这是一篇来自已证抗体库的有关斑马鱼 pax2a的综述,是根据40篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合pax2a 抗体。
pax2a 同义词: PAXZF-B; Pax-2; cb378; noi; pax-b; pax2.1; pax2a1; pax[zf-b]; paxb

赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3c
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3c). Development (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s2d
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6c
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s8b
赛默飞世尔 pax2a抗体(ThermoFisher, 71-6000)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s8b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2b
赛默飞世尔 pax2a抗体(生活技术, 7160000)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1e'
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1e'). Development (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
赛默飞世尔 pax2a抗体(ThermoFisher, 71-6000)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Neuron (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2b
赛默飞世尔 pax2a抗体(生活技术, 716000)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2b). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; little skate; 图 s1b
赛默飞世尔 pax2a抗体(Thermo Fisher Scientific, 71-6000)被用于被用于免疫组化-冰冻切片在little skate样本上 (图 s1b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; cane toad; 图 12a
赛默飞世尔 pax2a抗体(thermo Fisher, 71-6000)被用于被用于免疫组化-石蜡切片在cane toad样本上 (图 12a). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1b
赛默飞世尔 pax2a抗体(生活技术, 71-6000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 3e
赛默飞世尔 pax2a抗体(Zymed, 71-6000)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 5-s1a
赛默飞世尔 pax2a抗体(ThermoFisher, 71-6000)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 5-s1a). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 2a
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 2a). Dis Model Mech (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s5g
赛默飞世尔 pax2a抗体(Zymed, 71-6000)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s5g). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2b
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2b). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2
赛默飞世尔 pax2a抗体(生活技术, 71-6000)被用于被用于免疫组化在小鼠样本上 (图 2). Brain Struct Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4m
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4m). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
  • 流式细胞仪; 人类; 图 3
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 pax2a抗体(生活技术, 71-6000)被用于被用于免疫细胞化学在小鼠样本上 (图 5), 被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 3). Adv Healthc Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
赛默飞世尔 pax2a抗体(生活技术, 71-6000)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
赛默飞世尔 pax2a抗体(Zymed, 71-6000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Cerebellum (2017) ncbi
domestic rabbit 多克隆
赛默飞世尔 pax2a抗体(Zymed, 71-6000)被用于. BMC Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 pax2a抗体(Zymed, 71-6,000)被用于. Nature (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 pax2a抗体(Zymed Labs., 71-6000)被用于被用于免疫组化在小鼠样本上浓度为1:200. Cell Tissue Res (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 pax2a抗体(Zymed, cat# 71-6000)被用于. EMBO J (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 pax2a抗体(Invitrogen, 716000)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 pax2a抗体(Zymed, 71-6000)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于. Dev Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 pax2a抗体(Invitrogen, 71-6000)被用于. Mol Brain (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5
赛默飞世尔 pax2a抗体(Zymed, 71-6000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5. Brain Struct Funct (2016) ncbi
BioLegend
domestic rabbit 多克隆(Poly19010)
  • 免疫细胞化学; 人类; 1:1000; 图 2a
BioLegend pax2a抗体(Biolegend, 901001)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a). Sci Rep (2021) ncbi
domestic rabbit 多克隆(Poly19010)
  • 免疫组化; 小鼠; 1:100
BioLegend pax2a抗体(Biolegend, 901001)被用于被用于免疫组化在小鼠样本上浓度为1:100. Dis Model Mech (2021) ncbi
domestic rabbit 多克隆(Poly19010)
  • 免疫组化; 小鼠; 1:100; 图 s8
BioLegend pax2a抗体(BioLegend, 901001)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s8). Sci Adv (2021) ncbi
domestic rabbit 多克隆(Poly19010)
  • 免疫组化; 小鼠; 1:200; 图 1a
BioLegend pax2a抗体(Covance, PRB-276P)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). Science (2017) ncbi
domestic rabbit 多克隆(Poly19010)
  • 免疫组化; 小鼠; 1:300; 图 1
BioLegend pax2a抗体(Covance, PRB-276P)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆(Poly19010)
  • 免疫细胞化学; 小鼠; 1:200; 图 8d
BioLegend pax2a抗体(Biolegend, PRB-276P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 8d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(Poly19010)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 5
  • 免疫组化; 小鼠; 1:300; 图 6
BioLegend pax2a抗体(BioLegend, 901001)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:300 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆(Poly19010)
  • 免疫组化; 斑马鱼; 1:300; 图 2
BioLegend pax2a抗体(Covance, PRB-276P)被用于被用于免疫组化在斑马鱼样本上浓度为1:300 (图 2). Neural Dev (2016) ncbi
文章列表
  1. Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, et al. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development. 2021;148: pubmed 出版商
  2. Fukunaga I, Oe Y, Chen C, Danzaki K, Ohta S, Koike A, et al. Activin/Nodal/TGF-β Pathway Inhibitor Accelerates BMP4-Induced Cochlear Gap Junction Formation During in vitro Differentiation of Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:602197 pubmed 出版商
  3. Yamamura Y, Furuichi K, Murakawa Y, Hirabayashi S, Yoshihara M, Sako K, et al. Identification of candidate PAX2-regulated genes implicated in human kidney development. Sci Rep. 2021;11:9123 pubmed 出版商
  4. Russo A, Colina J, Moy J, Baligod S, Czarnecki A, Varughese P, et al. Silencing PTEN in the fallopian tube promotes enrichment of cancer stem cell-like function through loss of PAX2. Cell Death Dis. 2021;12:375 pubmed 出版商
  5. Cleal L, McHaffie S, Lee M, Hastie N, Martínez Estrada O, Chau Y. Resolving the heterogeneity of diaphragmatic mesenchyme: a novel mouse model of congenital diaphragmatic hernia. Dis Model Mech. 2021;14: pubmed 出版商
  6. Brodie Kommit J, Clark B, Shi Q, Shiau F, Kim D, Langel J, et al. Atoh7-independent specification of retinal ganglion cell identity. Sci Adv. 2021;7: pubmed 出版商
  7. Barry D, Liu X, Liu B, Liu X, Gao F, Zeng X, et al. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun. 2020;11:1397 pubmed 出版商
  8. Vigouroux R, Cesar Q, Chedotal A, Nguyen Ba Charvet K. Revisiting the role of Dcc in visual system development with a novel eye clearing method. elife. 2020;9: pubmed 出版商
  9. Wang L, Xie J, Zhang H, Tsang L, Tsang S, Braune E, et al. Notch signalling regulates epibranchial placode patterning and segregation. Development. 2020;147: pubmed 出版商
  10. Pan H, Fatima M, Li A, Lee H, Cai W, Horwitz L, et al. Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch. Neuron. 2019;103:1135-1149.e6 pubmed 出版商
  11. Gutierrez Mecinas M, Bell A, Shepherd F, Polgár E, Watanabe M, Furuta T, et al. Expression of cholecystokinin by neurons in mouse spinal dorsal horn. J Comp Neurol. 2019;527:1857-1871 pubmed 出版商
  12. Jung H, Baek M, D Elia K, Boisvert C, Currie P, Tay B, et al. The Ancient Origins of Neural Substrates for Land Walking. Cell. 2018;172:667-682.e15 pubmed 出版商
  13. Zhao F, Franco H, Rodriguez K, Brown P, Tsai M, Tsai S, et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357:717-720 pubmed 出版商
  14. Smith R, Huang Y, Tian T, Vojtasova D, Mesalles Naranjo O, Pollard S, et al. The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. J Neurosci. 2017;37:7975-7993 pubmed 出版商
  15. Feng W, Kawauchi D, Körkel Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758 pubmed 出版商
  16. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  17. Hachisuka J, Baumbauer K, Omori Y, Snyder L, Koerber H, Ross S. Semi-intact ex vivo approach to investigate spinal somatosensory circuits. elife. 2016;5: pubmed 出版商
  18. Kahn B, Corman T, Lovelace K, Hong M, Krauss R, Epstein D. Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia. Dis Model Mech. 2017;10:29-37 pubmed 出版商
  19. Li Y, Tzatzalos E, Kwan K, Grumet M, Cai L. Transcriptional Regulation of Notch1 Expression by Nkx6.1 in Neural Stem/Progenitor Cells during Ventral Spinal Cord Development. Sci Rep. 2016;6:38665 pubmed 出版商
  20. Dimidschstein J, Chen Q, Tremblay R, Rogers S, Saldi G, Guo L, et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci. 2016;19:1743-1749 pubmed 出版商
  21. Balázs A, Mészár Z, Hegedűs K, Kenyeres A, Hegyi Z, Dócs K, et al. Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn. Brain Struct Funct. 2017;222:2157-2171 pubmed 出版商
  22. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  23. Xu J, Liu H, Chai O, Lan Y, Jiang R. Osr1 Interacts Synergistically with Wt1 to Regulate Kidney Organogenesis. PLoS ONE. 2016;11:e0159597 pubmed 出版商
  24. Dauleh S, Santeramo I, Fielding C, Ward K, Herrmann A, Murray P, et al. Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum. PLoS ONE. 2016;11:e0158997 pubmed 出版商
  25. Du C, Narayanan K, Leong M, Ibrahim M, Chua Y, Khoo V, et al. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater. 2016;5:2080-91 pubmed 出版商
  26. Cai X, Kardon A, Snyder L, Kuzirian M, Minestro S, de Souza L, et al. Bhlhb5::flpo allele uncovers a requirement for Bhlhb5 for the development of the dorsal cochlear nucleus. Dev Biol. 2016;414:149-60 pubmed 出版商
  27. Wefers A, Lindner S, Schulte J, Schüller U. Overexpression of Lin28b in Neural Stem Cells is Insufficient for Brain Tumor Formation, but Induces Pathological Lobulation of the Developing Cerebellum. Cerebellum. 2017;16:122-131 pubmed 出版商
  28. Zhao F, Zhou J, Li R, Dudley E, Ye X. Novel function of LHFPL2 in female and male distal reproductive tract development. Sci Rep. 2016;6:23037 pubmed 出版商
  29. Juárez Morales J, Schulte C, Pezoa S, Vallejo G, Hilinski W, England S, et al. Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism. Neural Dev. 2016;11:5 pubmed 出版商
  30. Zemke M, Draganova K, Klug A, Schöler A, Zurkirchen L, Gay M, et al. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biol. 2015;13:103 pubmed 出版商
  31. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  32. Forbes M, Thornhill B, Galarreta C, Chevalier R. A population of mitochondrion-rich cells in the pars recta of mouse kidney. Cell Tissue Res. 2016;363:791-803 pubmed 出版商
  33. Shimada M, Dumitrache L, Russell H, McKinnon P. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J. 2015;34:2465-80 pubmed 出版商
  34. Jiang G, Dai M, Huang K, Chai G, Chen J, Chen L, et al. Neurochemical characterization of pERK-expressing spinal neurons in histamine-induced itch. Sci Rep. 2015;5:12787 pubmed 出版商
  35. Zhang P, Ha T, Larouche M, Swanson D, Goldowitz D. Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development. PLoS ONE. 2015;10:e0134390 pubmed 出版商
  36. Thiebes K, Nam H, Cambronne X, Shen R, Glasgow S, Cho H, et al. miR-218 is essential to establish motor neuron fate as a downstream effector of Isl1-Lhx3. Nat Commun. 2015;6:7718 pubmed 出版商
  37. Wainwright E, Wilhelm D, Combes A, Little M, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol. 2015;404:88-102 pubmed 出版商
  38. Zuckermann M, Hovestadt V, Knobbe Thomsen C, Zapatka M, Northcott P, Schramm K, et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 2015;6:7391 pubmed 出版商
  39. Vong K, Leung C, Behringer R, Kwan K. Sox9 is critical for suppression of neurogenesis but not initiation of gliogenesis in the cerebellum. Mol Brain. 2015;8:25 pubmed 出版商
  40. Madrigal M, Moreno Bravo J, Martínez López J, Martínez S, Puelles E. Mesencephalic origin of the rostral Substantia nigra pars reticulata. Brain Struct Funct. 2016;221:1403-12 pubmed 出版商