这是一篇来自已证抗体库的有关斑马鱼 syn1的综述,是根据24篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合syn1 抗体。
syn1 同义词: si:dkey-90n12.3

Synaptic Systems
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s12c
Synaptic Systems syn1抗体(Synaptic Systems, 106004)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s12c). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
Synaptic Systems syn1抗体(Synaptic Systems, 106002)被用于被用于免疫组化在小鼠样本上. Nature (2021) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 大鼠
Synaptic Systems syn1抗体(Synaptic Systems, 106 011C2)被用于被用于免疫细胞化学在大鼠样本上. Sci Adv (2021) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 大鼠; 图 3b
Synaptic Systems syn1抗体(SySy, 106-011)被用于被用于免疫细胞化学在大鼠样本上 (图 3b). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 小鼠; 图 2l
Synaptic Systems syn1抗体(Synaptic Systems, 106001)被用于被用于免疫细胞化学在小鼠样本上 (图 2l). Neuron (2021) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 大鼠; 1:20,000; 图 5a
Synaptic Systems syn1抗体(Synaptic Systems, 106 011)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20,000 (图 5a). elife (2020) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
Synaptic Systems syn1抗体(Synaptic Systems, 106011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). Brain Sci (2020) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1b
Synaptic Systems syn1抗体(Synaptic Systems, 106 004)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). Physiol Rep (2020) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 小鼠; 1:5000; 图 4d
Synaptic Systems syn1抗体(Sysy, 106011)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
Synaptic Systems syn1抗体(SYSY, 106103)被用于被用于免疫细胞化学在人类样本上 (图 1b). Science (2019) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 人类; 1:500; 图 3s2a
Synaptic Systems syn1抗体(Synaptic Systems, 106 011)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3s2a). elife (2019) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2c
Synaptic Systems syn1抗体(Synaptic Systems, 106004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2c). J Neurosci (2019) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 3c
Synaptic Systems syn1抗体(Synaptic Systems, 106004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3c). elife (2019) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 小鼠; 图 6a
Synaptic Systems syn1抗体(Synaptic Systems, 106 011)被用于被用于免疫印迹在小鼠样本上 (图 6a). Food Funct (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 3i
Synaptic Systems syn1抗体(Synaptic Systems, 106 103)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3i). Nat Commun (2017) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 小鼠; 图 2a
Synaptic Systems syn1抗体(Synaptic Systems, 106021)被用于被用于免疫印迹在小鼠样本上 (图 2a). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 6b
Synaptic Systems syn1抗体(Synaptic Systems, 106103)被用于被用于免疫细胞化学在大鼠样本上 (图 6b). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3a
  • 免疫印迹; 小鼠; 1:2000; 图 1a
Synaptic Systems syn1抗体(Synaptic Systems, 106 103)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). J Neurosci Methods (2017) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
Synaptic Systems syn1抗体(SySy, 106011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). EMBO Mol Med (2017) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 小鼠; 1:500; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 2
Synaptic Systems syn1抗体(SySy, 106 011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 5
Synaptic Systems syn1抗体(Synaptic Systems, 106103)被用于被用于免疫细胞化学在人类样本上 (图 5). J Neurosci (2016) ncbi
小鼠 单克隆(46.1)
  • 免疫细胞化学; 大鼠; 图 2
Synaptic Systems syn1抗体(Synaptic Systems, 106 011)被用于被用于免疫细胞化学在大鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(46.1)
  • 免疫组化; 人类; 1:500; 图 3a
Synaptic Systems syn1抗体(Synaptic Systems, 106 011)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3a). Methods (2016) ncbi
小鼠 单克隆(46.1)
  • 免疫印迹; 人类
Synaptic Systems syn1抗体(Synaptic Systems, 160 001)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
文章列表
  1. Welch G, Boix C, Schmauch E, Davila Velderrain J, Victor M, Dileep V, et al. Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration. Sci Adv. 2022;8:eabo4662 pubmed 出版商
  2. Oury J, Zhang W, Leloup N, Koide A, Corrado A, Ketavarapu G, et al. Mechanism of disease and therapeutic rescue of Dok7 congenital myasthenia. Nature. 2021;595:404-408 pubmed 出版商
  3. Ivanova D, Dobson K, Gajbhiye A, Davenport E, Hacker D, Ultanir S, et al. Control of synaptic vesicle release probability via VAMP4 targeting to endolysosomes. Sci Adv. 2021;7: pubmed 出版商
  4. Cho I, Panzera L, Chin M, Alpizar S, Olveda G, Hill R, et al. The potassium channel subunit Kvβ1 serves as a major control point for synaptic facilitation. Proc Natl Acad Sci U S A. 2020;117:29937-29947 pubmed 出版商
  5. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht M, et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2021;109:299-313.e9 pubmed 出版商
  6. Oku S, Feng H, Connor S, Toledo A, Zhang P, Zhang Y, et al. Alternative splicing at neuroligin site A regulates glycan interaction and synaptogenic activity. elife. 2020;9: pubmed 出版商
  7. Schoepf C, Zeidler M, Spiecker L, Kern G, Lechner J, Kummer K, et al. Selected Ionotropic Receptors and Voltage-Gated Ion Channels: More Functional Competence for Human Induced Pluripotent Stem Cell (iPSC)-Derived Nociceptors. Brain Sci. 2020;10: pubmed 出版商
  8. Arias Hervert E, Xu N, Njus M, Murphy G, Hou Y, Williams J, et al. Actions of Rab27B-GTPase on mammalian central excitatory synaptic transmission. Physiol Rep. 2020;8:e14428 pubmed 出版商
  9. Zhang R, Liakath Ali K, Sudhof T. Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. elife. 2020;9: pubmed 出版商
  10. Sun A, Yuan Q, Fukuda M, Yu W, Yan H, Lim G, et al. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science. 2019;366:1486-1492 pubmed 出版商
  11. Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, et al. Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. elife. 2019;8: pubmed 出版商
  12. Dierich M, Hartmann S, Dietrich N, Moeser P, Brede F, Johnson Chacko L, et al. β-Secretase BACE1 Is Required for Normal Cochlear Function. J Neurosci. 2019;39:9013-9027 pubmed 出版商
  13. Rademacher N, Kuropka B, Kunde S, Wahl M, Freund C, Shoichet S. Intramolecular domain dynamics regulate synaptic MAGUK protein interactions. elife. 2019;8: pubmed 出版商
  14. Cicvaric A, Bulat T, Bormann D, Yang J, Auer B, Milenkovic I, et al. Sustained consumption of cocoa-based dark chocolate enhances seizure-like events in the mouse hippocampus. Food Funct. 2018;9:1532-1544 pubmed 出版商
  15. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  16. Daniel J, Cooper B, Palvimo J, Zhang F, Brose N, Tirard M. Analysis of SUMO1-conjugation at synapses. elife. 2017;6: pubmed 出版商
  17. Efimova N, Korobova F, Stankewich M, Moberly A, Stolz D, Wang J, et al. ?III Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons. J Neurosci. 2017;37:6442-6459 pubmed 出版商
  18. Horvath P, Kavalali E, Monteggia L. CRISPR/Cas9 system-mediated impairment of synaptobrevin/VAMP function in postmitotic hippocampal neurons. J Neurosci Methods. 2017;278:57-64 pubmed 出版商
  19. Sambri I, D Alessio R, Ezhova Y, Giuliano T, Sorrentino N, Cacace V, et al. Lysosomal dysfunction disrupts presynaptic maintenance and restoration of presynaptic function prevents neurodegeneration in lysosomal storage diseases. EMBO Mol Med. 2017;9:112-132 pubmed 出版商
  20. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  21. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商
  22. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  23. Ho S, Hartley B, TCW J, Beaumont M, Stafford K, Slesinger P, et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods. 2016;101:113-24 pubmed 出版商
  24. Cuesto G, Jordán Álvarez S, Enriquez Barreto L, Ferrús A, Morales M, Acebes A. GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS ONE. 2015;10:e0118475 pubmed 出版商