这是一篇来自已证抗体库的有关斑马鱼 fosl1a的综述,是根据9篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合fosl1a 抗体。
fosl1a 同义词: fosl1; sb:eu506; si:ch211-145o7.4

圣克鲁斯生物技术
小鼠 单克隆(E-8)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 fosl1a抗体(Santa Cruz, sc-166940)被用于被用于免疫印迹在小鼠样本上 (图 2c). Sci Rep (2021) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 大鼠; 图 3c
圣克鲁斯生物技术 fosl1a抗体(Santa Cruz Biotechnology, sc-166940)被用于被用于免疫印迹在大鼠样本上 (图 3c). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 3b
圣克鲁斯生物技术 fosl1a抗体(Santa Cruz, sc-166940)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 3b). Nat Commun (2020) ncbi
小鼠 单克隆(E-8)
  • 免疫组化; 大鼠; 1:1000
圣克鲁斯生物技术 fosl1a抗体(Santa Cruz, sc-166940)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Transl Psychiatry (2020) ncbi
小鼠 单克隆(E-8)
  • 免疫细胞化学; 人类; 图 4b
圣克鲁斯生物技术 fosl1a抗体(Santa, sc-166940)被用于被用于免疫细胞化学在人类样本上 (图 4b). Cancer Cell Int (2019) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-冰冻切片; 小鼠; 图 6c
圣克鲁斯生物技术 fosl1a抗体(Santa Cruz Biotechnology, E-8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6c). elife (2019) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 斑马鱼; 1:100; 图 4k
圣克鲁斯生物技术 fosl1a抗体(SantaCruz, sc-166940X)被用于被用于免疫印迹在斑马鱼样本上浓度为1:100 (图 4k). Genetics (2017) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 图 9a
圣克鲁斯生物技术 fosl1a抗体(Santa Cruz, sc-166940)被用于被用于免疫印迹在人类样本上 (图 9a). J Biol Chem (2016) ncbi
小鼠 单克隆(E-8)
  • 免疫组化-石蜡切片; 大鼠; 1:5000
圣克鲁斯生物技术 fosl1a抗体(Santa Cruz, sc-166940)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000. Neuroscience (2015) ncbi
文章列表
  1. Liu Y, Zienkiewicz J, Boyd K, Smith T, Xu Z, Hawiger J. Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles. Sci Rep. 2021;11:11907 pubmed 出版商
  2. Sadeghi M, Hemmati S, Mohammadi S, Yousefi Manesh H, Vafaei A, Zare M, et al. Chronically altered NMDAR signaling in epilepsy mediates comorbid depression. Acta Neuropathol Commun. 2021;9:53 pubmed 出版商
  3. Zhang J, Chen D, Sweeney P, Yang Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat Commun. 2020;11:6326 pubmed 出版商
  4. Cohen S, Matar M, Vainer E, Zohar J, Kaplan Z, Cohen H. Significance of the orexinergic system in modulating stress-related responses in an animal model of post-traumatic stress disorder. Transl Psychiatry. 2020;10:10 pubmed 出版商
  5. Del Mar Díaz González S, Rodríguez Aguilar E, Meneses Acosta A, Valadez Graham V, Deas J, Gómez Cerón C, et al. Transregulation of microRNA miR-21 promoter by AP-1 transcription factor in cervical cancer cells. Cancer Cell Int. 2019;19:214 pubmed 出版商
  6. Chowdhury S, Hung C, Izawa S, Inutsuka A, Kawamura M, Kawashima T, et al. Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. elife. 2019;8: pubmed 出版商
  7. Pena I, Roussel Y, Daniel K, Mongeon K, Johnstone D, Weinschutz Mendes H, et al. Pyridoxine-Dependent Epilepsy in Zebrafish Caused by Aldh7a1 Deficiency. Genetics. 2017;207:1501-1518 pubmed 出版商
  8. Li Y, Dillon T, Takahashi M, Earley K, Stork P. Protein Kinase A-independent Ras Protein Activation Cooperates with Rap1 Protein to Mediate Activation of the Extracellular Signal-regulated Kinases (ERK) by cAMP. J Biol Chem. 2016;291:21584-21595 pubmed
  9. Liu W, Crews F. Adolescent intermittent ethanol exposure enhances ethanol activation of the nucleus accumbens while blunting the prefrontal cortex responses in adult rat. Neuroscience. 2015;293:92-108 pubmed 出版商