1c). elife (2022) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 大鼠; 1:5000; 图 4c
  • 免疫组化; African green monkey; 1:100; 图 1b
  • 免疫印迹; African green monkey; 1:5000; 图 4c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4c), 被用于免疫组化在African green monkey样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在African green monkey样本上浓度为1:5000 (图 4c). Pharmaceutics (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 s3b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3b). Development (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 7b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 7b). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:350; 图 1c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-C9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:350 (图 1c). elife (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 3c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). PLoS Negl Trop Dis (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 6f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在犬样本上 (图 6f). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 5d
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5d). J Clin Invest (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 5b
赛默飞世尔紧密连接蛋白-1抗体(分子探针, 339100)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 5b). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 3d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3d). elife (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:100; 图 3b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33?C9100)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3b). elife (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1a). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; turquoise killifish; 图 s2f
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫组化在turquoise killifish样本上 (图 s2f). Curr Biol (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 其他; 斑马鱼; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-C9100)被用于被用于其他在斑马鱼样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 其他; 斑马鱼; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-C9100)被用于被用于其他在斑马鱼样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
赛默飞世尔紧密连接蛋白-1抗体(Thermo Scientific, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). Sci Rep (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200; 图 7b3
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 7b3). elife (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 1j
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 1j). Dev Cell (2019) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:2000; 图 5d
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5d). elife (2019) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6g
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 6g). J Clin Invest (2019) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 4a). Front Physiol (2019) ncbi
小鼠 单克隆(ZO1-1A12)
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于. Nature (2019) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1e
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 339100)被用于被用于免疫细胞化学在人类样本上 (图 1e). elife (2018) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:1000; 图 s4b
  • 免疫细胞化学; 人类; 1:1000; 图 s2c
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在犬样本上浓度为1:1000 (图 s4b) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s2c). J Cell Sci (2018) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 图 1f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). J Biol Chem (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 2 - s1b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2 - s1b). elife (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 1:500; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2). J Comp Neurol (2018) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 1:400; 图 4f, 4h
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 4f, 4h). Neuroscience (2018) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 4c
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 339100)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogenesis (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1g). Hum Mol Genet (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1a, s1e
赛默飞世尔紧密连接蛋白-1抗体(生活技术, Zo1-1A12)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1a, s1e). Nat Commun (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200; 图 3c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 3c). J Comp Neurol (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 5A
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5A). PLoS ONE (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. EBioMedicine (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:250; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 2a). Cell Signal (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1a
  • 免疫组化; 人类; 图 6a
  • 免疫印迹; 人类; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, ZO-1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 1a), 被用于免疫组化在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 1a). FASEB J (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:300; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 1a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹基因敲除验证; 大鼠; 图 4d
  • 免疫细胞化学; 大鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(GE医疗保健, 33-9100)被用于被用于免疫印迹基因敲除验证在大鼠样本上 (图 4d) 和 被用于免疫细胞化学在大鼠样本上 (图 5). Mol Biol Cell (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 3d
赛默飞世尔紧密连接蛋白-1抗体(Thermo Scientific, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
  • 免疫印迹; 小鼠; 1:1000; 图 6a
  • 免疫印迹; 人类; 1:1000; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). J Biol Chem (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 6d). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:300; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 339100)被用于被用于免疫组化在小鼠样本上浓度为1:300 (表 1). elife (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:150; 图 s5a
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:150 (图 s5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 斑马鱼; 1:100; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 33-9100)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100 (图 4a). Immunity (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 表 2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 2). Lab Chip (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2
赛默飞世尔紧密连接蛋白-1抗体(Thermo Scientific, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s10h
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5h
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s10h) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5h). Nature (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:300; 图 5c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5c). Cell Cycle (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 2a). J Clin Invest (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 5a
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Exp Neurol (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 2b
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2b). J Cell Sci (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Mol Biol Cell (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 s2
  • 免疫印迹; 人类; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 s2) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:200; 图 5
  • 免疫印迹; 犬; 1:1000; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 5) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 3a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:500; 图 s3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 1e
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 1:4000; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, ZO1-1A12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e), 被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 3a). Hum Pathol (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 s6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 s6). JCI Insight (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 3o
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上 (图 3o). PLoS ONE (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). J Mol Psychiatry (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Thermo-Fisher, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 1). Microbes Infect (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化在人类样本上 (图 3a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 5
  • 流式细胞仪; 人类; 图 3
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 5), 被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 3). Adv Healthc Mater (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 8b
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8b). Oncotarget (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 斑马鱼; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:200 (图 2). Development (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Infect Immun (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 33-9100)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:50; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). J Control Release (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; pigs ; 1:50; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在pigs 样本上浓度为1:50 (图 3). Mol Vis (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:250; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 4). Drug Metab Dispos (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-自由浮动切片; 斑马鱼; 1:200; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫组化-自由浮动切片在斑马鱼样本上浓度为1:200 (图 7). Dev Dyn (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; pigs ; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:50; 图 s2f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen Life Technologies, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s2f). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s1). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3). Cell Med (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). elife (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-C1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Vis (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬; 1:2000; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在犬样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:200; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 1A12)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 8). Biomaterials (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Development (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4d
  • 免疫印迹; 小鼠; 1:2000; 图 4b
赛默飞世尔紧密连接蛋白-1抗体(Cell Signaling, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Mol Med Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-自由浮动切片; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 5e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上 (图 5e). Cell Tissue Res (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬; 图 1c
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫印迹在犬样本上 (图 1c). BMC Genomics (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-910)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:300
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在斑马鱼样本上浓度为1:300. Traffic (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339,100)被用于被用于免疫组化在小鼠样本上. Dev Biol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
  • 免疫细胞化学; 犬; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫细胞化学在犬样本上 (图 2). J Biol Chem (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:500; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 1A12)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1). J Cell Biol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). Mol Brain (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:300; 图 s1g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, . 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s1g). Nat Cell Biol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 s3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 10 ug/ml
  • 免疫细胞化学; 人类; 1.25 ug/ml
  • 免疫印迹; 人类; 1 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO-1-1A12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10 ug/ml, 被用于免疫细胞化学在人类样本上浓度为1.25 ug/ml 和 被用于免疫印迹在人类样本上浓度为1 ug/ml. Bladder (San Franc) (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 1:300; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500; 图 s4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:50; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 5 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml. Mol Hum Reprod (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫细胞化学在大鼠样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Milipore, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Cell J (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫组化在大鼠样本上. Tissue Barriers (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; domestic rabbit; 图 4
  • 免疫印迹; domestic rabbit; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫组化在domestic rabbit样本上 (图 4) 和 被用于免疫印迹在domestic rabbit样本上 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Cell Biol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Development (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在人类样本上浓度为1:100. Nat Protoc (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 豚鼠
赛默飞世尔紧密连接蛋白-1抗体(ZYMED, 33-9100)被用于被用于免疫组化在豚鼠样本上. Reprod Fertil Dev (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上. Dermatol Reports (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Nat Neurosci (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 2). elife (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 流式细胞仪; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于流式细胞仪在人类样本上. Inflamm Bowel Dis (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200. J Neurophysiol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 非洲爪蛙; 1:100; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:100 (图 6). Development (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在犬样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 3). Mol Biol Cell (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫细胞化学; 犬; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫细胞化学在犬样本上浓度为1:100 (图 4). Cell Microbiol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 鸡; 1:200; 图 5
  • 免疫印迹; 鸡; 1:1000; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫组化在鸡样本上浓度为1:200 (图 5) 和 被用于免疫印迹在鸡样本上浓度为1:1000 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔紧密连接蛋白-1抗体(InVitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 5). J Cell Sci (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上. Mol Psychiatry (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔紧密连接蛋白-1抗体(invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Biotechnol J (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:25
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:25. PLoS ONE (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫组化-冰冻切片在大鼠样本上. J Biochem (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 家羊; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen Life Technologies, ZO1-1A12)被用于被用于免疫细胞化学在家羊样本上浓度为1:100. J Cell Physiol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100
  • 免疫组化; 人类; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫组化在人类样本上浓度为1:100. Am J Pathol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:500; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 4). Development (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:300
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300. FEBS Lett (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Formos Med Assoc (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 6). Cell Microbiol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:100. Dev Biol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 斑马鱼; 1:25
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:25. Development (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4). PLoS ONE (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:25; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO1-1A12)被用于被用于免疫细胞化学在犬样本上浓度为1:25 (图 1). J Biol Chem (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 鸡; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:100 (图 3). Development (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在人类样本上. J Cell Biol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). J Nutr (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 5). Dev Biol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化-冰冻切片在人类样本上 (图 8). Tissue Eng Part C Methods (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Nephrol Dial Transplant (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Cell Host Microbe (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 6). J Am Soc Nephrol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:50; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (表 1). Spermatogenesis (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Cancer Cell Int (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Arch Dermatol Res (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 11
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫印迹在人类样本上 (图 11). Trans Am Ophthalmol Soc (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100. Methods (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Cell Sci (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:400; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 1). PLoS ONE (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Sci Transl Med (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). Dev Dyn (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Cell Biol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 日本大米鱼; 1:400; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在日本大米鱼样本上浓度为1:400 (图 4). Development (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). J Agric Food Chem (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Cell Biol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 家羊; 1:5000; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, OZO1-1A12)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 2). Neurotoxicol Teratol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Brain Res (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 6a). Front Immunol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 2). J Invest Dermatol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:80; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:80 (表 1). PLoS ONE (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:250; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2). Exp Eye Res (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Am J Physiol Gastrointest Liver Physiol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:750; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:750 (图 2). Nature (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Infect Immun (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:250; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 7). Am J Physiol Heart Circ Physiol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上. J Cell Physiol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上 (图 3). Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上. J Physiol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Cancer Cell (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Lab Invest (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上 (图 3). Am J Cancer Res (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 3). Biomaterials (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 3). Cell Biol Toxicol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 鸡; 1:50; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:50 (图 2). Development (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:250; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4). Biomaterials (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:500; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5). J Cell Biol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫印迹在人类样本上 (图 2). Regul Pept (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:750
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO-1-1A12)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:750. Hepatology (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 5 ug/ml; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, zo1-1A12)被用于被用于免疫细胞化学在犬样本上浓度为5 ug/ml (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上 (图 1). FEBS J (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cereb Cortex (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:500; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 s1). PLoS ONE (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Dev Dyn (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, ZO-1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. BMC Urol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). Exp Dermatol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:400; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4). Development (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 3). J Biol Chem (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 15 ug/ml; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为15 ug/ml (图 5). J Tissue Eng Regen Med (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; domestic rabbit; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, clone ZO1-1A12)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:200 (图 2). Int J Alzheimers Dis (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:400; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 7). Am J Physiol Heart Circ Physiol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200 (图 4). PLoS Pathog (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 4). Mol Biol Cell (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 金鱼; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在金鱼样本上浓度为1:100. PLoS ONE (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 2). J Biol Chem (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 2). Nat Neurosci (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 斑马鱼; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在斑马鱼样本上 (图 4). Nat Protoc (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:200. Mol Vis (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO-1-1A12)被用于被用于免疫印迹在小鼠样本上 (图 6). J Carcinog (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在小鼠样本上. Oncotarget (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在小鼠样本上 (图 1). Toxicol Appl Pharmacol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; African green monkey; 1:200; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在African green monkey样本上浓度为1:200 (图 3). Cereb Cortex (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer Res (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 3). Mol Vis (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在犬样本上 (图 7). J Am Soc Nephrol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 斑马鱼; 1:20; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO1-1A12)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:20 (图 3). Glia (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:400; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:400 (图 4). Dev Biol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫印迹在人类样本上 (图 4). FASEB J (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Mol Biol Cell (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1.25 ug/ml; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为1.25 ug/ml (图 3). J Urol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Neurosci (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12,)被用于被用于免疫组化在小鼠样本上 (图 2). PLoS ONE (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 2). Development (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在斑马鱼样本上 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 犬; 2.5 ug/ml; 图 4f
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1- 1A12)被用于被用于免疫组化在犬样本上浓度为2.5 ug/ml (图 4f). Am J Vet Res (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1.25 ug/ml; 图 7
赛默飞世尔紧密连接蛋白-1抗体(ZYMED, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1.25 ug/ml (图 7). J Urol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:150; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 1). J Cell Mol Med (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:25; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上浓度为1:25 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在人类样本上 (图 4). Int J Oncol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Tissue Eng Part A (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 家羊; 1:5000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 3). Brain Res (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 3). Int J Cancer (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; pigs ; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在pigs 样本上 (图 1). Am J Pathol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Shock (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:50; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2). Dev Biol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; pigs ; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (图 2). Endocrinology (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). Am J Physiol Cell Physiol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 5 ug/ml; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为5 ug/ml (图 3). J Mol Histol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在小鼠样本上浓度为1:200. J Comp Neurol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). J Invest Dermatol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上 (图 5). Tissue Eng Part A (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:40; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在犬样本上浓度为1:40 (图 4). Mol Membr Biol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在人类样本上. Cancer Res (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 6). J Virol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (表 1). In Vitro Cell Dev Biol Anim (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO-1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cell Biol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:500; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 7). Dev Biol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 4). Development (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬; 1:1000; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 6). Traffic (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:300; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1). Development (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 5
  • 免疫组化; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 5), 被用于免疫组化在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Am J Pathol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 牛; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在牛样本上 (图 3). FASEB J (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone 1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Biol Cell (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Cell (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 4). Br J Ophthalmol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1). Nat Neurosci (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 猕猴; 1:15; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在猕猴样本上浓度为1:15 (图 5). PLoS ONE (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 图 1
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 3). Biochem Biophys Res Commun (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
  • 免疫细胞化学; 犬; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫细胞化学在犬样本上 (图 2). J Mol Histol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:200; 图 9
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone A12)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 9). J Physiol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 猫; 1:50; 图 3c
  • 免疫组化; 人类; 1:50; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在猫样本上浓度为1:50 (图 3c) 和 被用于免疫组化在人类样本上浓度为1:50 (图 3a). Biotech Histochem (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO-1-1A12)被用于被用于流式细胞仪在人类样本上 (表 2). Am J Obstet Gynecol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:25; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncogene (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 家羊; 1:5000; 图 2d
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 2d). Am J Physiol Heart Circ Physiol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Dev Biol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上. Nat Cell Biol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 1). Pancreas (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4). Tissue Eng Part C Methods (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 1). Invest Ophthalmol Vis Sci (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Proteomics (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 3). Toxicol In Vitro (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:5; 图 4
  • 免疫印迹; 大鼠; 1:500; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO-1-1A12)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 7). Microsc Res Tech (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 斑马鱼; 图 5k
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在斑马鱼样本上 (图 5k). PLoS ONE (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 斑马鱼; 1:200; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:200 (图 5). Dev Dyn (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; Trachemys dorbigni; 1:500
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33- 9100)被用于被用于免疫组化在Trachemys dorbigni样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO-1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7). J Virol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 1). Am J Physiol Renal Physiol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 1). J Membr Biol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 图 4
  • 免疫组化-冰冻切片; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 3). J Am Soc Nephrol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 斑马鱼; 1:150; 图 s7
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:150 (图 s7). Nature (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上. Development (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). J Histochem Cytochem (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; domestic rabbit; 1:200; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:200 (表 1). Invest Ophthalmol Vis Sci (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO-1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上 (图 3a). Toxicol In Vitro (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1 ug/ml. Exp Eye Res (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33?C9100)被用于被用于免疫细胞化学在人类样本上 (图 2). Peptides (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6c
赛默飞世尔紧密连接蛋白-1抗体(Zymed/Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 6c). Hepatology (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 3a). Neurosci Lett (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, clone ZO1-1A12)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Neurochem (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Exp Cell Res (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 1b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33?C9100)被用于被用于免疫细胞化学在犬样本上 (图 1b). J Cell Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1.25 ug/ml; 表 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1.25 ug/ml (表 2). Eur Urol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 表 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (表 2). Dev Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 图 2
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在大鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 5). J Neurochem (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 1). J Cell Sci (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 图 1g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫组化在大鼠样本上 (图 1g). Neuroscience (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. J Chem Neuroanat (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). AIDS (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 牛; 图 4b
  • 免疫印迹; 牛; 图 1b
  • 免疫印迹; 犬; 图 1b
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在牛样本上 (图 4b), 被用于免疫印迹在牛样本上 (图 1b) 和 被用于免疫印迹在犬样本上 (图 1b). Exp Eye Res (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, ZO1-1A12)被用于被用于流式细胞仪在人类样本上 (图 4). Genome Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; pigs ; 5,000 ug/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化在pigs 样本上浓度为5,000 ug/ml (图 4). Eur Urol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; domestic rabbit; 图 6
  • 免疫印迹; domestic rabbit; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上 (图 6) 和 被用于免疫印迹在domestic rabbit样本上 (图 4). J Neuroinflammation (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化在大鼠样本上 (图 5). Exp Eye Res (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 6). J Mol Cell Cardiol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 1). Eye Contact Lens (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 5
  • 免疫印迹; 犬; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 5) 和 被用于免疫印迹在犬样本上 (图 3). Mol Membr Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Nat Cell Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100. Mech Dev (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在小鼠样本上. Dev Dyn (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Neurochem (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:400; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 1A12)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1). J Cell Mol Med (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). Invest Ophthalmol Vis Sci (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 4 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为4 ug/ml. Neuroscience (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Exp Cell Res (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 鸡; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:1000. Acta Neuropathol (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). Br J Dermatol (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 3). Am J Physiol Renal Physiol (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; domestic rabbit; 图 3
  • 免疫印迹; domestic rabbit; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在domestic rabbit样本上 (图 3) 和 被用于免疫印迹在domestic rabbit样本上 (图 1). Cell Signal (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:20; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为1:20 (图 5). Stem Cells (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:50; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9,100)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Histochem Cell Biol (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:250
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在犬样本上浓度为1:250. FEBS Lett (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; domestic rabbit; 2 ug/ml; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO-1-1A12)被用于被用于免疫印迹在domestic rabbit样本上浓度为2 ug/ml (图 1). Invest Ophthalmol Vis Sci (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 4 ug/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen/Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为4 ug/ml (图 4). Neuroscience (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Development (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫沉淀; 大鼠; 表 1
  • 免疫印迹; 大鼠; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫沉淀在大鼠样本上 (表 1) 和 被用于免疫印迹在大鼠样本上 (表 1). J Cell Physiol (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 2.5 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2.5 ug/ml. Development (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 20 ug/ml; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为20 ug/ml (图 3). Mol Vis (2005) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Dev Biol (2005) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔紧密连接蛋白-1抗体(ZYMED, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上. J Histochem Cytochem (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:333; 图 5B
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:333 (图 5B). Am J Pathol (2005) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 0.5 ug/ml; 图 4
  • 免疫组化-冰冻切片; 小鼠; 4 ug/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫沉淀在人类样本上 (图 5), 被用于免疫细胞化学在人类样本上浓度为0.5 ug/ml (图 4) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为4 ug/ml (图 4). Histochem Cell Biol (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 4). J Clin Endocrinol Metab (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:500
  • 免疫细胞化学; African green monkey; 1:500
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 和 被用于免疫细胞化学在African green monkey样本上浓度为1:500. EMBO J (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:100; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2). J Histochem Cytochem (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上. Nature (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). J Urol (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Biochem Biophys Res Commun (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; African green monkey
  • 免疫细胞化学; 牛
  • 免疫细胞化学; 犬
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上, 被用于免疫细胞化学在African green monkey样本上, 被用于免疫细胞化学在牛样本上 和 被用于免疫细胞化学在犬样本上. Cell Motil Cytoskeleton (2003) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上 (图 1). Br J Dermatol (2003) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 大鼠; 1:100; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 7). Endocrinology (2003) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(ZYMED, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Dev Dyn (2002) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Methods Mol Biol (2002) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33?C9100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). J Invest Dermatol (2001) ncbi
文章列表
  1. Vignone D, Gonzalez Paz O, Fini I, Cellucci A, Auciello G, Battista M, et al. Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Fleming Martinez A, D xf6 ppler H, Bastea L, Edenfield B, Liou G, Storz P. Ym1+ macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. iScience. 2022;25:104327 pubmed 出版商
  3. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  4. Wang J, Liu C, He L, Xie Z, Bai L, Yu W, et al. Selective YAP activation in Procr cells is essential for ovarian stem/progenitor expansion and epithelium repair. elife. 2022;11: pubmed 出版商
  5. Watanabe D, Nakagawa S, Morofuji Y, Tóth A, Vastag M, Aruga J, et al. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics. 2021;13: pubmed 出版商
  6. Liu N, Qadri F, Busch H, Huegel S, Sihn G, Chuykin I, et al. Kpna6 deficiency causes infertility in male mice by disrupting spermatogenesis. Development. 2021;148: pubmed 出版商
  7. Waters S, Swanson M, Dieriks B, Zhang Y, Grimsey N, Murray H, et al. Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathol Commun. 2021;9:144 pubmed 出版商
  8. Lasseigne A, Echeverry F, Ijaz S, Michel J, Martin E, Marsh A, et al. Electrical synaptic transmission requires a postsynaptic scaffolding protein. elife. 2021;10: pubmed 出版商
  9. Sheng Z, Gao N, Fan D, Wu N, Zhang Y, Han D, et al. Zika virus disrupts the barrier structure and Absorption/Secretion functions of the epididymis in mice. PLoS Negl Trop Dis. 2021;15:e0009211 pubmed 出版商
  10. Kumar B, Ahmad R, Giannico G, Zent R, Talmon G, Harris R, et al. Claudin-2 inhibits renal clear cell carcinoma progression by inhibiting YAP-activation. J Exp Clin Cancer Res. 2021;40:77 pubmed 出版商
  11. Yoshida S, Wei X, Zhang G, O Connor C, Torres M, Zhou Z, et al. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J Clin Invest. 2021;131: pubmed 出版商
  12. Greferath U, Huynh M, Jobling A, Vessey K, Venables G, Surrao D, et al. Dorsal-Ventral Differences in Retinal Structure in the Pigmented Royal College of Surgeons Model of Retinal Degeneration. Front Cell Neurosci. 2020;14:553708 pubmed 出版商
  13. Mykytyn A, Breugem T, Riesebosch S, Schipper D, van den Doel P, Rottier R, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. elife. 2021;10: pubmed 出版商
  14. Roth J, Muench K, Asokan A, Mallett V, Gai H, Verma Y, et al. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. elife. 2020;9: pubmed 出版商
  15. Bennett R, Hu M, Fernandes A, Pérez Rando M, Robbins A, Kamath T, et al. Tau reduction in aged mice does not impact Microangiopathy. Acta Neuropathol Commun. 2020;8:137 pubmed 出版商
  16. Coolen M, Labusch M, Mannioui A, Bally Cuif L. Mosaic Heterochrony in Neural Progenitors Sustains Accelerated Brain Growth and Neurogenesis in the Juvenile Killifish N. furzeri. Curr Biol. 2020;30:736-745.e4 pubmed 出版商
  17. Wangen J, Green R. Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. elife. 2020;9: pubmed 出版商
  18. Arora P, Dongre S, Raman R, Sonawane M. Stepwise polarisation of developing bilayered epidermis is mediated by aPKC and E-cadherin in zebrafish. elife. 2020;9: pubmed 出版商
  19. Findlay A, McKie L, Keighren M, Clementson Mobbs S, Sanchez Pulido L, Wells S, et al. Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. Sci Rep. 2020;10:437 pubmed 出版商
  20. Thouvenin O, Keiser L, Cantaut Belarif Y, Carbó Tano M, Verweij F, Jurisch Yaksi N, et al. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. elife. 2020;9: pubmed 出版商
  21. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  22. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  23. Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129:1129-1151 pubmed 出版商
  24. Yang Z, Huang C, Wu Y, Chen B, Zhang W, Zhang J. Autophagy Protects the Blood-Brain Barrier Through Regulating the Dynamic of Claudin-5 in Short-Term Starvation. Front Physiol. 2019;10:2 pubmed 出版商
  25. Nerurkar N, Lee C, Mahadevan L, Tabin C. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature. 2019;565:480-484 pubmed 出版商
  26. Luong P, Hedl M, Yan J, Zuo T, Fu T, Jiang X, et al. INAVA-ARNO complexes bridge mucosal barrier function with inflammatory signaling. elife. 2018;7: pubmed 出版商
  27. Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine K. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J Cell Sci. 2018;131: pubmed 出版商
  28. Pelz L, Purfürst B, Rathjen F. The cell adhesion molecule BT-IgSF is essential for a functional blood-testis barrier and male fertility in mice. J Biol Chem. 2017;292:21490-21503 pubmed 出版商
  29. Connell M, Chen H, Jiang J, Kuan C, Fotovati A, Chu T, et al. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. elife. 2017;6: pubmed 出版商
  30. Liang F, Hwang J, Tang N, Hunziker W. Juxtanodin in retinal pigment epithelial cells: Expression and biological activities in regulating cell morphology and actin cytoskeleton organization. J Comp Neurol. 2018;526:205-215 pubmed 出版商
  31. Boussadia B, Lakhal L, Payrastre L, Ghosh C, Pascussi J, Gangarossa G, et al. Pregnane X Receptor Deletion Modifies Recognition Memory and Electroencephalographic Activity. Neuroscience. 2018;370:130-138 pubmed 出版商
  32. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  33. Kharfallah F, Guyot M, El Hassan A, Allache R, Merello E, De Marco P, et al. Scribble1 plays an important role in the pathogenesis of neural tube defects through its mediating effect of Par-3 and Vangl1/2 localization. Hum Mol Genet. 2017;26:2307-2320 pubmed 出版商
  34. Ahmed S, Macara I. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat Commun. 2017;8:14867 pubmed 出版商
  35. Xavier A, Fontaine R, Bloch S, Affaticati P, Jenett A, Demarque M, et al. Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates). J Comp Neurol. 2017;525:2265-2283 pubmed 出版商
  36. Geng Z, Walsh P, Truong V, Hill C, Ebeling M, Kapphahn R, et al. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS ONE. 2017;12:e0173575 pubmed 出版商
  37. Zhang W, Li H, Ogando D, Li S, Feng M, Price F, et al. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. EBioMedicine. 2017;16:292-301 pubmed 出版商
  38. Dukic A, Haugen L, Pidoux G, Leithe E, Bakke O, Tasken K. A protein kinase A-ezrin complex regulates connexin 43 gap junction communication in liver epithelial cells. Cell Signal. 2017;32:1-11 pubmed 出版商
  39. Lesage J, Suarez Carmona M, Neyrinck Leglantier D, Grelet S, Blacher S, Hunziker W, et al. Zonula occludens-1/NF-?B/CXCL8: a new regulatory axis for tumor angiogenesis. FASEB J. 2017;31:1678-1688 pubmed 出版商
  40. Priya R, Liang X, Teo J, Duszyc K, Yap A, Gomez G. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens. Mol Biol Cell. 2017;28:12-20 pubmed 出版商
  41. Van Itallie C, Tietgens A, Anderson J. Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1. Mol Biol Cell. 2017;28:524-534 pubmed 出版商
  42. Yuan J, Cha J, Deng W, Bartos A, Sun X, Ho H, et al. Planar cell polarity signaling in the uterus directs appropriate positioning of the crypt for embryo implantation. Proc Natl Acad Sci U S A. 2016;113:E8079-E8088 pubmed
  43. Lin Z, Zhang Y, Xia Y, Xu X, Jiao X, Sun J. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway. J Biol Chem. 2016;291:26837-26849 pubmed 出版商
  44. Wufuer M, Lee G, Hur W, Jeon B, Kim B, Choi T, et al. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep. 2016;6:37471 pubmed 出版商
  45. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  46. Kantarci H, Gerberding A, Riley B. Spemann organizer gene Goosecoid promotes delamination of neuroblasts from the otic vesicle. Proc Natl Acad Sci U S A. 2016;113:E6840-E6848 pubmed
  47. Cronan M, Beerman R, ROSENBERG A, Saelens J, Johnson M, Oehlers S, et al. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity. 2016;45:861-876 pubmed 出版商
  48. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016;16:4152-4162 pubmed
  49. Neckel P, Mattheus U, Hirt B, Just L, Mack A. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331 pubmed 出版商
  50. Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R, et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature. 2016;538:350-355 pubmed 出版商
  51. Priya R, Wee K, Budnar S, Gomez G, Yap A, Michael M. Coronin 1B supports RhoA signaling at cell-cell junctions through Myosin II. Cell Cycle. 2016;15:3033-3041 pubmed
  52. Gallego Delgado J, Basu Roy U, Ty M, Alique M, Fernandez Arias C, Movila A, et al. Angiotensin receptors and ?-catenin regulate brain endothelial integrity in malaria. J Clin Invest. 2016;126:4016-4029 pubmed 出版商
  53. Kuan W, Bennett N, He X, Skepper J, Martynyuk N, Wijeyekoon R, et al. ?-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol. 2016;285:72-81 pubmed 出版商
  54. Wang M, Nagle R, Knudsen B, Rogers G, Cress A. A basal cell defect promotes budding of prostatic intraepithelial neoplasia. J Cell Sci. 2017;130:104-110 pubmed 出版商
  55. Coburn L, Lopez H, Caldwell B, Moussa E, Yap C, Priya R, et al. Contact inhibition of locomotion and mechanical cross-talk between cell-cell and cell-substrate adhesion determine the pattern of junctional tension in epithelial cell aggregates. Mol Biol Cell. 2016;27:3436-3448 pubmed
  56. Yuki T, Tobiishi M, Kusaka Kikushima A, Ota Y, Tokura Y. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17. PLoS ONE. 2016;11:e0161759 pubmed 出版商
  57. Huang L, Stuart C, Takeda K, D Agnillo F, Golding B. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5. PLoS ONE. 2016;11:e0160875 pubmed 出版商
  58. Ronaghan N, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, et al. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol. 2016;311:G466-79 pubmed 出版商
  59. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  60. Babkair H, Yamazaki M, Uddin M, Maruyama S, Abe T, Essa A, et al. Aberrant expression of the tight junction molecules claudin-1 and zonula occludens-1 mediates cell growth and invasion in oral squamous cell carcinoma. Hum Pathol. 2016;57:51-60 pubmed 出版商
  61. Grahammer F, Wigge C, Schell C, Kretz O, Patrakka J, Schneider S, et al. A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight. 2016;1: pubmed 出版商
  62. Pollock L, Gupta N, Chen X, Luna E, McDermott B. Supervillin Is a Component of the Hair Cell's Cuticular Plate and the Head Plates of Organ of Corti Supporting Cells. PLoS ONE. 2016;11:e0158349 pubmed 出版商
  63. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  64. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  65. Booth J, Duggan E, Patel V, Langer M, Wu W, Braun A, et al. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models. Microbes Infect. 2016;18:615-626 pubmed 出版商
  66. Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed 出版商
  67. Du C, Narayanan K, Leong M, Ibrahim M, Chua Y, Khoo V, et al. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater. 2016;5:2080-91 pubmed 出版商
  68. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  69. Hudish L, Galati D, Ravanelli A, Pearson C, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143:2292-304 pubmed 出版商
  70. Santos A, Durkin C, Helaine S, Boucrot E, Holden D. Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis. Infect Immun. 2016;84:2149-2158 pubmed 出版商
  71. Teo W, Merino V, Cho S, Korangath P, Liang X, Wu R, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35:5539-5551 pubmed 出版商
  72. Takeo Y, Kurabayashi N, Nguyen M, Sanada K. The G protein-coupled receptor GPR157 regulates neuronal differentiation of radial glial progenitors through the Gq-IP3 pathway. Sci Rep. 2016;6:25180 pubmed 出版商
  73. Zoschke C, Ulrich M, Sochorová M, Wolff C, Vavrova K, Ma N, et al. The barrier function of organotypic non-melanoma skin cancer models. J Control Release. 2016;233:10-8 pubmed 出版商
  74. Di Lauro S, Rodriguez Crespo D, Gayoso M, Garcia Gutierrez M, Pastor J, Srivastava G, et al. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Mol Vis. 2016;22:243-53 pubmed
  75. Martovetsky G, Bush K, Nigam S. Kidney versus Liver Specification of SLC and ABC Drug Transporters, Tight Junction Molecules, and Biomarkers. Drug Metab Dispos. 2016;44:1050-60 pubmed 出版商
  76. Sepich D, Solnica Krezel L. Intracellular Golgi Complex organization reveals tissue specific polarity during zebrafish embryogenesis. Dev Dyn. 2016;245:678-91 pubmed 出版商
  77. Kwon J, Jeong S, Choi I, Kim N. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development. PLoS ONE. 2016;11:e0152921 pubmed 出版商
  78. Lee N, Fok K, White A, Wilson N, O Leary C, Cox H, et al. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension. Nat Commun. 2016;7:11082 pubmed 出版商
  79. Djuric I, Siebrasse J, Schulze U, Granado D, Schlüter M, Kubitscheck U, et al. The C-terminal domain controls the mobility of Crumbs 3 isoforms. Biochim Biophys Acta. 2016;1863:1208-17 pubmed 出版商
  80. Ichise H, Ichise T, Yoshida N. Phospholipase Cγ2 Is Required for Luminal Expansion of the Epididymal Duct during Postnatal Development in Mice. PLoS ONE. 2016;11:e0150521 pubmed 出版商
  81. Dora K, Stanley C, Al Jaaly E, Fiorentino F, Ascione R, Reeves B, et al. Isolated Human Pulmonary Artery Structure and Function Pre- and Post-Cardiopulmonary Bypass Surgery. J Am Heart Assoc. 2016;5: pubmed 出版商
  82. Raredon M, Ghaedi M, Calle E, Niklason L. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium. Cell Med. 2015;7:109-21 pubmed 出版商
  83. Wiltshire R, Nelson V, Kho D, Angel C, O Carroll S, Graham E. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Sci Rep. 2016;6:19814 pubmed 出版商
  84. Grego Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson K. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. elife. 2016;5:e12034 pubmed 出版商
  85. Forest F, Thuret G, Gain P, Dumollard J, Peoc h M, Perrache C, et al. Optimization of immunostaining on flat-mounted human corneas. Mol Vis. 2015;21:1345-56 pubmed
  86. Tien S, Lee H, Yang Y, Lin M, Chen Y, Chang Z. The Shp2-induced epithelial disorganization defect is reversed by HDAC6 inhibition independent of Cdc42. Nat Commun. 2016;7:10420 pubmed 出版商
  87. Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, et al. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem. 2016;291:5817-31 pubmed 出版商
  88. Yang S, Krug S, Heitmann J, Hu L, Reinhold A, Sauer S, et al. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials. 2016;82:20-33 pubmed 出版商
  89. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  90. Shi Y, Liu T, Fu J, Xu W, Wu L, Hou A, et al. Vitamin D/VDR signaling attenuates lipopolysaccharide‑induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol Med Rep. 2016;13:1186-94 pubmed 出版商
  91. Stefanitsch C, Lawrence A, Olverling A, Nilsson I, Fredriksson L. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci. 2015;9:456 pubmed 出版商
  92. Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, et al. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res. 2016;364:319-30 pubmed 出版商
  93. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  94. Dixon D, Coates J, Del Carpio Pons A, Horabin J, Walker A, Abdul N, et al. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty. Sci Rep. 2015;5:16466 pubmed 出版商
  95. Freedman B, Brooks C, Lam A, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715 pubmed 出版商
  96. Fujimura K, Choi S, Wyse M, Strnadel J, Wright T, Klemke R. Eukaryotic Translation Initiation Factor 5A (EIF5A) Regulates Pancreatic Cancer Metastasis by Modulating RhoA and Rho-associated Kinase (ROCK) Protein Expression Levels. J Biol Chem. 2015;290:29907-19 pubmed 出版商
  97. Abu Siniyeh A, Owen D, Benzing C, Rinkwitz S, Becker T, Majumdar A, et al. The aPKC/Par3/Par6 Polarity Complex and Membrane Order Are Functionally Interdependent in Epithelia During Vertebrate Organogenesis. Traffic. 2016;17:66-79 pubmed 出版商
  98. Arya P, Rainey M, Bhattacharyya S, Mohapatra B, George M, Kuracha M, et al. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol. 2015;408:41-55 pubmed 出版商
  99. Shadforth A, Suzuki S, Theodoropoulos C, Richardson N, Chirila T, Harkin D. A Bruch's membrane substitute fabricated from silk fibroin supports the function of retinal pigment epithelial cells in vitro. J Tissue Eng Regen Med. 2017;11:1915-1924 pubmed 出版商
  100. Barrows D, Schoenfeld S, Hodakoski C, Silkov A, Honig B, Couvillon A, et al. p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase. J Biol Chem. 2015;290:28915-31 pubmed 出版商
  101. Bruurs L, Donker L, Zwakenberg S, Zwartkruis F, Begthel H, Knisely A, et al. ATP8B1-mediated spatial organization of Cdc42 signaling maintains singularity during enterocyte polarization. J Cell Biol. 2015;210:1055-63 pubmed 出版商
  102. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed 出版商
  103. Priya R, Gomez G, Budnar S, Verma S, Cox H, Hamilton N, et al. Feedback regulation through myosin II confers robustness on RhoA signalling at E-cadherin junctions. Nat Cell Biol. 2015;17:1282-93 pubmed 出版商
  104. Thuringer D, Berthenet K, Cronier L, Solary E, Garrido C. Primary tumor- and metastasis-derived colon cancer cells differently modulate connexin expression and function in human capillary endothelial cells. Oncotarget. 2015;6:28800-15 pubmed 出版商
  105. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  106. Smith N, Hinley J, Varley C, Eardley I, Trejdosiewicz L, Southgate J. The human urothelial tight junction: claudin 3 and the ZO-1α+ switch. Bladder (San Franc). 2015;2:e9 pubmed
  107. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  108. O Carroll S, Kho D, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131 pubmed 出版商
  109. Maggiorani D, Dissard R, Belloy M, Saulnier Blache J, Casemayou A, Ducassé L, et al. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE. 2015;10:e0131416 pubmed 出版商
  110. Sugiyama Y, Shelley E, Badouel C, McNeill H, McAvoy J. Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation. Invest Ophthalmol Vis Sci. 2015;56:4099-107 pubmed 出版商
  111. Preuße K, Tveriakhina L, Schuster Gossler K, Gaspar C, Rosa A, Henrique D, et al. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328 pubmed 出版商
  112. Krivega M, Essahib W, Van de Velde H. WNT3 and membrane-associated β-catenin regulate trophectoderm lineage differentiation in human blastocysts. Mol Hum Reprod. 2015;21:711-22 pubmed 出版商
  113. Schell C, Kretz O, Bregenzer A, Rogg M, Helmstädter M, Lisewski U, et al. Podocyte-Specific Deletion of Murine CXADR Does Not Impair Podocyte Development, Function or Stress Response. PLoS ONE. 2015;10:e0129424 pubmed 出版商
  114. Vainio I, Abu Khamidakh A, Paci M, Skottman H, Juuti Uusitalo K, Hyttinen J, et al. Computational Model of Ca2+ Wave Propagation in Human Retinal Pigment Epithelial ARPE-19 Cells. PLoS ONE. 2015;10:e0128434 pubmed 出版商
  115. Overgaard C, Schlingmann B, Dorsainvil White S, Ward C, Fan X, Swarnakar S, et al. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2015;308:L1212-23 pubmed 出版商
  116. Karbalaie K, Tanhaei S, Rabiei F, Kiani Esfahani A, Masoudi N, Nasr Esfahani M, et al. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. Cell J. 2015;17:37-48 pubmed
  117. Wu S, Yi J, Zhang Y, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3: pubmed 出版商
  118. Ward C, Schlingmann B, Stecenko A, Guidot D, Koval M. NF-κB inhibitors impair lung epithelial tight junctions in the absence of inflammation. Tissue Barriers. 2015;3:e982424 pubmed 出版商
  119. Muramatsu R, Kuroda M, Matoba K, Lin H, Takahashi C, Koyama Y, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem. 2015;290:11515-25 pubmed 出版商
  120. Kageyama T, Hayashi R, Hara S, Yoshikawa K, Ishikawa Y, Yamato M, et al. Spontaneous acquisition of infinite proliferative capacity by a rabbit corneal endothelial cell line with maintenance of phenotypic and physiological characteristics. J Tissue Eng Regen Med. 2017;11:1057-1064 pubmed 出版商
  121. Sohet F, Lin C, Munji R, Lee S, Ruderisch N, Soung A, et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol. 2015;208:703-11 pubmed 出版商
  122. Grego Bessa J, Hildebrand J, Anderson K. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains. Development. 2015;142:1305-14 pubmed 出版商
  123. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  124. Wong A, Chin S, Xia S, Garner J, Bear C, Rossant J. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat Protoc. 2015;10:363-81 pubmed 出版商
  125. Lee S, Kwon J, Choi I, Kim N. Expression and function of transcription factor AP-2? in early embryonic development of porcine parthenotes. Reprod Fertil Dev. 2015;: pubmed 出版商
  126. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  127. Raiko L, Leinonen P, Hägg P, Peltonen J, Oikarinen A, Peltonen S. Tight junctions in Hailey-Hailey and Darier's diseases. Dermatol Reports. 2009;1:e1 pubmed 出版商
  128. Chang K, Zollinger D, Susuki K, Sherman D, Makara M, Brophy P, et al. Glial ankyrins facilitate paranodal axoglial junction assembly. Nat Neurosci. 2014;17:1673-81 pubmed 出版商
  129. Mooren O, Li J, Nawas J, Cooper J. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier. Mol Biol Cell. 2014;25:4115-29 pubmed 出版商
  130. Gegg M, Böttcher A, Burtscher I, Hasenoeder S, Van Campenhout C, Aichler M, et al. Flattop regulates basal body docking and positioning in mono- and multiciliated cells. elife. 2014;3: pubmed 出版商
  131. Landy J, Al Hassi H, Ronde E, English N, Mann E, Bernardo D, et al. Innate immune factors in the development and maintenance of pouchitis. Inflamm Bowel Dis. 2014;20:1942-9 pubmed 出版商
  132. Yao C, Vanderpool K, Delfiner M, Eddy V, Lucaci A, Soto Riveros C, et al. Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse. J Neurophysiol. 2014;112:2102-13 pubmed 出版商
  133. Sojka S, Amin N, Gibbs D, Christine K, Charpentier M, Conlon F. Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity. Development. 2014;141:3040-9 pubmed 出版商
  134. Spadaro D, Tapia R, Jond L, Sudol M, Fanning A, Citi S. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB. J Biol Chem. 2014;289:22500-11 pubmed 出版商
  135. McEwen A, Maher M, Mo R, Gottardi C. E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Mol Biol Cell. 2014;25:2365-74 pubmed 出版商
  136. Glotfelty L, Zahs A, Hodges K, Shan K, Alto N, Hecht G. Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration. Cell Microbiol. 2014;16:1767-83 pubmed 出版商
  137. Herrera A, Saade M, Menendez A, Marti E, Pons S. Sustained Wnt/?-catenin signalling causes neuroepithelial aberrations through the accumulation of aPKC at the apical pole. Nat Commun. 2014;5:4168 pubmed 出版商
  138. Mashukova A, Kozhekbaeva Z, Forteza R, Dulam V, Figueroa Y, Warren R, et al. The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling. J Cell Sci. 2014;127:3568-77 pubmed 出版商
  139. Durak O, de Anda F, Singh K, Leussis M, Petryshen T, Sklar P, et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of ?-catenin. Mol Psychiatry. 2015;20:388-97 pubmed 出版商
  140. Giusti S, Sbrana T, La Marca M, Di Patria V, Martinucci V, Tirella A, et al. A novel dual-flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers. Biotechnol J. 2014;9:1175-84 pubmed 出版商
  141. Doughton G, Wei J, Tapon N, Welham M, Chalmers A. Formation of a polarised primitive endoderm layer in embryoid bodies requires fgfr/erk signalling. PLoS ONE. 2014;9:e95434 pubmed 出版商
  142. Satoh D, Hirose T, Harita Y, Daimon C, Harada T, Kurihara H, et al. aPKC? maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J Biochem. 2014;156:115-28 pubmed 出版商
  143. Gross C, Aggarwal S, Kumar S, Tian J, Kása A, Bogatcheva N, et al. Sox18 preserves the pulmonary endothelial barrier under conditions of increased shear stress. J Cell Physiol. 2014;229:1802-16 pubmed 出版商
  144. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  145. Alvers A, Ryan S, Scherz P, Huisken J, Bagnat M. Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling. Development. 2014;141:1110-9 pubmed 出版商
  146. Fong J, Nimlamool W, Falk M. EGF induces efficient Cx43 gap junction endocytosis in mouse embryonic stem cell colonies via phosphorylation of Ser262, Ser279/282, and Ser368. FEBS Lett. 2014;588:836-44 pubmed 出版商
  147. Lee J, Lee M. Decreased expression of zonula occludens-1 and occludin in the bladder urothelium of patients with interstitial cystitis/painful bladder syndrome. J Formos Med Assoc. 2014;113:17-22 pubmed 出版商
  148. Rigano L, Dowd G, Wang Y, Ireton K. Listeria monocytogenes antagonizes the human GTPase Cdc42 to promote bacterial spread. Cell Microbiol. 2014;16:1068-79 pubmed 出版商
  149. Neugebauer J, Yost H. FGF signaling is required for brain left-right asymmetry and brain midline formation. Dev Biol. 2014;386:123-34 pubmed 出版商
  150. Wang Y, Pan L, Moens C, Appel B. Notch3 establishes brain vascular integrity by regulating pericyte number. Development. 2014;141:307-17 pubmed 出版商
  151. Robert J, Weber B, Frese L, Emmert M, Schmidt D, von Eckardstein A, et al. A three-dimensional engineered artery model for in vitro atherosclerosis research. PLoS ONE. 2013;8:e79821 pubmed 出版商
  152. Andersen M, Krzystanek K, Petersen F, Bomholtz S, Olesen S, Abriel H, et al. A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein. J Biol Chem. 2013;288:36841-54 pubmed 出版商
  153. Lee R, Nagai H, Nakaya Y, Sheng G, Trainor P, Weston J, et al. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development. 2013;140:4890-902 pubmed 出版商
  154. Lázaro Diéguez F, Cohen D, Fernandez D, Hodgson L, Van IJzendoorn S, Müsch A. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes. J Cell Biol. 2013;203:251-64 pubmed 出版商
  155. Whiteman E, Fan S, Harder J, Walton K, Liu C, Soofi A, et al. Crumbs3 is essential for proper epithelial development and viability. Mol Cell Biol. 2014;34:43-56 pubmed 出版商
  156. Elamin E, Masclee A, Dekker J, Pieters H, Jonkers D. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J Nutr. 2013;143:1872-81 pubmed 出版商
  157. Schumacher J, Bloomekatz J, Garavito Aguilar Z, Yelon D. tal1 Regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Dev Biol. 2013;383:214-26 pubmed 出版商
  158. Oie Y, Nozaki T, Takayanagi H, Hara S, Hayashi R, Takeda S, et al. Development of a cell sheet transportation technique for regenerative medicine. Tissue Eng Part C Methods. 2014;20:373-82 pubmed 出版商
  159. Isojima T, Harita Y, Furuyama M, Sugawara N, Ishizuka K, Horita S, et al. LMX1B mutation with residual transcriptional activity as a cause of isolated glomerulopathy. Nephrol Dial Transplant. 2014;29:81-8 pubmed 出版商
  160. Wittchen E, Nishimura E, McCloskey M, Wang H, Quilliam L, Chrzanowska Wodnicka M, et al. Rap1 GTPase activation and barrier enhancement in rpe inhibits choroidal neovascularization in vivo. PLoS ONE. 2013;8:e73070 pubmed 出版商
  161. Guichard A, Cruz Moreno B, Cruz Moreno B, Aguilar B, van Sorge N, Kuang J, et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe. 2013;14:294-305 pubmed 出版商
  162. Freedman B, Lam A, Sundsbak J, Iatrino R, Su X, Koon S, et al. Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with PKD1 mutations. J Am Soc Nephrol. 2013;24:1571-86 pubmed 出版商
  163. Wong E, Cheng C. NC1 domain of collagen ?3(IV) derived from the basement membrane regulates Sertoli cell blood-testis barrier dynamics. Spermatogenesis. 2013;3:e25465 pubmed
  164. Dunphy K, Seo J, Kim D, Roberts A, Tao L, DiRenzo J, et al. Oncogenic transformation of mammary epithelial cells by transforming growth factor beta independent of mammary stem cell regulation. Cancer Cell Int. 2013;13:74 pubmed 出版商
  165. Siljamäki E, Raiko L, Toriseva M, Nissinen L, Näreoja T, Peltonen J, et al. p38? mitogen-activated protein kinase regulates the expression of tight junction protein ZO-1 in differentiating human epidermal keratinocytes. Arch Dermatol Res. 2014;306:131-41 pubmed 出版商
  166. Kinoshita S, Kawasaki S, Kitazawa K, Shinomiya K. Establishment of a human conjunctival epithelial cell line lacking the functional TACSTD2 gene (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2012;110:166-77 pubmed
  167. Garriock R, Mikawa T, Yamaguchi T. Isolation and culture of mouse proepicardium using serum-free conditions. Methods. 2014;66:365-9 pubmed 出版商
  168. Elsum I, Martin C, Humbert P. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci. 2013;126:3990-9 pubmed 出版商
  169. Murakami K, Kurihara C, Oka T, Shimoike T, Fujii Y, Takai Todaka R, et al. Norovirus binding to intestinal epithelial cells is independent of histo-blood group antigens. PLoS ONE. 2013;8:e66534 pubmed 出版商
  170. Lüthje P, Brauner H, Ramos N, Övregaard A, Gläser R, Hirschberg A, et al. Estrogen supports urothelial defense mechanisms. Sci Transl Med. 2013;5:190ra80 pubmed 出版商
  171. Wallingford M, Angelo J, Mager J. Morphogenetic analysis of peri-implantation development. Dev Dyn. 2013;242:1110-20 pubmed 出版商
  172. Jordan N, Prat A, Abell A, Zawistowski J, Sciaky N, Karginova O, et al. SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling. Mol Cell Biol. 2013;33:3011-25 pubmed 出版商
  173. Herder C, Swiercz J, Müller C, Peravali R, Quiring R, Offermanns S, et al. ArhGEF18 regulates RhoA-Rock2 signaling to maintain neuro-epithelial apico-basal polarity and proliferation. Development. 2013;140:2787-97 pubmed 出版商
  174. Carrasco Pozo C, Morales P, Gotteland M. Polyphenols protect the epithelial barrier function of Caco-2 cells exposed to indomethacin through the modulation of occludin and zonula occludens-1 expression. J Agric Food Chem. 2013;61:5291-7 pubmed 出版商
  175. Xu X, Jin D, Durgan J, Hall A. LKB1 controls human bronchial epithelial morphogenesis through p114RhoGEF-dependent RhoA activation. Mol Cell Biol. 2013;33:2671-82 pubmed 出版商
  176. Szczepkowska A, Lagaraine C, Robert V, Dufourny L, Thiery J, Skipor J. Effect of a two-week treatment with a low dose of 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153) on tight junction protein expression in ovine choroid plexus during long and short photoperiods. Neurotoxicol Teratol. 2013;37:63-7 pubmed 出版商
  177. Lin M, Shang D, Sun W, Li B, Xu X, Fang W, et al. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers. Brain Res. 2013;1513:1-8 pubmed 出版商
  178. Fiorentino M, Lammers K, Levine M, Sztein M, Fasano A. In vitro Intestinal Mucosal Epithelial Responses to Wild-Type Salmonella Typhi and Attenuated Typhoid Vaccines. Front Immunol. 2013;4:17 pubmed 出版商
  179. Kirschner N, Rosenthal R, Furuse M, Moll I, Fromm M, Brandner J. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol. 2013;133:1161-9 pubmed 出版商
  180. Rachow S, Zorn Kruppa M, Ohnemus U, Kirschner N, Vidal Y Sy S, von den Driesch P, et al. Occludin is involved in adhesion, apoptosis, differentiation and Ca2+-homeostasis of human keratinocytes: implications for tumorigenesis. PLoS ONE. 2013;8:e55116 pubmed 出版商
  181. Abu Khamidakh A, Juuti Uusitalo K, Larsson K, Skottman H, Hyttinen J. Intercellular Ca(2+) wave propagation in human retinal pigment epithelium cells induced by mechanical stimulation. Exp Eye Res. 2013;108:129-39 pubmed 出版商
  182. Bouyer P, Tang X, Weber C, Shen L, Turner J, Matthews J. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1. Am J Physiol Gastrointest Liver Physiol. 2013;304:G142-56 pubmed 出版商
  183. Antonica F, Kasprzyk D, Opitz R, Iacovino M, Liao X, Dumitrescu A, et al. Generation of functional thyroid from embryonic stem cells. Nature. 2012;491:66-71 pubmed 出版商
  184. Langer M, Duggan E, Booth J, Patel V, Zander R, Silasi Mansat R, et al. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function. Infect Immun. 2012;80:4374-87 pubmed 出版商
  185. Cheung T, Ganatra M, Peters E, Truskey G. Effect of cellular senescence on the albumin permeability of blood-derived endothelial cells. Am J Physiol Heart Circ Physiol. 2012;303:H1374-83 pubmed 出版商
  186. Termén S, Tan E, Heldin C, Moustakas A. p53 regulates epithelial-mesenchymal transition induced by transforming growth factor ?. J Cell Physiol. 2013;228:801-13 pubmed 出版商
  187. Vassilev V, Mandai M, Yonemura S, Takeichi M. Loss of N-cadherin from the endothelium causes stromal edema and epithelial dysgenesis in the mouse cornea. Invest Ophthalmol Vis Sci. 2012;53:7183-93 pubmed 出版商
  188. Scudieri P, Caci E, Bruno S, Ferrera L, Schiavon M, Sondo E, et al. Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. J Physiol. 2012;590:6141-55 pubmed 出版商
  189. Iden S, van Riel W, Schäfer R, Song J, Hirose T, Ohno S, et al. Tumor type-dependent function of the par3 polarity protein in skin tumorigenesis. Cancer Cell. 2012;22:389-403 pubmed 出版商
  190. Castellani S, Guerra L, Favia M, Di Gioia S, Casavola V, Conese M. NHERF1 and CFTR restore tight junction organisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway. Lab Invest. 2012;92:1527-40 pubmed 出版商
  191. Cunliffe H, Jiang Y, Fornace K, Yang F, Meltzer P. PAR6B is required for tight junction formation and activated PKC? localization in breast cancer. Am J Cancer Res. 2012;2:478-91 pubmed
  192. Cantara S, Soscia D, Sequeira S, Jean Gilles R, Castracane J, Larsen M. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity. Biomaterials. 2012;33:8372-82 pubmed 出版商
  193. Kalive M, Zhang W, Chen Y, Capco D. Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. Cell Biol Toxicol. 2012;28:343-68 pubmed 出版商
  194. Sanyas I, Bozon M, Moret F, Castellani V. Motoneuronal Sema3C is essential for setting stereotyped motor tract positioning in limb-derived chemotropic semaphorins. Development. 2012;139:3633-43 pubmed 出版商
  195. Subrizi A, Hiidenmaa H, Ilmarinen T, Nymark S, Dubruel P, Uusitalo H, et al. Generation of hESC-derived retinal pigment epithelium on biopolymer coated polyimide membranes. Biomaterials. 2012;33:8047-54 pubmed 出版商
  196. Magudia K, Lahoz A, Hall A. K-Ras and B-Raf oncogenes inhibit colon epithelial polarity establishment through up-regulation of c-myc. J Cell Biol. 2012;198:185-94 pubmed 出版商
  197. Moran G, O NEILL C, McLaughlin J. GLP-2 enhances barrier formation and attenuates TNF?-induced changes in a Caco-2 cell model of the intestinal barrier. Regul Pept. 2012;178:95-101 pubmed 出版商
  198. Mühlfeld S, Domanova O, Berlage T, Stross C, Helmer A, Keitel V, et al. Short-term feedback regulation of bile salt uptake by bile salts in rodent liver. Hepatology. 2012;56:2387-97 pubmed 出版商
  199. Kuo K, Zhu H, McNamara P, Leggas M. Localization and functional characterization of the rat Oatp4c1 transporter in an in vitro cell system and rat tissues. PLoS ONE. 2012;7:e39641 pubmed 出版商
  200. Kajiho Y, Harita Y, Kurihara H, Horita S, Matsunaga A, Tsurumi H, et al. SIRP? interacts with nephrin at the podocyte slit diaphragm. FEBS J. 2012;279:3010-21 pubmed 出版商
  201. Shibasaki T, Tokunaga A, Sakamoto R, Sagara H, Noguchi S, Sasaoka T, et al. PTB deficiency causes the loss of adherens junctions in the dorsal telencephalon and leads to lethal hydrocephalus. Cereb Cortex. 2013;23:1824-35 pubmed 出版商
  202. Hartsock A, Nelson W. Competitive regulation of E-cadherin juxtamembrane domain degradation by p120-catenin binding and Hakai-mediated ubiquitination. PLoS ONE. 2012;7:e37476 pubmed 出版商
  203. Ohmura T, Shioi G, Hirano M, Aizawa S. Neural tube defects by NUAK1 and NUAK2 double mutation. Dev Dyn. 2012;241:1350-64 pubmed 出版商
  204. Keay S, Leitzell S, Ochrzcin A, Clements G, Zhan M, Johnson D. A mouse model for interstitial cystitis/painful bladder syndrome based on APF inhibition of bladder epithelial repair: a pilot study. BMC Urol. 2012;12:17 pubmed
  205. Raiko L, Siljamäki E, Mahoney M, Putaala H, Suominen E, Peltonen J, et al. Hailey-Hailey disease and tight junctions: Claudins 1 and 4 are regulated by ATP2C1 gene encoding Ca(2+) /Mn(2+) ATPase SPCA1 in cultured keratinocytes. Exp Dermatol. 2012;21:586-91 pubmed 出版商
  206. Saund R, Kanai Azuma M, Kanai Y, Kim I, Lucero M, Saijoh Y. Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo. Development. 2012;139:2426-35 pubmed 出版商
  207. Adijanto J, Castorino J, Wang Z, Maminishkis A, Grunwald G, Philp N. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J Biol Chem. 2012;287:20491-503 pubmed 出版商
  208. Rowland T, Blaschke A, Buchholz D, Hikita S, Johnson L, Clegg D. Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med. 2013;7:642-53 pubmed 出版商
  209. Jiang X, Guo M, Su J, Lu B, Ma D, Zhang R, et al. Simvastatin blocks blood-brain barrier disruptions induced by elevated cholesterol both in vivo and in vitro. Int J Alzheimers Dis. 2012;2012:109324 pubmed 出版商
  210. Cammas L, Wolfe J, Choi S, Dedhar S, Beggs H. Integrin-linked kinase deletion in the developing lens leads to capsule rupture, impaired fiber migration and non-apoptotic epithelial cell death. Invest Ophthalmol Vis Sci. 2012;53:3067-81 pubmed 出版商
  211. Ting L, Jahn J, Jung J, Shuman B, Feghhi S, Han S, et al. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am J Physiol Heart Circ Physiol. 2012;302:H2220-9 pubmed 出版商
  212. Ritchie J, Rui H, Zhou X, Iida T, Kodoma T, Ito S, et al. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog. 2012;8:e1002593 pubmed 出版商
  213. Liu K, Jacobs D, Dunn B, Fanning A, Cheney R. Myosin-X functions in polarized epithelial cells. Mol Biol Cell. 2012;23:1675-87 pubmed 出版商
  214. Dukes J, Whitley P, Chalmers A. The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS ONE. 2012;7:e28659 pubmed 出版商
  215. Parrilla M, Lillo C, Herrero Turrion M, Arevalo R, Aijón J, Lara J, et al. Characterization of Pax2 expression in the goldfish optic nerve head during retina regeneration. PLoS ONE. 2012;7:e32348 pubmed 出版商
  216. Paschoud S, Guillemot L, Citi S. Distinct domains of paracingulin are involved in its targeting to the actin cytoskeleton and regulation of apical junction assembly. J Biol Chem. 2012;287:13159-69 pubmed 出版商
  217. Shi Y, Kirwan P, Smith J, Robinson H, Livesey F. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci. 2012;15:477-86, S1 pubmed 出版商
  218. Kim J, Rubin N, Huang Y, Tuan T, Lien C. In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat Protoc. 2012;7:247-55 pubmed 出版商
  219. He Z, Campolmi N, Ha Thi B, Dumollard J, Peoc h M, Garraud O, et al. Optimization of immunolocalization of cell cycle proteins in human corneal endothelial cells. Mol Vis. 2011;17:3494-511 pubmed
  220. Ortega Cava C, Raja S, Laiq Z, Bailey T, Luan H, Mohapatra B, et al. Continuous requirement of ErbB2 kinase activity for loss of cell polarity and lumen formation in a novel ErbB2/Neu-driven murine cell line model of metastatic breast cancer. J Carcinog. 2011;10:29 pubmed 出版商
  221. Schneckenleithner C, Bago Horvath Z, Dolznig H, Neugebauer N, Kollmann K, Kolbe T, et al. Putting the brakes on mammary tumorigenesis: loss of STAT1 predisposes to intraepithelial neoplasias. Oncotarget. 2011;2:1043-54 pubmed
  222. Sarró E, Jacobs Cachá C, Itarte E, Meseguer A. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells. Toxicol Appl Pharmacol. 2012;258:275-87 pubmed 出版商
  223. Kelava I, Reillo I, Murayama A, Kalinka A, Stenzel D, Tomancak P, et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb Cortex. 2012;22:469-81 pubmed 出版商
  224. Brysse A, Mestdagt M, Polette M, Luczka E, Hunziker W, Noel A, et al. Regulation of CXCL8/IL-8 expression by zonula occludens-1 in human breast cancer cells. Mol Cancer Res. 2012;10:121-32 pubmed 出版商
  225. Gendron R, Armstrong E, Paradis H, Haines L, Desjardins M, Short C, et al. Osmotic pressure-adaptive responses in the eye tissues of rainbow smelt (Osmerus mordax). Mol Vis. 2011;17:2596-604 pubmed
  226. Knauf F, Ko N, Jiang Z, Robertson W, Van Itallie C, Anderson J, et al. Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J Am Soc Nephrol. 2011;22:2247-55 pubmed 出版商
  227. Münzel E, Schaefer K, Obirei B, Kremmer E, Burton E, Kuscha V, et al. Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia. 2012;60:253-70 pubmed 出版商
  228. Cheung I, Bagnat M, Ma T, Datta A, Evason K, Moore J, et al. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Dev Biol. 2012;361:68-78 pubmed 出版商
  229. Koning H, Sayers I, Stewart C, de Jong D, ten Hacken N, Postma D, et al. Characterization of protocadherin-1 expression in primary bronchial epithelial cells: association with epithelial cell differentiation. FASEB J. 2012;26:439-48 pubmed 出版商
  230. Chai Z, Goodenough D, Paul D. Cx50 requires an intact PDZ-binding motif and ZO-1 for the formation of functional intercellular channels. Mol Biol Cell. 2011;22:4503-12 pubmed 出版商
  231. Subramaniam R, Hinley J, Stahlschmidt J, Southgate J. Tissue engineering potential of urothelial cells from diseased bladders. J Urol. 2011;186:2014-20 pubmed 出版商
  232. Carman A, Mills J, Krenz A, Kim D, Bynoe M. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci. 2011;31:13272-80 pubmed 出版商
  233. Calame M, Cachafeiro M, Philippe S, Schouwey K, Tekaya M, Wanner D, et al. Retinal degeneration progression changes lentiviral vector cell targeting in the retina. PLoS ONE. 2011;6:e23782 pubmed 出版商
  234. Grosse A, Pressprich M, Curley L, Hamilton K, Margolis B, Hildebrand J, et al. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development. 2011;138:4423-32 pubmed 出版商
  235. Gao W, Xu L, Guan R, Liu X, Han Y, Wu Q, et al. Wdr18 is required for Kupffer's vesicle formation and regulation of body asymmetry in zebrafish. PLoS ONE. 2011;6:e23386 pubmed 出版商
  236. Ohta H, Yamaguchi T, Rajapakshage B, Murakami M, Sasaki N, Nakamura K, et al. Expression and subcellular localization of apical junction proteins in canine duodenal and colonic mucosa. Am J Vet Res. 2011;72:1046-51 pubmed 出版商
  237. Smith N, Varley C, Eardley I, Feather S, Trejdosiewicz L, Southgate J. Toll-like receptor responses of normal human urothelial cells to bacterial flagellin and lipopolysaccharide. J Urol. 2011;186:1084-92 pubmed 出版商
  238. Mandel I, Paperna T, Glass Marmor L, Volkowich A, Badarny S, Schwartz I, et al. Tight junction proteins expression and modulation in immune cells and multiple sclerosis. J Cell Mol Med. 2012;16:765-75 pubmed 出版商
  239. Dukes J, Fish L, Richardson J, Blaikley E, Burns S, Caunt C, et al. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Mol Biol Cell. 2011;22:3192-205 pubmed 出版商
  240. Belgiovine C, Chiodi I, Mondello C. Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts. Int J Oncol. 2011;39:1199-204 pubmed 出版商
  241. Watanabe R, Hayashi R, Kimura Y, Tanaka Y, Kageyama T, Hara S, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A. 2011;17:2213-9 pubmed 出版商
  242. Lagaraine C, Skipor J, Szczepkowska A, Dufourny L, Thiery J. Tight junction proteins vary in the choroid plexus of ewes according to photoperiod. Brain Res. 2011;1393:44-51 pubmed 出版商
  243. Llaurado M, Abal M, Castellvi J, Cabrera S, Gil Moreno A, Pérez Benavente A, et al. ETV5 transcription factor is overexpressed in ovarian cancer and regulates cell adhesion in ovarian cancer cells. Int J Cancer. 2012;130:1532-43 pubmed 出版商
  244. Butt O, Buehler P, D Agnillo F. Blood-brain barrier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin. Am J Pathol. 2011;178:1316-28 pubmed 出版商
  245. Wu W, Huang Q, He F, Xiao M, Pang S, Guo X, et al. Roles of mitogen-activated protein kinases in the modulation of endothelial cell function following thermal injury. Shock. 2011;35:618-25 pubmed 出版商
  246. Tanigawa S, Wang H, Yang Y, Sharma N, Tarasova N, Ajima R, et al. Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev Biol. 2011;352:58-69 pubmed 出版商
  247. Iqbal M, Gibb W, Matthews S. Corticosteroid regulation of P-glycoprotein in the developing blood-brain barrier. Endocrinology. 2011;152:1067-79 pubmed 出版商
  248. Andersen M, Olesen S, Rasmussen H. Kv7.1 surface expression is regulated by epithelial cell polarization. Am J Physiol Cell Physiol. 2011;300:C814-24 pubmed 出版商
  249. Larsen H, Aure M, Peters S, Larsen M, Messelt E, Kanli Galtung H. Localization of AQP5 during development of the mouse submandibular salivary gland. J Mol Histol. 2011;42:71-81 pubmed 出版商
  250. Hilgen G, von Maltzahn J, Willecke K, Weiler R, Dedek K. Subcellular distribution of connexin45 in OFF bipolar cells of the mouse retina. J Comp Neurol. 2011;519:433-50 pubmed 出版商
  251. Kirschner N, Haftek M, Niessen C, Behne M, Furuse M, Moll I, et al. CD44 regulates tight-junction assembly and barrier function. J Invest Dermatol. 2011;131:932-43 pubmed 出版商
  252. Maria O, Zeitouni A, Gologan O, Tran S. Matrigel improves functional properties of primary human salivary gland cells. Tissue Eng Part A. 2011;17:1229-38 pubmed 出版商
  253. Paschoud S, Yu D, Pulimeno P, Jond L, Turner J, Citi S. Cingulin and paracingulin show similar dynamic behaviour, but are recruited independently to junctions. Mol Membr Biol. 2011;28:123-35 pubmed 出版商
  254. Liu M, Sakamaki T, Casimiro M, Willmarth N, Quong A, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010;70:10464-73 pubmed 出版商
  255. Kranjec C, Banks L. A systematic analysis of human papillomavirus (HPV) E6 PDZ substrates identifies MAGI-1 as a major target of HPV type 16 (HPV-16) and HPV-18 whose loss accompanies disruption of tight junctions. J Virol. 2011;85:1757-64 pubmed 出版商
  256. Ingthorsson S, Halldorsson T, Sigurdsson V, Friðriksdottir A, Bodvarsdottir S, Steinarsdottir M, et al. Selection for EGFR gene amplification in a breast epithelial cell line with basal-like phenotype and hereditary background. In Vitro Cell Dev Biol Anim. 2011;47:139-48 pubmed 出版商
  257. Haarmann A, Deiss A, Prochaska J, Foerch C, Weksler B, Romero I, et al. Evaluation of soluble junctional adhesion molecule-A as a biomarker of human brain endothelial barrier breakdown. PLoS ONE. 2010;5:e13568 pubmed 出版商
  258. Wallace S, Magalhaes A, Hall A. The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells. Mol Cell Biol. 2011;31:81-91 pubmed 出版商
  259. Aman A, Nguyen M, Piotrowski T. Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Dev Biol. 2011;349:470-82 pubmed 出版商
  260. Garavito Aguilar Z, Riley H, Yelon D. Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function. Development. 2010;137:3215-20 pubmed 出版商
  261. Boassa D, Solan J, Papas A, Thornton P, Lampe P, Sosinsky G. Trafficking and recycling of the connexin43 gap junction protein during mitosis. Traffic. 2010;11:1471-86 pubmed 出版商
  262. Hirota Y, Meunier A, Huang S, Shimozawa T, Yamada O, Kida Y, et al. Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development. 2010;137:3037-46 pubmed 出版商
  263. Nakatsukasa M, Kawasaki S, Yamasaki K, Fukuoka H, Matsuda A, Tsujikawa M, et al. Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: implications in the pathogenesis of gelatinous drop-like corneal dystrophy. Am J Pathol. 2010;177:1344-55 pubmed 出版商
  264. Ponsaerts R, De Vuyst E, Retamal M, D hondt C, Vermeire D, Wang N, et al. Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J. 2010;24:4378-95 pubmed 出版商
  265. Wallace S, Durgan J, Jin D, Hall A. Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B. Mol Biol Cell. 2010;21:2996-3006 pubmed 出版商
  266. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, et al. A MicroRNA targeting dicer for metastasis control. Cell. 2010;141:1195-207 pubmed 出版商
  267. Oie Y, Hayashi R, Takagi R, Yamato M, Takayanagi H, Tano Y, et al. A novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction. Br J Ophthalmol. 2010;94:1244-50 pubmed 出版商
  268. Fietz S, Kelava I, Vogt J, Wilsch Bräuninger M, Stenzel D, Fish J, et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010;13:690-9 pubmed 出版商
  269. Mazumdar K, Alvarez X, Borda J, Dufour J, Martin E, Bethune M, et al. Visualization of transepithelial passage of the immunogenic 33-residue peptide from alpha-2 gliadin in gluten-sensitive macaques. PLoS ONE. 2010;5:e10228 pubmed 出版商
  270. Morishige N, Ko J, Morita Y, Nishida T. Expression of semaphorin 3A in the rat corneal epithelium during wound healing. Biochem Biophys Res Commun. 2010;395:451-7 pubmed 出版商
  271. Jeanes A, Smutny M, Leerberg J, Yap A. Phosphatidylinositol 3'-kinase signalling supports cell height in established epithelial monolayers. J Mol Histol. 2009;40:395-405 pubmed 出版商
  272. Lesimple P, Liao J, Robert R, Gruenert D, Hanrahan J. Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers. J Physiol. 2010;588:1195-209 pubmed 出版商
  273. Karim M, Biswas S, Bhattacherjee P, Paterson C. Comparison of tight junction protein expression in the ciliary epithelia of mouse, rabbit, cat and human eyes. Biotech Histochem. 2011;86:161-7 pubmed 出版商
  274. Semenov O, Koestenbauer S, Riegel M, Zech N, Zimmermann R, Zisch A, et al. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol. 2010;202:193.e1-193.e13 pubmed 出版商
  275. Joannes A, Bonnomet A, Bindels S, Polette M, Gilles C, Burlet H, et al. Fhit regulates invasion of lung tumor cells. Oncogene. 2010;29:1203-13 pubmed 出版商
  276. Sadowska G, Malaeb S, Stonestreet B. Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep. Am J Physiol Heart Circ Physiol. 2010;298:H179-88 pubmed 出版商
  277. Sugiyama Y, Akimoto K, Robinson M, Ohno S, Quinlan R. A cell polarity protein aPKClambda is required for eye lens formation and growth. Dev Biol. 2009;336:246-56 pubmed 出版商
  278. Rajabian T, Gavicherla B, Heisig M, Müller Altrock S, Goebel W, Gray Owen S, et al. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat Cell Biol. 2009;11:1212-8 pubmed 出版商
  279. Ignáth I, Hegyi P, Venglovecz V, Székely C, Carr G, Hasegawa M, et al. CFTR expression but not Cl- transport is involved in the stimulatory effect of bile acids on apical Cl-/HCO3- exchange activity in human pancreatic duct cells. Pancreas. 2009;38:921-9 pubmed 出版商
  280. Hayashi R, Yamato M, Takayanagi H, Oie Y, Kubota A, Hori Y, et al. Validation system of tissue-engineered epithelial cell sheets for corneal regenerative medicine. Tissue Eng Part C Methods. 2010;16:553-60 pubmed 出版商
  281. Shimazaki J, Higa K, Kato N, Satake Y. Barrier function of cultivated limbal and oral mucosal epithelial cell sheets. Invest Ophthalmol Vis Sci. 2009;50:5672-80 pubmed 出版商
  282. Matsumoto M, Oyamada K, Takahashi H, Sato T, Hatakeyama S, Nakayama K. Large-scale proteomic analysis of tyrosine-phosphorylation induced by T-cell receptor or B-cell receptor activation reveals new signaling pathways. Proteomics. 2009;9:3549-63 pubmed 出版商
  283. Natoli M, Felsani A, Ferruzza S, Sambuy Y, Canali R, Scarino M. Mechanisms of defence from Fe(II) toxicity in human intestinal Caco-2 cells. Toxicol In Vitro. 2009;23:1510-5 pubmed 出版商
  284. Sobarzo C, Lustig L, Ponzio R, Suescun M, Denduchis B. Effects of di(2-ethylhexyl) phthalate on gap and tight junction protein expression in the testis of prepubertal rats. Microsc Res Tech. 2009;72:868-77 pubmed 出版商
  285. Montero Balaguer M, Swirsding K, Orsenigo F, Cotelli F, Mione M, Dejana E. Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS ONE. 2009;4:e5772 pubmed 出版商
  286. Roberts R, Appel B. Apical polarity protein PrkCi is necessary for maintenance of spinal cord precursors in zebrafish. Dev Dyn. 2009;238:1638-48 pubmed 出版商
  287. Rehermann M, Marichal N, RUSSO R, TRUJILLO CENOZ O. Neural reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi. J Comp Neurol. 2009;515:197-214 pubmed 出版商
  288. Cukierman L, Meertens L, Bertaux C, Kajumo F, Dragic T. Residues in a highly conserved claudin-1 motif are required for hepatitis C virus entry and mediate the formation of cell-cell contacts. J Virol. 2009;83:5477-84 pubmed 出版商
  289. Elwi A, Damaraju V, Kuzma M, Mowles D, Baldwin S, Young J, et al. Transepithelial fluxes of adenosine and 2'-deoxyadenosine across human renal proximal tubule cells: roles of nucleoside transporters hENT1, hENT2, and hCNT3. Am J Physiol Renal Physiol. 2009;296:F1439-51 pubmed 出版商
  290. Li H, Collier J, Shawki A, Rudra J, Li E, Mackenzie B, et al. Sequence- or position-specific mutations in the carboxyl-terminal FL motif of the kidney sodium bicarbonate cotransporter (NBC1) disrupt its basolateral targeting and alpha-helical structure. J Membr Biol. 2009;228:111-24 pubmed 出版商
  291. Huber T, Hartleben B, Winkelmann K, Schneider L, Becker J, Leitges M, et al. Loss of podocyte aPKClambda/iota causes polarity defects and nephrotic syndrome. J Am Soc Nephrol. 2009;20:798-806 pubmed 出版商
  292. Neugebauer J, Amack J, Peterson A, Bisgrove B, Yost H. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature. 2009;458:651-4 pubmed 出版商
  293. Burtscher I, Lickert H. Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. Development. 2009;136:1029-38 pubmed 出版商
  294. Alanne M, Pummi K, Heape A, Grenman R, Peltonen J, Peltonen S. Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem. 2009;57:523-9 pubmed 出版商
  295. Takaoka M, Nakamura T, Sugai H, Bentley A, Nakajima N, Yokoi N, et al. Novel sutureless keratoplasty with a chemically defined bioadhesive. Invest Ophthalmol Vis Sci. 2009;50:2679-85 pubmed 出版商
  296. McLaughlin J, Lambert D, Padfield P, Burt J, O Neill C. The mycotoxin patulin, modulates tight junctions in caco-2 cells. Toxicol In Vitro. 2009;23:83-9 pubmed 出版商
  297. Catanuto P, Espinosa Heidmann D, Pereira Simon S, Sanchez P, Salas P, Hernandez E, et al. Mouse retinal pigmented epithelial cell lines retain their phenotypic characteristics after transfection with human papilloma virus: a new tool to further the study of RPE biology. Exp Eye Res. 2009;88:99-105 pubmed 出版商
  298. Dunworth W, Fritz Six K, Caron K. Adrenomedullin stabilizes the lymphatic endothelial barrier in vitro and in vivo. Peptides. 2008;29:2243-9 pubmed 出版商
  299. Yang W, Hood B, Chadwick S, Liu S, Watkins S, Luo G, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology. 2008;48:1396-403 pubmed 出版商
  300. Neuhaus W, Wirth M, Plattner V, Germann B, Gabor F, Noe C. Expression of Claudin-1, Claudin-3 and Claudin-5 in human blood-brain barrier mimicking cell line ECV304 is inducible by glioma-conditioned media. Neurosci Lett. 2008;446:59-64 pubmed 出版商
  301. Chen X, Lan X, Roche I, Liu R, Geiger J. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem. 2008;107:1147-57 pubmed 出版商
  302. Aono S, Hirai Y. Phosphorylation of claudin-4 is required for tight junction formation in a human keratinocyte cell line. Exp Cell Res. 2008;314:3326-39 pubmed 出版商
  303. Nokes R, Fields I, Collins R, FOLSCH H. Rab13 regulates membrane trafficking between TGN and recycling endosomes in polarized epithelial cells. J Cell Biol. 2008;182:845-53 pubmed 出版商
  304. Rubenwolf P, Georgopoulos N, Clements L, Feather S, Holland P, Thomas D, et al. Expression and localisation of aquaporin water channels in human urothelium in situ and in vitro. Eur Urol. 2009;56:1013-23 pubmed 出版商
  305. Cain S, Martinez G, Kokkinos M, Turner K, Richardson R, Abud H, et al. Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol. 2008;321:420-33 pubmed 出版商
  306. McCaffrey G, Seelbach M, Staatz W, Nametz N, Quigley C, Campos C, et al. Occludin oligomeric assembly at tight junctions of the blood-brain barrier is disrupted by peripheral inflammatory hyperalgesia. J Neurochem. 2008;106:2395-409 pubmed 出版商
  307. Kishikawa M, Suzuki A, Ohno S. aPKC enables development of zonula adherens by antagonizing centripetal contraction of the circumferential actomyosin cables. J Cell Sci. 2008;121:2481-92 pubmed 出版商
  308. Roberts L, Black D, Raman C, Woodford K, Zhou M, Haggerty J, et al. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience. 2008;155:423-38 pubmed 出版商
  309. Norsted E, Gömüç B, Meister B. Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus. J Chem Neuroanat. 2008;36:107-21 pubmed 出版商
  310. Bouschbacher M, Bomsel M, Verronèse E, Gofflo S, Ganor Y, Dezutter Dambuyant C, et al. Early events in HIV transmission through a human reconstructed vaginal mucosa. AIDS. 2008;22:1257-66 pubmed 出版商
  311. Sugiyama Y, Prescott A, Tholozan F, Ohno S, Quinlan R. Expression and localisation of apical junctional complex proteins in lens epithelial cells. Exp Eye Res. 2008;87:64-70 pubmed 出版商
  312. Birnie R, Bryce S, Roome C, Dussupt V, Droop A, Lang S, et al. Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 2008;9:R83 pubmed 出版商
  313. Turner A, Subramaniam R, Thomas D, Southgate J. Generation of a functional, differentiated porcine urothelial tissue in vitro. Eur Urol. 2008;54:1423-32 pubmed 出版商
  314. Chen X, Gawryluk J, Wagener J, Ghribi O, Geiger J. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. J Neuroinflammation. 2008;5:12 pubmed 出版商
  315. Morishige N, Ko J, Liu Y, Chikama T, Nishida T. Localization of semaphorin 3A in the rat cornea. Exp Eye Res. 2008;86:669-74 pubmed 出版商
  316. Yang W, Qiu C, Biswas N, Jin J, Watkins S, Montelaro R, et al. Correlation of the tight junction-like distribution of Claudin-1 to the cellular tropism of hepatitis C virus. J Biol Chem. 2008;283:8643-53 pubmed 出版商
  317. Li J, Levin M, Xiong Y, Petrenko N, Patel V, Radice G. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility. J Mol Cell Cardiol. 2008;44:597-606 pubmed 出版商
  318. Imayasu M, Shiraishi A, Ohashi Y, Shimada S, Cavanagh H. Effects of multipurpose solutions on corneal epithelial tight junctions. Eye Contact Lens. 2008;34:50-5 pubmed 出版商
  319. Paschoud S, Citi S. Inducible overexpression of cingulin in stably transfected MDCK cells does not affect tight junction organization and gene expression. Mol Membr Biol. 2008;25:1-13 pubmed
  320. Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol. 2008;10:93-101 pubmed
  321. Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev. 2008;125:270-83 pubmed
  322. Kawaguchi M, Bader D, Wilm B. Serosal mesothelium retains vasculogenic potential. Dev Dyn. 2007;236:2973-9 pubmed
  323. McCaffrey G, Staatz W, Quigley C, Nametz N, Seelbach M, Campos C, et al. Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem. 2007;103:2540-55 pubmed 出版商
  324. Weber K, Fischer R, Fowler V. Tmod3 regulates polarized epithelial cell morphology. J Cell Sci. 2007;120:3625-32 pubmed
  325. Kostin S. Zonula occludens-1 and connexin 43 expression in the failing human heart. J Cell Mol Med. 2007;11:892-5 pubmed
  326. Mandell K, Berglin L, Severson E, Edelhauser H, Parkos C. Expression of JAM-A in the human corneal endothelium and retinal pigment epithelium: localization and evidence for role in barrier function. Invest Ophthalmol Vis Sci. 2007;48:3928-36 pubmed
  327. Ciolofan C, Lynn B, Wellershaus K, Willecke K, Nagy J. Spatial relationships of connexin36, connexin57 and zonula occludens-1 in the outer plexiform layer of mouse retina. Neuroscience. 2007;148:473-88 pubmed
  328. Skowron zwarg M, Boland S, Caruso N, Coraux C, Marano F, Tournier F. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation. Exp Cell Res. 2007;313:2695-702 pubmed
  329. Cai Z, Blumbergs P, Finnie J, Manavis J, Thompson P. Novel fibroblastic onion bulbs in a demyelinating avian peripheral neuropathy produced by riboflavin deficiency. Acta Neuropathol. 2007;114:187-94 pubmed
  330. Peltonen S, Riehokainen J, Pummi K, Peltonen J. Tight junction components occludin, ZO-1, and claudin-1, -4 and -5 in active and healing psoriasis. Br J Dermatol. 2007;156:466-72 pubmed
  331. Endemann M, Bergmeister H, Bidmon B, Boehm M, Csaicsich D, Malaga Dieguez L, et al. Evidence for HSP-mediated cytoskeletal stabilization in mesothelial cells during acute experimental peritoneal dialysis. Am J Physiol Renal Physiol. 2007;292:F47-56 pubmed
  332. Akoyev V, Takemoto D. ZO-1 is required for protein kinase C gamma-driven disassembly of connexin 43. Cell Signal. 2007;19:958-67 pubmed
  333. Hajj R, Baranek T, Le Naour R, Lesimple P, Puchelle E, Coraux C. Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells. 2007;25:139-48 pubmed
  334. Anstrom J, Thore C, Moody D, Brown W. Immunolocalization of tight junction proteins in blood vessels in human germinal matrix and cortex. Histochem Cell Biol. 2007;127:205-13 pubmed
  335. Guezguez B, Vigneron P, Alais S, Jaffredo T, Gavard J, Mège R, et al. A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells. FEBS Lett. 2006;580:3649-56 pubmed
  336. Mandell K, Holley G, Parkos C, Edelhauser H. Antibody blockade of junctional adhesion molecule-A in rabbit corneal endothelial tight junctions produces corneal swelling. Invest Ophthalmol Vis Sci. 2006;47:2408-16 pubmed
  337. Ciolofan C, Li X, Olson C, Kamasawa N, Gebhardt B, Yasumura T, et al. Association of connexin36 and zonula occludens-1 with zonula occludens-2 and the transcription factor zonula occludens-1-associated nucleic acid-binding protein at neuronal gap junctions in rodent retina. Neuroscience. 2006;140:433-51 pubmed
  338. Imai F, Hirai S, Akimoto K, Koyama H, Miyata T, Ogawa M, et al. Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development. 2006;133:1735-44 pubmed
  339. Sarkar O, Xia W, Mruk D. Adjudin-mediated junction restructuring in the seminiferous epithelium leads to displacement of soluble guanylate cyclase from adherens junctions. J Cell Physiol. 2006;208:175-87 pubmed
  340. Hirose T, Karasawa M, Sugitani Y, Fujisawa M, Akimoto K, Ohno S, et al. PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development. 2006;133:1389-98 pubmed
  341. Nguyen M, Rivera C, Griep A. Localization of PDZ domain containing proteins Discs Large-1 and Scribble in the mouse eye. Mol Vis. 2005;11:1183-99 pubmed
  342. Hyenne V, Louvet Vallee S, El Amraoui A, Petit C, Maro B, Simmler M. Vezatin, a protein associated to adherens junctions, is required for mouse blastocyst morphogenesis. Dev Biol. 2005;287:180-91 pubmed
  343. Pummi K, Aho H, Laato M, Peltonen J, Peltonen S. Tight junction proteins and perineurial cells in neurofibromas. J Histochem Cytochem. 2006;54:53-61 pubmed
  344. Slattery C, Campbell E, McMorrow T, Ryan M. Cyclosporine A-induced renal fibrosis: a role for epithelial-mesenchymal transition. Am J Pathol. 2005;167:395-407 pubmed
  345. Li X, Olson C, Lu S, Nagy J. Association of connexin36 with zonula occludens-1 in HeLa cells, betaTC-3 cells, pancreas, and adrenal gland. Histochem Cell Biol. 2004;122:485-98 pubmed
  346. Zeng R, Li X, Gorodeski G. Estrogen abrogates transcervical tight junctional resistance by acceleration of occludin modulation. J Clin Endocrinol Metab. 2004;89:5145-55 pubmed
  347. Moeller M, Soofi A, Braun G, Li X, Watzl C, Kriz W, et al. Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO J. 2004;23:3769-79 pubmed
  348. Pummi K, Heape A, Grenman R, Peltonen J, Peltonen S. Tight junction proteins ZO-1, occludin, and claudins in developing and adult human perineurium. J Histochem Cytochem. 2004;52:1037-46 pubmed
  349. Parker L, Schmidt M, Jin S, Gray A, Beis D, Pham T, et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004;428:754-8 pubmed
  350. Slobodov G, Feloney M, Gran C, Kyker K, Hurst R, Culkin D. Abnormal expression of molecular markers for bladder impermeability and differentiation in the urothelium of patients with interstitial cystitis. J Urol. 2004;171:1554-8 pubmed
  351. Watanabe T, Miyatani S, Katoh I, Kobayashi S, Ikawa Y. Expression of a novel secretory form (Crb1s) of mouse Crumbs homologue Crb1 in skin development. Biochem Biophys Res Commun. 2004;313:263-70 pubmed
  352. Berryman M, Goldenring J. CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil Cytoskeleton. 2003;56:159-72 pubmed
  353. Malminen M, Koivukangas V, Peltonen J, Karvonen S, Oikarinen A, Peltonen S. Immunohistological distribution of the tight junction components ZO-1 and occludin in regenerating human epidermis. Br J Dermatol. 2003;149:255-60 pubmed
  354. Lau A, Mruk D. Rab8B GTPase and junction dynamics in the testis. Endocrinology. 2003;144:1549-63 pubmed
  355. Manabe N, Hirai S, Imai F, Nakanishi H, Takai Y, Ohno S. Association of ASIP/mPAR-3 with adherens junctions of mouse neuroepithelial cells. Dev Dyn. 2002;225:61-9 pubmed
  356. Tavelin S, Gråsjö J, Taipalensuu J, Ocklind G, Artursson P. Applications of epithelial cell culture in studies of drug transport. Methods Mol Biol. 2002;188:233-72 pubmed
  357. Pummi K, Malminen M, Aho H, Karvonen S, Peltonen J, Peltonen S. Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J Invest Dermatol. 2001;117:1050-8 pubmed