这是一篇来自已证抗体库的有关斑马鱼 map1lc3a的综述,是根据23篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合map1lc3a 抗体。
map1lc3a 同义词: zgc:77094

Novus Biologicals
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 10a
  • 免疫印迹; 小鼠; 1:500; 图 10b
Novus Biologicals map1lc3a抗体(Novus, NB100-2331)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 10a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 10b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:500; 图 3a
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Neurochem (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 1a
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在人类样本上 (图 1a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:50; 图 10a
Novus Biologicals map1lc3a抗体(Novus, NB100-2331)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 10a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 大鼠; 1:500; 图 3
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 斑马鱼; 1:2000; 图 5
Novus Biologicals map1lc3a抗体(novusbio, NB100-2331)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 5). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 2
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB 100-2331)被用于被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB100-2331)被用于被用于免疫印迹在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB100-2331)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB 100-2331)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3a抗体(Novus, NB100-2331)被用于. Mol Pharmacol (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3a抗体(NovusBiologicals, NB100-2331)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB100-2331)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB100-2331)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB 100-2331)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3a抗体(Novus Biologicals, NB-100-2331)被用于. Comp Biochem Physiol A Mol Integr Physiol (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 map1lc3a抗体(Pierce, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 map1lc3a抗体(Thermo Scientific, PA1-C16,931)被用于被用于免疫印迹在大鼠样本上 (图 8). J Nutr Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 map1lc3a抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 map1lc3a抗体(Thermo, PA116931)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 map1lc3a抗体(Thermo, PA5-22731)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 map1lc3a抗体(Thermo Fisher Scientific, PA1-16931)被用于. Mol Neurobiol (2015) ncbi
文章列表
  1. Venugopalan V, Al Hashimi A, Rehders M, Golchert J, Reinecke V, Homuth G, et al. The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy. Int J Mol Sci. 2021;22: pubmed 出版商
  2. Watanabe S, Komine O, Endo F, Wakasugi K, Yamanaka K. Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J Neurochem. 2018;145:80-89 pubmed 出版商
  3. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482:1334-1340 pubmed 出版商
  4. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  5. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  6. Pereira D, Simões A, Gomes S, Castro R, Carvalho T, Rodrigues C, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7:34322-40 pubmed 出版商
  7. Hossini A, Quast A, Plötz M, Grauel K, Exner T, Küchler J, et al. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells. PLoS ONE. 2016;11:e0154770 pubmed 出版商
  8. Piras A, Collin L, Grüninger F, Graff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol Commun. 2016;4:22 pubmed 出版商
  9. Jacob F, Yonis A, Cuello F, Luther P, Schulze T, Eder A, et al. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS ONE. 2016;11:e0145937 pubmed 出版商
  10. Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci. 2016;17: pubmed 出版商
  11. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  12. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  13. Altuntas S, Rossin F, Marsella C, D Eletto M, Diaz Hidalgo L, Farrace M, et al. The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation. Oncotarget. 2015;6:44941-54 pubmed 出版商
  14. Song K, Hu W, Yue F, Zou J, Li W, Chen Q, et al. Transforming Growth Factor TGFβ Increases Levels of Microtubule-Associated Protein MAP1S and Autophagy Flux in Pancreatic Ductal Adenocarcinomas. PLoS ONE. 2015;10:e0143150 pubmed 出版商
  15. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  16. Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation. Autophagy. 2015;11:1608-22 pubmed 出版商
  17. Irimia J, Tagliabracci V, Meyer C, Segvich D, DePaoli Roach A, Roach P. Muscle glycogen remodeling and glycogen phosphate metabolism following exhaustive exercise of wild type and laforin knockout mice. J Biol Chem. 2015;290:22686-98 pubmed 出版商
  18. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  19. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  20. Ulasov I, Shah N, Kaverina N, Lee H, Lin B, Lieber A, et al. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget. 2015;6:3977-87 pubmed
  21. Zou J, Li W, Misra A, Yue F, Song K, Chen Q, et al. The viral restriction factor tetherin prevents leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) from association with beclin 1 and B-cell CLL/lymphoma 2 (Bcl-2) and enhances autophagy and mitophagy. J Biol Chem. 2015;290:7269-79 pubmed 出版商
  22. Wilson W, Baumgarner B, Watanabe W, Alam M, Kinsey S. Effects of resveratrol on growth and skeletal muscle physiology of juvenile southern flounder. Comp Biochem Physiol A Mol Integr Physiol. 2015;183:27-35 pubmed 出版商
  23. Morgado A, Xavier J, Dionísio P, Ribeiro M, Dias R, Sebastião A, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol. 2015;51:1168-83 pubmed 出版商