这是一篇来自已证抗体库的有关斑马鱼 map1lc3b的综述,是根据140篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合map1lc3b 抗体。
map1lc3b 同义词: Map1lc3; wu:fb60g11; zgc:56434

Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a, 4b
Novus Biologicals map1lc3b抗体(Novus, NB100)被用于被用于免疫印迹在小鼠样本上 (图 4a, 4b). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d, 8b
  • 免疫印迹; 人类; 图 1d
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 3d, 8b) 和 被用于免疫印迹在人类样本上 (图 1d). Acta Pharm Sin B (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2e
  • 免疫印迹; 人类; 1:500; 图 4d
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2e) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4d). Cell Prolif (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:500; 图 4c
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
  • 免疫印迹; 大鼠; 图 1d
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4b) 和 被用于免疫印迹在大鼠样本上 (图 1d). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上. Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1g
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 1g). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2c
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2c). J Cachexia Sarcopenia Muscle (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 小鼠; 图 s8j
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于被用于免疫组化在小鼠样本上 (图 s8j). Nat Neurosci (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 1e
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell Death Differ (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5c
Novus Biologicals map1lc3b抗体(NOVUS Biologicals, NB600-1384)被用于被用于免疫细胞化学在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 2i
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2i). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1l
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1l). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nature (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1a). EMBO Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1c
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
Novus Biologicals map1lc3b抗体(Novus Biotechnology, NB1002220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Antioxidants (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2e
  • 免疫印迹; 小鼠; 1:5000; 图 2a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2e) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2a). Autophagy (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Novus Biologicals map1lc3b抗体(NOVUS Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 2a). Autophagy (2020) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:1000; 图 5s2b
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5s2b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2a
  • 免疫印迹; 人类; 图 2a
Novus Biologicals map1lc3b抗体(NOVUS, NB100-2220)被用于被用于免疫细胞化学在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 2a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:20,000; 图 6h
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 6h). Autophagy (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 5a
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样本上 (图 5a). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100?C2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). J Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
Novus Biologicals map1lc3b抗体(Novus Biologicals, 100-2220)被用于被用于免疫印迹在人类样本上 (图 3g). Front Mol Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 5a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 豚鼠; 图 7b
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在豚鼠样本上 (图 7b). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 4b
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1a). Autophagy (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 s8d
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在小鼠样本上 (图 s8d). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 3c). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1b
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 2a). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 4b
Novus Biologicals map1lc3b抗体(Novus Biological, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4b). J Lipid Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5g
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5g). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2c). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1f
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1f). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2c). Cell Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 e4d
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB 100-2220)被用于被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 e4d). Nature (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 大鼠; 1:200; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 1a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB600-1384)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). Am J Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 图 3d
  • 免疫印迹; 人类; 图 5b
Novus Biologicals map1lc3b抗体(Novus, NB 100-2220)被用于被用于免疫印迹在斑马鱼样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 5b). Cell Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). J Nutr Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-222055)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5a). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1b
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 3a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB00-2220)被用于被用于免疫印迹在小鼠样本上 (图 3d). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). EMBO Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3f
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 3f). Autophagy (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). J Huntingtons Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 5a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NN100-2220)被用于被用于免疫组化在人类样本上 (图 5a). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
Novus Biologicals map1lc3b抗体(Novus biological, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 5b). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Genet Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
Novus Biologicals map1lc3b抗体(NovusBio, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4e). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Drug Des Devel Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上. Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 5b
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 5
Novus Biologicals map1lc3b抗体(Novus Biologicals, 600-1384)被用于被用于免疫印迹在人类样本上 (图 5). J Immunol (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 6
Novus Biologicals map1lc3b抗体(Novusbio, NB600-1384)被用于被用于免疫印迹在人类样本上 (图 6). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 3
  • 免疫印迹; 人类; 图 1a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB600-1384)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 3) 和 被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). J Pharmacol Exp Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 大鼠; 图 10
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在小鼠样本上 (图 7), 被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 10). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
Novus Biologicals map1lc3b抗体(Novus Biological, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:1000; 图 2
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 6). J Nanobiotechnology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:2000; 图 s2
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 s2). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 s1
Novus Biologicals map1lc3b抗体(Novus, NB 100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 3). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 7
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Traffic (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). J Mol Cell Cardiol (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biological, NB100?C2220)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于. Mol Pharmacol (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4b
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4b). Kidney Int (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220SS)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biological, NB-100-2220)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220SS)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于. Biochim Biophys Acta (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
Novus Biologicals map1lc3b抗体(Novus Biologicals, 100-2220)被用于被用于免疫印迹在人类样本上 (图 2). Leukemia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于被用于免疫印迹在大鼠样本上 (图 5). Nutr Neurosci (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus Biologicals;, NB600- 1384)被用于. Nature (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Life Sci (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. PLoS Pathog (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, 100-2220)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Cell Signal (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(novus Biologicals, NB100-2220)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB600-1384)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB600-1384)被用于. Exp Neurol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于. Toxicol Lett (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Nat Neurosci (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于. Nat Genet (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于. Oncogene (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(Novus, NB600-1384)被用于. Sci Signal (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus Biological, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals map1lc3b抗体(novus Biologicals, NB600-1384)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(NOVUS Biologicals, NB100-2220)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于. J Clin Invest (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals map1lc3b抗体(Novus, NB100-2220)被用于. Nucleic Acids Res (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
赛默飞世尔 map1lc3b抗体(Thermo Fisher, PA1-16930)被用于. Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 map1lc3b抗体(Pierce, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 map1lc3b抗体(Thermo Scientific, PA1-C16,931)被用于被用于免疫印迹在大鼠样本上 (图 8). J Nutr Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 map1lc3b抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 1:500; 图 1
赛默飞世尔 map1lc3b抗体(Thermo Scientific, PA1-16930)被用于被用于免疫印迹在牛样本上浓度为1:500 (图 1). J Dairy Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 map1lc3b抗体(Thermo Scientific, PA1-16930)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 map1lc3b抗体(Thermo Scientific, PA1-C16930)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 map1lc3b抗体(Thermo, PA116931)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 map1lc3b抗体(Thermo Scientific, PA1-46286)被用于. Biol Reprod (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 map1lc3b抗体(Thermo, PA5-22731)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 map1lc3b抗体(Thermo Scientific, PA1-46286)被用于. Methods (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 map1lc3b抗体(Thermo Fisher Scientific, PA1-16931)被用于. Mol Neurobiol (2015) ncbi
文章列表
  1. Moore T, Cheng L, Wolf D, Ngo J, Segawa M, Zhu X, et al. Parkin regulates adiposity by coordinating mitophagy with mitochondrial biogenesis in white adipocytes. Nat Commun. 2022;13:6661 pubmed 出版商
  2. Yang C, Su C, Iyaswamy A, Krishnamoorthi S, Zhu Z, Yang S, et al. Celastrol enhances transcription factor EB (TFEB)-mediated autophagy and mitigates Tau pathology: Implications for Alzheimer's disease therapy. Acta Pharm Sin B. 2022;12:1707-1722 pubmed 出版商
  3. Li M, Shen Y, Xiong Y, Wang S, Li C, Bai J, et al. Loss of SMARCB1 promotes autophagy and facilitates tumour progression in chordoma by transcriptionally activating ATG5. Cell Prolif. 2021;54:e13136 pubmed 出版商
  4. Li R, Hao Y, Wang Q, Meng Y, Wu K, Liu C, et al. ECHS1, an interacting protein of LASP1, induces sphingolipid-metabolism imbalance to promote colorectal cancer progression by regulating ceramide glycosylation. Cell Death Dis. 2021;12:911 pubmed 出版商
  5. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  6. Silva Rojas R, Charles A, Djeddi S, Geny B, Laporte J, Böhm J. Pathophysiological Effects of Overactive STIM1 on Murine Muscle Function and Structure. Cells. 2021;10: pubmed 出版商
  7. Yoon Y, Go G, Yoon S, Lim J, Lee G, Lee J, et al. Melatonin Treatment Improves Renal Fibrosis via miR-4516/SIAH3/PINK1 Axis. Cells. 2021;10: pubmed 出版商
  8. Liu H, Zang P, Lee I, Anderson B, Christiani A, Strait Bodey L, et al. Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass. J Cachexia Sarcopenia Muscle. 2021;12:1280-1295 pubmed 出版商
  9. Amegandjin C, Choudhury M, Jadhav V, Carriço J, Quintal A, Berryer M, et al. Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun. 2021;12:3653 pubmed 出版商
  10. Poon A, Saini H, Sethi S, O Sullivan G, Plun Favreau H, Wray S, et al. The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports. 2021;16:1276-1289 pubmed 出版商
  11. Van Alstyne M, Tattoli I, Delestrée N, Recinos Y, Workman E, Shihabuddin L, et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. 2021;24:930-940 pubmed 出版商
  12. Tamargo Gómez I, Martínez García G, Suarez M, Rey V, Fueyo A, Codina Martínez H, et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ. 2021;: pubmed 出版商
  13. Shen Z, Ji K, Cai Z, Huang C, He X, Xu H, et al. Inhibition of HDAC6 by Tubastatin A reduces chondrocyte oxidative stress in chondrocytes and ameliorates mouse osteoarthritis by activating autophagy. Aging (Albany NY). 2021;13:9820-9837 pubmed 出版商
  14. Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed 出版商
  15. Stojakovic A, Trushin S, Sheu A, Khalili L, Chang S, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4:61 pubmed 出版商
  16. Dong X, Yang Y, Zou Z, Zhao Y, Ci B, Zhong L, et al. Sorting nexin 5 mediates virus-induced autophagy and immunity. Nature. 2021;589:456-461 pubmed 出版商
  17. Tiwari S, Dang J, Lin N, Qin Y, Wang S, Rana T. Zika virus depletes neural stem cells and evades selective autophagy by suppressing the Fanconi anemia protein FANCC. EMBO Rep. 2020;:e49183 pubmed 出版商
  18. Ogasawara Y, Cheng J, Tatematsu T, Uchida M, Murase O, Yoshikawa S, et al. Long-term autophagy is sustained by activation of CCTβ3 on lipid droplets. Nat Commun. 2020;11:4480 pubmed 出版商
  19. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  20. Lanzillotta C, Zuliani I, Vasavda C, Snyder S, Paul B, Perluigi M, et al. BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain-Implications for Neurodegeneration. Antioxidants (Basel). 2020;9: pubmed 出版商
  21. Brattås P, Hersbach B, Madsen S, Petri R, Jakobsson J, Pircs K. Impact of differential and time-dependent autophagy activation on therapeutic efficacy in a model of Huntington disease. Autophagy. 2021;17:1316-1329 pubmed 出版商
  22. Zhuang X, Wang S, Tan Y, Song J, Zhu Z, Wang Z, et al. Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson's disease models. Cell Death Dis. 2020;11:128 pubmed 出版商
  23. Jo D, Park S, Kim A, Park N, Kim J, Bae J, et al. Loss of HSPA9 induces peroxisomal degradation by increasing pexophagy. Autophagy. 2020;:1-15 pubmed 出版商
  24. Lieberman O, Frier M, McGuirt A, Griffey C, Rafikian E, Yang M, et al. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. elife. 2020;9: pubmed 出版商
  25. Tang C, Han H, Liu Z, Liu Y, Yin L, Cai J, et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis. 2019;10:677 pubmed 出版商
  26. Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky D, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. 2019;5:eaaw2238 pubmed 出版商
  27. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  28. Zheng J, Croteau D, Bohr V, Akbari M. Diminished OPA1 expression and impaired mitochondrial morphology and homeostasis in Aprataxin-deficient cells. Nucleic Acids Res. 2019;: pubmed 出版商
  29. Li L, Kang H, Zhang Q, D Agati V, Al Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129:2374-2389 pubmed 出版商
  30. Li Z, Tian Y, Qu L, Mao J, Zhong H. AAV-Mig-6 Increase the Efficacy of TAE in VX2 Rabbit Model, Is Associated With JNK Mediated Autophagy. J Cancer. 2019;10:1060-1069 pubmed 出版商
  31. Park H, Chung K, An H, Gim J, Hong J, Woo H, et al. Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal. Front Mol Neurosci. 2019;12:46 pubmed 出版商
  32. Carballo Carbajal I, Laguna A, Romero Gimenez J, Cuadros T, Bove J, Martinez Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun. 2019;10:973 pubmed 出版商
  33. Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258-1279 pubmed 出版商
  34. Zhang Y, Jiang Q, Xie S, Wu X, Zhou J, Sun H. Lead Induced Ototoxicity and Neurotoxicity in Adult Guinea Pig. Biomed Res Int. 2019;2019:3626032 pubmed 出版商
  35. Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, et al. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene. 2019;38:3458-3474 pubmed 出版商
  36. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  37. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  38. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  39. Marrone L, Bus C, Schöndorf D, Fitzgerald J, Kübler M, Schmid B, et al. Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE. 2018;13:e0192497 pubmed 出版商
  40. Hsu C, Lee E, Gordon K, Paz E, Shen W, Ohnishi K, et al. MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat Commun. 2018;9:942 pubmed 出版商
  41. Agod Z, Pazmandi K, Bencze D, Vereb G, Biro T, Szabo A, et al. Signaling Lymphocyte Activation Molecule Family 5 Enhances Autophagy and Fine-Tunes Cytokine Response in Monocyte-Derived Dendritic Cells via Stabilization of Interferon Regulatory Factor 8. Front Immunol. 2018;9:62 pubmed 出版商
  42. Goiran T, Duplan E, Rouland L, El Manaa W, Lauritzen I, Dunys J, et al. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ. 2018;25:873-884 pubmed 出版商
  43. Sun H, Krauss R, Chang J, Teng B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res. 2018;59:207-223 pubmed 出版商
  44. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  45. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano A, Monfregola J, et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest. 2017;127:3717-3729 pubmed 出版商
  46. Rocchi A, Yamamoto S, Ting T, Fan Y, SADLEIR K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13:e1006962 pubmed 出版商
  47. Button R, Roberts S, Willis T, Hanemann C, Luo S. Accumulation of autophagosomes confers cytotoxicity. J Biol Chem. 2017;292:13599-13614 pubmed 出版商
  48. Wu D, Adamopoulos I. Loss of WDFY3 ameliorates severity of serum transfer-induced arthritis independently of autophagy. Cell Immunol. 2017;316:61-69 pubmed 出版商
  49. Ashkenazi A, Bento C, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108-111 pubmed 出版商
  50. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  51. Zhang Y, Nguyen D, Olzomer E, Poon G, Cole N, Puvanendran A, et al. Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy. Cell Chem Biol. 2017;24:471-480.e4 pubmed 出版商
  52. Delaney J, Patel C, Willis K, Haghighiabyaneh M, Axelrod J, Tancioni I, et al. Haploinsufficiency networks identify targetable patterns of allelic deficiency in low mutation ovarian cancer. Nat Commun. 2017;8:14423 pubmed 出版商
  53. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  54. Hosoya M, Fujioka M, Sone T, Okamoto S, Akamatsu W, Ukai H, et al. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017;18:68-81 pubmed 出版商
  55. Wei Y, Chiang W, Sumpter R, Mishra P, Levine B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 2017;168:224-238.e10 pubmed 出版商
  56. Pavel M, Imarisio S, Menzies F, Jimenez Sanchez M, Siddiqi F, Wu X, et al. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun. 2016;7:13821 pubmed 出版商
  57. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  58. Lee M, Sumpter R, Zou Z, Sirasanagandla S, Wei Y, Mishra P, et al. Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep. 2017;18:48-60 pubmed 出版商
  59. Li D, Xie B, Wu X, Li J, Ding Y, Wen X, et al. Late-stage inhibition of autophagy enhances calreticulin surface exposure. Oncotarget. 2016;7:80842-80854 pubmed 出版商
  60. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245-258 pubmed
  61. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  62. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  63. Vodicka P, Chase K, Iuliano M, Tousley A, Valentine D, Sapp E, et al. Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:249-260 pubmed
  64. White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed 出版商
  65. Teo W, Kerr M, Teasdale R. MTMR4 Is Required for the Stability of the Salmonella-Containing Vacuole. Front Cell Infect Microbiol. 2016;6:91 pubmed 出版商
  66. Cudré Cung H, Zavadakova P, Do Vale Pereira S, Remacle N, Henry H, Ivanisevic J, et al. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab. 2016;119:57-67 pubmed 出版商
  67. Lin M, Liu H, Xiong Q, Niu H, Cheng Z, Yamamoto A, et al. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase. Autophagy. 2016;12:2145-2166 pubmed
  68. Jo Y, Park N, Park S, Kim B, Shin J, Jo D, et al. O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity. Oncotarget. 2016;7:57186-57196 pubmed 出版商
  69. Zea A, Stewart T, Ascani J, Tate D, Finkel Jimenez B, Wilk A, et al. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?. PLoS ONE. 2016;11:e0157907 pubmed 出版商
  70. Dejesus R, Moretti F, McAllister G, Wang Z, Bergman P, Liu S, et al. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. elife. 2016;5: pubmed 出版商
  71. Davis M, Delaney J, Patel C, Storgard R, Stupack D. Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings. Drug Des Devel Ther. 2016;10:1837-46 pubmed 出版商
  72. Kuramoto K, Wang N, Fan Y, Zhang W, Schoenen F, Frankowski K, et al. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy. 2016;12:1460-71 pubmed 出版商
  73. Wijdeven R, Janssen H, Nahidiazar L, Janssen L, Jalink K, Berlin I, et al. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016;7:11808 pubmed 出版商
  74. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  75. Ando K, Tomimura K, Sazdovitch V, Suain V, Yilmaz Z, Authelet M, et al. Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease. Neurobiol Dis. 2016;94:32-43 pubmed 出版商
  76. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  77. Adams O, Dislich B, Berezowska S, Schläfli A, Seiler C, Kröll D, et al. Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas. Oncotarget. 2016;7:39241-39255 pubmed 出版商
  78. Barnard R, Regan D, Hansen R, Maycotte P, Thorburn A, Gustafson D. Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease. J Pharmacol Exp Ther. 2016;358:282-93 pubmed 出版商
  79. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  80. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  81. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  82. Pereira D, Simões A, Gomes S, Castro R, Carvalho T, Rodrigues C, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7:34322-40 pubmed 出版商
  83. Wohlgemuth S, Ramirez Lee Y, Tao S, Monteiro A, Ahmed B, Dahl G. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period. J Dairy Sci. 2016;99:4875-4880 pubmed 出版商
  84. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  85. Lopes V, Loitto V, Audinot J, Bayat N, Gutleb A, Cristobal S. Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. J Nanobiotechnology. 2016;14:22 pubmed 出版商
  86. Ruparelia A, Oorschot V, Ramm G, Bryson Richardson R. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25:2131-2142 pubmed
  87. Scotton C, Bovolenta M, Schwartz E, Falzarano M, Martoni E, Passarelli C, et al. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy. J Cell Sci. 2016;129:1671-84 pubmed 出版商
  88. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  89. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  90. Gentry E, Henderson B, Arrant A, Gearing M, Feng Y, Riddle N, et al. Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration. J Neurosci. 2016;36:1316-23 pubmed 出版商
  91. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  92. Mukherjee R, Chakrabarti O. Ubiquitin-mediated regulation of the E3 ligase GP78 by MGRN1 in trans affects mitochondrial homeostasis. J Cell Sci. 2016;129:757-73 pubmed 出版商
  93. Kraft L, Manral P, Dowler J, Kenworthy A. Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus. Traffic. 2016;17:369-99 pubmed 出版商
  94. Stotland A, Gottlieb R. α-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart. J Mol Cell Cardiol. 2016;90:53-8 pubmed 出版商
  95. Chrisam M, Pirozzi M, Castagnaro S, Blaauw B, Polishchuck R, Cecconi F, et al. Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy. 2015;11:2142-52 pubmed 出版商
  96. Majumder P, Chakrabarti O. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis. 2015;6:e1970 pubmed 出版商
  97. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  98. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  99. Sorrell S, Golder Z, Johnstone D, Frankl F. Renal peroxiredoxin 6 interacts with anion exchanger 1 and plays a novel role in pH homeostasis. Kidney Int. 2016;89:105-112 pubmed 出版商
  100. Granato M, Santarelli R, Filardi M, Gonnella R, Farina A, Torrisi M, et al. The activation of KSHV lytic cycle blocks autophagy in PEL cells. Autophagy. 2015;11:1978-1986 pubmed 出版商
  101. Koukourakis M, Kalamida D, Giatromanolaki A, Zois C, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE. 2015;10:e0137675 pubmed 出版商
  102. Pellegrini C, Columbaro M, Capanni C, D Apice M, Cavallo C, Murdocca M, et al. All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget. 2015;6:29914-28 pubmed 出版商
  103. Granato M, Gilardini Montani M, Filardi M, Faggioni A, Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget. 2015;6:29543-54 pubmed 出版商
  104. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed 出版商
  105. Triplett J, Tramutola A, Swomley A, Kirk J, Grimes K, Lewis K, et al. Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity. Biochim Biophys Acta. 2015;1852:2213-24 pubmed 出版商
  106. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  107. Chesser A, Ganeshan V, Yang J, Johnson G. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci. 2016;19:21-31 pubmed 出版商
  108. Wu H, Jiang Z, Ding P, Shao L, Liu R. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci Rep. 2015;5:12291 pubmed 出版商
  109. Perera R, Stoykova S, Nicolay B, Ross K, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524:361-5 pubmed 出版商
  110. Wang I, Sun K, Tsai T, Chen C, Chang S, Yu T, et al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci. 2015;136:133-41 pubmed 出版商
  111. Campbell G, Rawat P, Bruckman R, Spector S. Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration. PLoS Pathog. 2015;11:e1005018 pubmed 出版商
  112. Liu K, Frazier W. Phosphorylation of the BNIP3 C-Terminus Inhibits Mitochondrial Damage and Cell Death without Blocking Autophagy. PLoS ONE. 2015;10:e0129667 pubmed 出版商
  113. Hu G, McQuiston T, Bernard A, Park Y, Qiu J, Vural A, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol. 2015;17:930-942 pubmed 出版商
  114. Park S, Choi S, Yoo S, Nah J, Jeong E, Kim H, et al. Pyruvate stimulates mitophagy via PINK1 stabilization. Cell Signal. 2015;27:1824-30 pubmed 出版商
  115. Sun T, Li X, Zhang P, Chen W, Zhang H, Li D, et al. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun. 2015;6:7215 pubmed 出版商
  116. Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250 pubmed 出版商
  117. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  118. Del Mar N, von Buttlar X, Yu A, Guley N, Reiner A, Honig M. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol. 2015;271:53-71 pubmed 出版商
  119. Kim Y, Kang Y, Lee N, Kim K, Hwang Y, Kim H, et al. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency. Autophagy. 2015;11:796-811 pubmed 出版商
  120. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  121. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  122. Marsh N, Wareham A, White B, Miskiewicz E, Landry J, MacPhee D. HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy. Biol Reprod. 2015;92:131 pubmed 出版商
  123. Kett L, Stiller B, Bernath M, Tasset I, Blesa J, Jackson Lewis V, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724-42 pubmed 出版商
  124. Akizu N, Cantagrel V, Zaki M, Al Gazali L, Wang X, Rosti R, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528-34 pubmed 出版商
  125. Strohecker A, Joshi S, Possemato R, Abraham R, Sabatini D, White E. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene. 2015;34:5662-76 pubmed 出版商
  126. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  127. Wengrod J, Wang D, Weiss S, Zhong H, Osman I, Gardner L. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal. 2015;8:ra27 pubmed 出版商
  128. Medina D, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB. Nat Cell Biol. 2015;17:288-99 pubmed
  129. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  130. Ulbricht A, Gehlert S, Leciejewski B, Schiffer T, Bloch W, Höhfeld J. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy. 2015;11:538-46 pubmed 出版商
  131. Sanjurjo L, Amézaga N, Aran G, Naranjo Gómez M, Arias L, Armengol C, et al. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 2015;11:487-502 pubmed 出版商
  132. Jabir M, Hopkins L, Ritchie N, Ullah I, Bayes H, Li D, et al. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy. 2015;11:166-82 pubmed 出版商
  133. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  134. Kim E, Shin J, Park S, Jo Y, Kim J, Kang I, et al. Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells. PLoS ONE. 2015;10:e0118190 pubmed 出版商
  135. Kommaddi R, Jean Charles P, Shenoy S. Phosphorylation of the deubiquitinase USP20 by protein kinase A regulates post-endocytic trafficking of β2 adrenergic receptors to autophagosomes during physiological stress. J Biol Chem. 2015;290:8888-903 pubmed 出版商
  136. Liu S, Sarkar C, Dinizo M, Faden A, Koh E, Lipinski M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582 pubmed 出版商
  137. Bueno M, Lai Y, Romero Y, Brands J, St Croix C, Kamga C, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125:521-38 pubmed 出版商
  138. Sykora P, Misiak M, Wang Y, Ghosh S, Leandro G, Liu D, et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 2015;43:943-59 pubmed 出版商
  139. Varga M, Fodor E, Vellai T. Autophagy in zebrafish. Methods. 2015;75:172-80 pubmed 出版商
  140. Morgado A, Xavier J, Dionísio P, Ribeiro M, Dias R, Sebastião A, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol. 2015;51:1168-83 pubmed 出版商