这是一篇来自已证抗体库的有关斑马鱼 th的综述,是根据125篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合th 抗体。
默克密理博中国
小鼠 单克隆(LNC1)
默克密理博中国 th抗体(Millipore, MAB318)被用于. J Comp Neurol (2020) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 1a3
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 1a3). J Comp Neurol (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 2d
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). elife (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; slender lungfish; 1:1000; 图 6a
默克密理博中国 th抗体(Merk-Millipore, MAB318)被用于被用于免疫组化在slender lungfish样本上浓度为1:1000 (图 6a). J Comp Neurol (2020) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). J Comp Neurol (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1b
默克密理博中国 th抗体(EMD Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1b). J Comp Neurol (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 住房乌鸦; 1:200; 图 17a
  • 免疫组化; 住房乌鸦; 1:200; 图 18a
  • 免疫印迹; 住房乌鸦; 1:5000; 图 4
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在住房乌鸦样本上浓度为1:200 (图 17a), 被用于免疫组化在住房乌鸦样本上浓度为1:200 (图 18a) 和 被用于免疫印迹在住房乌鸦样本上浓度为1:5000 (图 4). J Comp Neurol (2019) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 th抗体(Millipore, MAB318)被用于. J Comp Neurol (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 图 1c
  • 免疫印迹; 大鼠; 图 1a
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上 (图 1c) 和 被用于免疫印迹在大鼠样本上 (图 1a). Brain Sci (2018) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3b
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3b). PLoS ONE (2018) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; marine lamprey; 1:1000; 图 7b
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在marine lamprey样本上浓度为1:1000 (图 7b). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 表 1
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 1
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 th抗体(Millipore, AB318)被用于. J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:4000; 图 1b
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:4000 (图 1b). J Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 人类; 1:1000; 图 4
  • 免疫细胞化学; 黑腹果蝇; 1:200; 图 2a
默克密理博中国 th抗体(Millipore, LNC1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4) 和 被用于免疫细胞化学在黑腹果蝇样本上浓度为1:200 (图 2a). Hum Mol Genet (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 图 4c
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上 (图 4c). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:500; 表 2
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500 (表 2). Dev Biol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 非洲爪蛙; 1:500; 图 1c
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:500 (图 1c). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6c
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6c). Mol Ther (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 st15
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 st15). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000; 表 1
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:1000; 表 1
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; Chondrichthyes; 1:1000; 图 2a
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在Chondrichthyes样本上浓度为1:1000 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
  • 免疫印迹; 小鼠; 1:2000
默克密理博中国 th抗体(Millipore, AB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000. Sci Rep (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 斑马鱼; 图 2-s2a
默克密理博中国 th抗体(Milipore, MAB318)被用于被用于免疫细胞化学在斑马鱼样本上 (图 2-s2a). elife (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000; 图 1a
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 1a). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 5
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 5). Brain Struct Funct (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000; 图 1c
  • 免疫组化; 小鼠; 1:10,000
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000 (图 1c) 和 被用于免疫组化在小鼠样本上浓度为1:10,000. J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7t
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7t). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:500; 图 4b
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). Exp Neurol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:100; 图 1b
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Cell (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 2d
默克密理博中国 th抗体(Millipore, MAB 318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). J Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 1a
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). J Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5000; 图 5c
默克密理博中国 th抗体(Millipore, AB318)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 5c). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:250; 图 1
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 6c
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 6c). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; domestic rabbit; 1:400; 图 3
默克密理博中国 th抗体(chemicon, MAB318)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:400 (图 3). Ann Anat (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 人类; 图 1
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 猕猴; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:1000. Gene Ther (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 图 1
默克密理博中国 th抗体(Millipore, LNC1)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:500; 图 1f
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1f). Pharmacol Res (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000; 图 4
默克密理博中国 th抗体(Millipore Corporation, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4). Prog Neuropsychopharmacol Biol Psychiatry (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:500. Nat Commun (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:1000; 图 4
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 4). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 th抗体(Merck, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:10,000; 图 3a
默克密理博中国 th抗体(Chemicon, MAB 318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10,000 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 小鼠; 图 8b
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫印迹在小鼠样本上 (图 8b). Sci Rep (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 6
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 6). Schizophr Res (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 人类; 图 3
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在人类样本上 (图 3). J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:5000; 图 1
  • 免疫组化; 小鼠; 1:5000; 图 3
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 1) 和 被用于免疫组化在小鼠样本上浓度为1:5000 (图 3). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:40000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:40000. Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:400
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. J Biol Chem (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:600
  • 免疫细胞化学; 小鼠; 1:600
默克密理博中国 th抗体(MerckMillipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 和 被用于免疫细胞化学在小鼠样本上浓度为1:600. Hum Gene Ther Methods (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
默克密理博中国 th抗体(Merck Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Mol Neurodegener (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 乙型肝炎病毒; 1:500
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在乙型肝炎病毒样本上浓度为1:500. Endocrinology (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:400; 图 5
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫组化-冰冻切片; domestic rabbit; 1:1000
  • 免疫组化-冰冻切片; 大鼠; 1:1000
默克密理博中国 th抗体(Merck Millipore Ltd, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000, 被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:1000 和 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:500; 图 S7
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 S7). Nat Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 日本大米鱼; 1:1000; 图 2
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在日本大米鱼样本上浓度为1:1000 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:500. Brain Struct Funct (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 th抗体(EMD Millipore, MAB318)被用于. Nat Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:500; 图 1
  • 免疫细胞化学; 小鼠; 1:500; 图 2
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2). J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. PLoS Genet (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 小鼠; 图 7
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫印迹在小鼠样本上 (图 7). FASEB J (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 家羊; 1:500
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫细胞化学在家羊样本上浓度为1:500. Ann Anat (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5,000
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:5,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:5000
默克密理博中国 th抗体(Merck Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:5000. Acta Histochem Cytochem (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 8
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 8). J Neurosci (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:400
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:400. J Biol Chem (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 七鳃鳗目; 1:600
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在七鳃鳗目样本上浓度为1:600. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1h
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1h). Brain Struct Funct (2015) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 th抗体(Millipore / Chemicon, MAB318)被用于. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; African green monkey; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在African green monkey样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Endocrinology (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. J Virol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000. CNS Neurosci Ther (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:200
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Genesis (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; smaller spotted dogfish; 1:500
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在smaller spotted dogfish样本上浓度为1:500. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:200
默克密理博中国 th抗体(Chemicon / Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 猪; 1:80
默克密理博中国 th抗体(Chemicon, MAB 318)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:80. J Mol Neurosci (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:2000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000. Brain Behav (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国 th抗体(Chemicon, Mab318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Genesis (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:2000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上浓度为1:2000. Gene Ther (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 人类
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在人类样本上. Stem Cell Rev (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:1000
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; European river lamprey; 1:600
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在European river lamprey样本上浓度为1:600. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:400
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:400. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 猕猴; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:40000
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:40000. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
默克密理博中国 th抗体(Millipore-Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:100
默克密理博中国 th抗体(Millipore, LNC1)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫组化-石蜡切片; 猕猴; 1:100
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫组化-石蜡切片在猕猴样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 斑马鱼; 1:1000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:200 - 1:500
默克密理博中国 th抗体(Chemicon International Inc., MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:200 - 1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 th抗体(Chemicon International, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
  • 免疫细胞化学; 大鼠; 1:4000
默克密理博中国 th抗体(Millipore-Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000 和 被用于免疫细胞化学在大鼠样本上浓度为1:4000. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:100
  • 免疫印迹; 非洲爪蛙; 1:200
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:100 和 被用于免疫印迹在非洲爪蛙样本上浓度为1:200. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; smaller spotted dogfish; 1:2,500
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在smaller spotted dogfish样本上浓度为1:2,500. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 th抗体(Chemicon / Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:400
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
默克密理博中国 th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1,000
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:1,000
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
默克密理博中国 th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2005) ncbi
文章列表
  1. Emam A, Yoffe M, Cardona H, Soares D. Retinal morphology in Astyanax mexicanus during eye degeneration. J Comp Neurol. 2020;528:1523-1534 pubmed 出版商
  2. Wullimann M, Umeasalugo K. Sonic hedgehog expression in zebrafish forebrain identifies the teleostean pallidal signaling center and shows preglomerular complex and posterior tubercular dopamine cells to arise from shh cells. J Comp Neurol. 2019;: pubmed 出版商
  3. Aoki S, Smith J, Li H, Yan X, Igarashi M, Coulon P, et al. An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. elife. 2019;8: pubmed 出版商
  4. L pez J, Morona R, Moreno N, Lozano D, Jim nez S, Gonz lez A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol. 2020;528:135-159 pubmed 出版商
  5. Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, et al. The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol. 2019;527:2931-2947 pubmed 出版商
  6. Gumbs M, Vuuregge A, Eggels L, Unmehopa U, Lamuadni K, Mul J, et al. Afferent neuropeptide Y projections to the ventral tegmental area in normal-weight male Wistar rats. J Comp Neurol. 2019;527:2659-2674 pubmed 出版商
  7. Sen S, Parishar P, Pundir A, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol. 2019;527:1801-1836 pubmed 出版商
  8. Kawaguchi M, Hagio H, Yamamoto N, Matsumoto K, Nakayama K, Akazome Y, et al. Atlas of the telencephalon based on cytoarchitecture, neurochemical markers, and gene expressions in Rhinogobius flumineus [Mizuno, 1960]. J Comp Neurol. 2019;527:874-900 pubmed 出版商
  9. Balan I, Warnock K, Puche A, GONDRE LEWIS M, JUNE H, Aurelian L. The GABAA Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse. Brain Sci. 2018;8: pubmed 出版商
  10. Lin Y, Kuo K, Chen S, Huang H. RBFOX3/NeuN is dispensable for visual function. PLoS ONE. 2018;13:e0192355 pubmed 出版商
  11. Barreiro Iglesias A, Fernández López B, Sobrido Cameán D, Anadón R. Organization of alpha-transducin immunoreactive system in the brain and retina of larval and young adult Sea Lamprey (Petromyzon marinus), and their relationship with other neural systems. J Comp Neurol. 2017;525:3683-3704 pubmed 出版商
  12. González Cabrera C, Meza R, Ulloa L, Merino Sepúlveda P, Luco V, Sanhueza A, et al. Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons. J Comp Neurol. 2017;525:3529-3542 pubmed 出版商
  13. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed 出版商
  14. López J, González A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J Comp Neurol. 2017;525:3083-3109 pubmed 出版商
  15. Fischer D, Kemp C, Cole Strauss A, Polinski N, Paumier K, Lipton J, et al. Subthalamic Nucleus Deep Brain Stimulation Employs trkB Signaling for Neuroprotection and Functional Restoration. J Neurosci. 2017;37:6786-6796 pubmed 出版商
  16. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  17. Watson C, Shimogori T, Puelles L. Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol. 2017;525:2782-2799 pubmed 出版商
  18. Solek C, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol. 2017;427:131-147 pubmed 出版商
  19. Xavier A, Fontaine R, Bloch S, Affaticati P, Jenett A, Demarque M, et al. Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates). J Comp Neurol. 2017;525:2265-2283 pubmed 出版商
  20. Williams C, Uytingco C, Green W, McIntyre J, Ukhanov K, Zimmerman A, et al. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther. 2017;25:904-916 pubmed 出版商
  21. Zhao F, Wang W, Wang C, Siedlak S, Fujioka H, Tang B, et al. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson's disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1359-1370 pubmed 出版商
  22. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  23. Goodings L, He J, Wood A, Harris W, Currie P, Jusuf P. In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish Tg(nr4a2a:eGFP) transgenics. J Comp Neurol. 2017;525:1962-1979 pubmed 出版商
  24. Hannibal J, Christiansen A, Heegaard S, Fahrenkrug J, Kiilgaard J. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol. 2017;525:1934-1961 pubmed 出版商
  25. Perelmuter J, Forlano P. Connectivity and ultrastructure of dopaminergic innervation of the inner ear and auditory efferent system of a vocal fish. J Comp Neurol. 2017;525:2090-2108 pubmed 出版商
  26. Liu H, Ho P, Leung G, Lam C, Pang S, Li L, et al. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson's disease. Sci Rep. 2017;7:40887 pubmed 出版商
  27. Wircer E, Blechman J, Borodovsky N, Tsoory M, Nunes A, Oliveira R, et al. Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behavior. elife. 2017;6: pubmed 出版商
  28. Fasoli A, Dang J, Johnson J, Gouw A, Fogli Iseppe A, Ishida A. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol. 2017;525:1707-1730 pubmed 出版商
  29. Oh Y, Karube F, Takahashi S, Kobayashi K, Takada M, Uchigashima M, et al. Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct Funct. 2017;222:2359-2378 pubmed 出版商
  30. Kiyokage E, Kobayashi K, Toida K. Spatial distribution of synapses on tyrosine hydroxylase-expressing juxtaglomerular cells in the mouse olfactory glomerulus. J Comp Neurol. 2017;525:1059-1074 pubmed 出版商
  31. Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn M, et al. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol. 2017;525:1155-1175 pubmed 出版商
  32. Wu Q, Yang X, Zhang Y, Zhang L, Feng L. Chronic mild stress accelerates the progression of Parkinson's disease in A53T ?-synuclein transgenic mice. Exp Neurol. 2016;285:61-71 pubmed 出版商
  33. Stauffer W, Lak A, Yang A, Borel M, Paulsen O, Boyden E, et al. Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques. Cell. 2016;166:1564-1571.e6 pubmed 出版商
  34. Brown R, Kokay I, Phillipps H, Yip S, Gustafson P, Wyatt A, et al. Conditional Deletion of the Prolactin Receptor Reveals Functional Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus. J Neurosci. 2016;36:9173-85 pubmed 出版商
  35. Ztaou S, Maurice N, Camon J, Guiraudie Capraz G, Kerkerian Le Goff L, Beurrier C, et al. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease. J Neurosci. 2016;36:9161-72 pubmed 出版商
  36. Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2017;525:574-591 pubmed 出版商
  37. Sommer A, Fadler T, Dorfmeister E, Hoffmann A, Xiang W, Winner B, et al. Infiltrating T lymphocytes reduce myeloid phagocytosis activity in synucleinopathy model. J Neuroinflammation. 2016;13:174 pubmed 出版商
  38. Chtarto A, Humbert Claude M, Bockstael O, Das A, Boutry S, Breger L, et al. A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. Mol Ther Methods Clin Dev. 2016;5:16027 pubmed 出版商
  39. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  40. Inokaitis H, Pauziene N, Rysevaite Kyguoliene K, Pauza D. Innervation of sinoatrial nodal cells in the rabbit. Ann Anat. 2016;205:113-21 pubmed 出版商
  41. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  42. Green F, Samaranch L, Zhang H, Manning Bog A, Meyer K, Forsayeth J, et al. Axonal transport of AAV9 in nonhuman primate brain. Gene Ther. 2016;23:520-6 pubmed 出版商
  43. Liu Z, Brown A, Fisher D, Wu Y, Warren J, Cui X. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons. PLoS ONE. 2016;11:e0149379 pubmed 出版商
  44. Pandit R, Omrani A, Luijendijk M, de Vrind V, van Rozen A, Ophuis R, et al. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward. Neuropsychopharmacology. 2016;41:2241-51 pubmed 出版商
  45. Pinho B, Reis S, Guedes Dias P, Leitão Rocha A, Quintas C, Valentão P, et al. Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson's disease. Pharmacol Res. 2016;103:328-39 pubmed 出版商
  46. Knowles M, de la Tremblaye P, Azogu I, Plamondon H. Endocannabinoid CB1 receptor activation upon global ischemia adversely impact recovery of reward and stress signaling molecules, neuronal survival and behavioral impulsivity. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:8-21 pubmed 出版商
  47. Stouffer M, Woods C, Patel J, Lee C, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun. 2015;6:8543 pubmed 出版商
  48. Podlasz P, Jakimiuk A, Chmielewska Krzesinska M, Kasica N, Nowik N, Kaleczyc J. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol. 2016;145:105-17 pubmed 出版商
  49. Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G. Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in Drosophila. J Neurosci. 2015;35:13784-99 pubmed 出版商
  50. Van Kampen J, Baranowski D, Robertson H, Shaw C, Kay D. The Progressive BSSG Rat Model of Parkinson's: Recapitulating Multiple Key Features of the Human Disease. PLoS ONE. 2015;10:e0139694 pubmed 出版商
  51. Dearborn J, Harmon S, Fowler S, O Malley K, Taylor G, Sands M, et al. Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Sci Rep. 2015;5:12752 pubmed 出版商
  52. Morris R, Purves Tyson T, Weickert C, Rothmond D, Lenroot R, Weickert T. Testosterone and reward prediction-errors in healthy men and men with schizophrenia. Schizophr Res. 2015;168:649-60 pubmed 出版商
  53. Jiang Y, Jiang P, Yang J, Ma D, Lin H, Su W, et al. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation. PLoS ONE. 2015;10:e0133971 pubmed 出版商
  54. Aimé P, Sun X, Zareen N, Rao A, Berman Z, Volpicelli Daley L, et al. Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models. J Neurosci. 2015;35:10731-49 pubmed 出版商
  55. Bourdenx M, Dovero S, Engeln M, Bido S, Bastide M, Dutheil N, et al. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathol Commun. 2015;3:46 pubmed 出版商
  56. Hryhorczuk C, Florea M, Rodaros D, Poirier I, Daneault C, Des Rosiers C, et al. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsychopharmacology. 2016;41:811-21 pubmed 出版商
  57. Beckman D, Santos L, Americo T, Ledo J, de Mello F, Linden R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J Biol Chem. 2015;290:20488-98 pubmed 出版商
  58. Theodorou M, Rauser B, Zhang J, Prakash N, Wurst W, Schick J. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. Hum Gene Ther Methods. 2015;26:107-22 pubmed 出版商
  59. Van Rompuy A, Oliveras Salvá M, Van der Perren A, Corti O, Van den Haute C, Baekelandt V. Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration. Mol Neurodegener. 2015;10:23 pubmed 出版商
  60. Fontaine R, Affaticati P, Bureau C, Colin I, Demarque M, Dufour S, et al. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish. Endocrinology. 2015;156:2934-48 pubmed 出版商
  61. Schreglmann S, Regensburger M, Rockenstein E, Masliah E, Xiang W, Winkler J, et al. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice. PLoS ONE. 2015;10:e0126261 pubmed 出版商
  62. Debertin G, Kántor O, Kovács Öller T, Balogh L, Szabó Meleg E, Orbán J, et al. Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina. J Neurochem. 2015;134:416-28 pubmed 出版商
  63. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  64. Salganik M, Sergeyev V, Shinde V, Meyers C, Gorbatyuk M, Lin J, et al. The loss of glucose-regulated protein 78 (GRP78) during normal aging or from siRNA knockdown augments human alpha-synuclein (α-syn) toxicity to rat nigral neurons. Neurobiol Aging. 2015;36:2213-23 pubmed 出版商
  65. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  66. Zheng H, Rinaman L. Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Struct Funct. 2016;221:2375-83 pubmed 出版商
  67. Briffaud V, Williams P, Courty J, Broberger C. Excitation of tuberoinfundibular dopamine neurons by oxytocin: crosstalk in the control of lactation. J Neurosci. 2015;35:4229-37 pubmed 出版商
  68. Zhang S, Qi J, Li X, Wang H, Britt J, Hoffman A, et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat Neurosci. 2015;18:386-92 pubmed 出版商
  69. Chand A, Galliano E, Chesters R, Grubb M. A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment. J Neurosci. 2015;35:1573-90 pubmed 出版商
  70. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  71. Polinski N, Gombash S, Manfredsson F, Lipton J, Kemp C, Cole Strauss A, et al. Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain. Neurobiol Aging. 2015;36:1110-20 pubmed 出版商
  72. Sharaf A, Rahhal B, Spittau B, Roussa E. Localization of reelin signaling pathway components in murine midbrain and striatum. Cell Tissue Res. 2015;359:393-407 pubmed 出版商
  73. Lee Y, Petkova A, Konkar A, Granneman J. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 2015;29:286-99 pubmed 出版商
  74. Pauza D, Rysevaite Kyguoliene K, Vismantaite J, Brack K, Inokaitis H, Pauza A, et al. A combined acetylcholinesterase and immunohistochemical method for precise anatomical analysis of intrinsic cardiac neural structures. Ann Anat. 2014;196:430-40 pubmed 出版商
  75. Suzuki Y, Kiyokage E, Sohn J, Hioki H, Toida K. Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2015;523:262-80 pubmed 出版商
  76. Masuda C, Takeuchi S, J Bisem N, R Vincent S, Tooyama I. Immunohistochemical Localization of an Isoform of TRK-Fused Gene-Like Protein in the Rat Retina. Acta Histochem Cytochem. 2014;47:75-83 pubmed 出版商
  77. Sousa J, Vieira Rocha M, Sá C, Ferreirinha F, Correia de Sá P, Fresco P, et al. Lack of endogenous adenosine tonus on sympathetic neurotransmission in spontaneously hypertensive rat mesenteric artery. PLoS ONE. 2014;9:e105540 pubmed 出版商
  78. Pinheiro P, Jansen A, de Wit H, Tawfik B, Madsen K, Verhage M, et al. The BAR domain protein PICK1 controls vesicle number and size in adrenal chromaffin cells. J Neurosci. 2014;34:10688-700 pubmed 出版商
  79. Bai Q, Parris R, Burton E. Different mechanisms regulate expression of zebrafish myelin protein zero (P0) in myelinating oligodendrocytes and its induction following axonal injury. J Biol Chem. 2014;289:24114-28 pubmed 出版商
  80. Lotan D, Cunningham M, Joel D. Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen. PLoS ONE. 2014;9:e101257 pubmed 出版商
  81. Shivers K, Nikolopoulou A, Machlovi S, Vallabhajosula S, Figueiredo Pereira M. PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim Biophys Acta. 2014;1842:1707-19 pubmed 出版商
  82. Pérez Fernández J, Stephenson Jones M, Suryanarayana S, Robertson B, Grillner S. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression. J Comp Neurol. 2014;522:3775-94 pubmed 出版商
  83. Nordenankar K, Smith Anttila C, Schweizer N, Viereckel T, Birgner C, Mejía Toiber J, et al. Increased hippocampal excitability and impaired spatial memory function in mice lacking VGLUT2 selectively in neurons defined by tyrosine hydroxylase promoter activity. Brain Struct Funct. 2015;220:2171-90 pubmed 出版商
  84. Forlano P, Kim S, Krzyminska Z, Sisneros J. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus. J Comp Neurol. 2014;522:2887-927 pubmed 出版商
  85. Bloch J, Brunet J, McEntire C, Redmond D. Primate adult brain cell autotransplantation produces behavioral and biological recovery in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian St. Kitts monkeys. J Comp Neurol. 2014;522:2729-40 pubmed 出版商
  86. Lippert R, Ellacott K, Cone R. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology. 2014;155:1718-27 pubmed 出版商
  87. O Brien E, Greferath U, Fletcher E. The effect of photoreceptor degeneration on ganglion cell morphology. J Comp Neurol. 2014;522:1155-70 pubmed 出版商
  88. Trabalza A, Eleftheriadou I, Sgourou A, Liao T, Patsali P, Lee H, et al. Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol. 2014;88:2877-90 pubmed 出版商
  89. Tapias V, Cannon J, Greenamyre J. Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Neurobiol Aging. 2014;35:1162-76 pubmed 出版商
  90. Moloney T, Hyland R, O Toole D, Paucard A, Kirik D, O Doherty A, et al. Heat shock protein 70 reduces ?-synuclein-induced predegenerative neuronal dystrophy in the ?-synuclein viral gene transfer rat model of Parkinson's disease. CNS Neurosci Ther. 2014;20:50-8 pubmed 出版商
  91. Nishizaki Y, Takagi T, Matsui F, Higashi Y. SIP1 expression patterns in brain investigated by generating a SIP1-EGFP reporter knock-in mouse. Genesis. 2014;52:56-67 pubmed 出版商
  92. Bergami M, Vignoli B, Motori E, Pifferi S, Zuccaro E, Menini A, et al. TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb. J Neurosci. 2013;33:11464-78 pubmed 出版商
  93. Pose Méndez S, Candal E, Adrio F, Rodriguez Moldes I. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol. 2014;522:131-68 pubmed 出版商
  94. Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol. 2013;521:3832-46 pubmed 出版商
  95. Wojtkiewicz J, Równiak M, Crayton R, Gonkowski S, Robak A, Zalecki M, et al. Axotomy-induced changes in the chemical coding pattern of colon projecting calbindin-positive neurons in the inferior mesenteric ganglia of the pig. J Mol Neurosci. 2013;51:99-108 pubmed 出版商
  96. Bäck S, Peranen J, Galli E, Pulkkila P, Lonka Nevalaita L, Tamminen T, et al. Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease. Brain Behav. 2013;3:75-88 pubmed 出版商
  97. Ohtsuka N, Badurek S, Busslinger M, Benes F, Minichiello L, Rudolph U. GABAergic neurons regulate lateral ventricular development via transcription factor Pax5. Genesis. 2013;51:234-45 pubmed 出版商
  98. Trabalza A, Georgiadis C, Eleftheriadou I, Hislop J, Ellison S, Karavassilis M, et al. Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther. 2013;20:723-32 pubmed 出版商
  99. Liu J, Githinji J, McLaughlin B, Wilczek K, Nolta J. Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem Cell Rev. 2012;8:1129-37 pubmed 出版商
  100. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  101. Stephenson Jones M, Ericsson J, Robertson B, Grillner S. Evolution of the basal ganglia: dual-output pathways conserved throughout vertebrate phylogeny. J Comp Neurol. 2012;520:2957-73 pubmed 出版商
  102. Lindsey B, Darabie A, Tropepe V. The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain. J Comp Neurol. 2012;520:2275-316 pubmed 出版商
  103. Puthussery T, Gayet Primo J, Taylor W, Haverkamp S. Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. J Comp Neurol. 2011;519:3640-56 pubmed 出版商
  104. Sapsford T, Kokay I, Ostberg L, Bridges R, Grattan D. Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol. 2012;520:1062-77 pubmed 出版商
  105. Hayes L, Zhang Z, Albert P, Zervas M, Ahn S. Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J Comp Neurol. 2011;519:3001-18 pubmed 出版商
  106. Goemaere J, Knoops B. Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. J Comp Neurol. 2012;520:258-80 pubmed 出版商
  107. Rohn T, Catlin L. Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson's disease brain. PLoS ONE. 2011;6:e20495 pubmed 出版商
  108. Noorian A, Taylor G, Annerino D, Greene J. Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J Comp Neurol. 2011;519:3387-401 pubmed 出版商
  109. Bøttger P, Tracz Z, Heuck A, Nissen P, Romero Ramos M, Lykke Hartmann K. Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain. J Comp Neurol. 2011;519:376-404 pubmed 出版商
  110. Gayoso J, Castro A, Anadón R, Manso M. Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J Comp Neurol. 2011;519:247-76 pubmed 出版商
  111. Uyttebroek L, Shepherd I, Harrisson F, Hubens G, Blust R, Timmermans J, et al. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol. 2010;518:4419-38 pubmed 出版商
  112. Phillips M, Otteson D, Sherry D. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-89 pubmed 出版商
  113. Ampatzis K, Dermon C. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol. 2010;518:1418-41 pubmed 出版商
  114. Kotani T, Murata Y, Ohnishi H, Mori M, Kusakari S, Saito Y, et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb. J Comp Neurol. 2010;518:119-36 pubmed 出版商
  115. Madhavan L, Daley B, Paumier K, Collier T. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson's disease. J Comp Neurol. 2009;515:102-15 pubmed 出版商
  116. Jhou T, Geisler S, Marinelli M, Degarmo B, Zahm D. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol. 2009;513:566-96 pubmed 出版商
  117. Nakano M, Goris R, Atobe Y, Kadota T, Funakoshi K. Mediolateral and rostrocaudal topographic organization of the sympathetic preganglionic cell pool in the spinal cord of Xenopus laevis. J Comp Neurol. 2009;513:292-314 pubmed 出版商
  118. Carrera I, Molist P, Anadón R, Rodriguez Moldes I. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula. J Comp Neurol. 2008;511:804-31 pubmed 出版商
  119. Chung E, Chen L, Chan Y, Yung K. Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol. 2008;511:421-37 pubmed 出版商
  120. Yang Z, You Y, Levison S. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol. 2008;511:19-33 pubmed 出版商
  121. Luuk H, Koks S, Plaas M, Hannibal J, Rehfeld J, Vasar E. Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome. J Comp Neurol. 2008;509:642-60 pubmed 出版商
  122. Ampatzis K, Kentouri M, Dermon C. Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain. J Comp Neurol. 2008;508:72-93 pubmed 出版商
  123. Tagliaferro P, Morales M. Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J Comp Neurol. 2008;506:616-26 pubmed
  124. Nickerson Poulin A, Guerci A, El Mestikawy S, Semba K. Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. J Comp Neurol. 2006;498:690-711 pubmed
  125. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed