这是一篇来自已证抗体库的有关斑马鱼 tuba1c的综述,是根据59篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合tuba1c 抗体。
tuba1c 同义词: tuba1l

圣克鲁斯生物技术
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 大鼠; 1:10,000; 图 2b
  • 免疫印迹; 大鼠; 1:10,000; 图 2a
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc23950)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10,000 (图 2b) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:100; 图 7c
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7c). elife (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 1:100; 图 1s1a
圣克鲁斯生物技术 tuba1c抗体(Santa, sc-23950)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1s1a). elife (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:160; 图 3a
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上浓度为1:160 (图 3a). elife (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3a
  • 免疫细胞化学; 人类; 1:200; 图 2a
  • 免疫印迹; 人类; 图 4e, 5a
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 3d
  • 免疫印迹; 大鼠; 图 3e, s4b
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3a), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a), 被用于免疫印迹在人类样本上 (图 4e, 5a), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 3d) 和 被用于免疫印迹在大鼠样本上 (图 3e, s4b). Theranostics (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 2g
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上 (图 2g). Cell Rep (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 图 1c
圣克鲁斯生物技术 tuba1c抗体(Santa, sc-23950)被用于被用于免疫组化在人类样本上 (图 1c). EMBO J (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 6g
  • 免疫印迹; 人类; 图 6e
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫细胞化学在人类样本上 (图 6g), 被用于免疫印迹在人类样本上 (图 6e) 和 被用于免疫印迹在小鼠样本上 (图 6a). Cell Death Differ (2018) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 6g
圣克鲁斯生物技术 tuba1c抗体(SantaCruz, 6-11B-1)被用于被用于免疫印迹在小鼠样本上 (图 6g). Haematologica (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 图 2a
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在大鼠样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在小鼠样本上 (图 7). Front Neurosci (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 非洲爪蛙; 1:500; 图 s1
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, 6-11B-1)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:500 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1 ug/ml; 图 5
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, SC-23950)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Mol Oncol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在人类样本上 (图 3). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, Sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Brain Behav (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz Biotechnology, SC-23950)被用于被用于免疫印迹在小鼠样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在小鼠样本上 (图 4). J Immunol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:250
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫印迹在人类样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz, sc-23950)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000
圣克鲁斯生物技术 tuba1c抗体(Santa Cruz Biotechnology, sc-23950)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Comp Neurol (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 tuba1c抗体(Pierce, PA1-38814)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D20G3)
  • 免疫印迹; pigs ; 图 4i
赛信通(上海)生物试剂有限公司 tuba1c抗体(CST, 5335)被用于被用于免疫印迹在pigs 样本上 (图 4i). PLoS Pathog (2021) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 tuba1c抗体(CST, D20G3)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000 (图 3a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫组化-石蜡切片; 人类; 图 5a
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 tuba1c抗体(CST, 5335)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 2a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 1:500; 图 1f
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1f). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 tuba1c抗体(CST, 5335)被用于被用于免疫印迹在小鼠样本上 (图 2d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling Technology, 5335)被用于被用于免疫印迹在小鼠样本上 (图 4a). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 1:10,000; 图 s1e
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell signalling, 5335s)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 s1e). elife (2020) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Theranostics (2020) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, D20G3)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5a). J Exp Med (2020) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 1f
赛信通(上海)生物试剂有限公司 tuba1c抗体(CST, 5335)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 1f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫印迹; 人类; 1:1000; 图 e5d
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e5d). Nature (2019) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; pigs ; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signalling Technology, 5335)被用于被用于免疫细胞化学在pigs 样本上浓度为1:1000 (图 6e). Redox Biol (2019) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 图 1b
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling Technology, 5335)被用于被用于免疫细胞化学在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 4b
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 4b). Neurotox Res (2017) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 图 5i
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫细胞化学在人类样本上 (图 5i). Cell Stem Cell (2017) ncbi
domestic rabbit 单克隆(D20G3)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 tuba1c抗体(CST, 5335)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D20G3)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 1:300; 图 3a
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, D20G3)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3a). Mol Biol Cell (2017) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 小鼠; 1:800; 图 7a
  • 免疫细胞化学; 人类; 1:800; 图 s2
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell signalling, 5335)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 7a) 和 被用于免疫细胞化学在人类样本上浓度为1:800 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6c
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, D20G3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6c). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell signaling, D20G3 XP)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫组化; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫组化在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D20G3)
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于. J Allergy Clin Immunol (2016) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫组化; 小鼠; 1:800; 图 4d
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 4d). Neurotox Res (2016) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 1:800; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2015) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D20G3)
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling Technology, 5335)被用于. Nat Commun (2015) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, D20G3)被用于被用于免疫细胞化学在小鼠样本上. Stem Cell Res (2014) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 1:2000; 图 1-s3
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1-s3). elife (2014) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫组化; pigs ; 1:800
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫组化在pigs 样本上浓度为1:800. Cell Reprogram (2014) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫印迹; 人类; 1:10000
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, 5335)被用于被用于免疫印迹在人类样本上浓度为1:10000. Arch Toxicol (2014) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling Technology, 5335)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D20G3)
  • 免疫细胞化学; 人类; 1:1200; 图 1
赛信通(上海)生物试剂有限公司 tuba1c抗体(Cell Signaling, D20G3)被用于被用于免疫细胞化学在人类样本上浓度为1:1200 (图 1). J Cell Sci (2014) ncbi
文章列表
  1. Chen L, Hu Q, Liu H, Zhao Y, Chan S, Wang J. Nogo-A Induced Polymerization of Microtubule Is Involved in the Inflammatory Heat Hyperalgesia in Rat Dorsal Root Ganglion Neurons. Int J Mol Sci. 2021;22: pubmed 出版商
  2. Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, et al. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. PLoS Pathog. 2021;17:e1009940 pubmed 出版商
  3. Łysyganicz P, Pooranachandran N, Liu X, Adamson K, Zielonka K, Elworthy S, et al. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Front Cell Dev Biol. 2021;9:676214 pubmed 出版商
  4. Ko P, Choi J, Song S, Keum S, Jeong J, Hwang Y, et al. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci. 2021;22: pubmed 出版商
  5. Wu Q, Tian A, Li B, Leduc M, Forveille S, Hamley P, et al. IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J Immunother Cancer. 2021;9: pubmed 出版商
  6. Lamers M, Mykytyn A, Breugem T, Wang Y, Wu D, Riesebosch S, et al. Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. elife. 2021;10: pubmed 出版商
  7. Shen Z, Ji K, Cai Z, Huang C, He X, Xu H, et al. Inhibition of HDAC6 by Tubastatin A reduces chondrocyte oxidative stress in chondrocytes and ameliorates mouse osteoarthritis by activating autophagy. Aging (Albany NY). 2021;13:9820-9837 pubmed 出版商
  8. Mykytyn A, Breugem T, Riesebosch S, Schipper D, van den Doel P, Rottier R, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. elife. 2021;10: pubmed 出版商
  9. Siegel D, Bersie S, Harris P, Di Francesco A, Armstrong M, Reisdorph N, et al. A redox-mediated conformational change in NQO1 controls binding to microtubules and α-tubulin acetylation. Redox Biol. 2021;39:101840 pubmed 出版商
  10. Ha K, Nobuhara M, Wang Q, Walker R, Qian F, Schartner C, et al. The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus. elife. 2020;9: pubmed 出版商
  11. Lian B, Pei Y, Jiang Y, Xue M, Li D, Li X, et al. Truncated HDAC9 identified by integrated genome-wide screen as the key modulator for paclitaxel resistance in triple-negative breast cancer. Theranostics. 2020;10:11092-11109 pubmed 出版商
  12. Van Bergen N, Ahmed S, Collins F, Cowley M, Vetro A, Dale R, et al. Mutations in the exocyst component EXOC2 cause severe defects in human brain development. J Exp Med. 2020;217: pubmed 出版商
  13. Bozal Basterra L, Gonzalez Santamarta M, Muratore V, Bermejo Arteagabeitia A, Da Fonseca C, Barroso Gomila O, et al. LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome. elife. 2020;9: pubmed 出版商
  14. Zhang M, Du W, Acklin S, Jin S, Xia F. SIRT2 protects peripheral neurons from cisplatin-induced injury by enhancing nucleotide excision repair. J Clin Invest. 2020;130:2953-2965 pubmed 出版商
  15. Li S, Wei Z, Li G, Zhang Q, Niu S, Xu D, et al. Silica Perturbs Primary Cilia and Causes Myofibroblast Differentiation during Silicosis by Reduction of the KIF3A-Repressor GLI3 Complex. Theranostics. 2020;10:1719-1732 pubmed 出版商
  16. Li K, Zhao S, Long J, Su J, Wu L, Tao J, et al. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int. 2020;20:36 pubmed 出版商
  17. Ikonomou L, Herriges M, Lewandowski S, Marsland R, Villacorta Martin C, Caballero I, et al. The in vivo genetic program of murine primordial lung epithelial progenitors. Nat Commun. 2020;11:635 pubmed 出版商
  18. Douanne T, André Grégoire G, Thys A, Trillet K, Gavard J, Bidere N. CYLD Regulates Centriolar Satellites Proteostasis by Counteracting the E3 Ligase MIB1. Cell Rep. 2019;27:1657-1665.e4 pubmed 出版商
  19. Eckert M, Coscia F, Chryplewicz A, Chang J, Hernandez K, Pan S, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;: pubmed 出版商
  20. Sachs N, Papaspyropoulos A, Zomer van Ommen D, Heo I, Böttinger L, Klay D, et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019;38: pubmed 出版商
  21. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  22. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2018;: pubmed 出版商
  23. Tan H, Liao H, Zhao L, Lu Y, Jiang S, Tao D, et al. HILI destabilizes microtubules by suppressing phosphorylation and Gigaxonin-mediated degradation of TBCB. Sci Rep. 2017;7:46376 pubmed 出版商
  24. Benbow S, Wozniak K, Kulesh B, Savage A, Slusher B, Littlefield B, et al. Microtubule-Targeting Agents Eribulin and Paclitaxel Differentially Affect Neuronal Cell Bodies in Chemotherapy-Induced Peripheral Neuropathy. Neurotox Res. 2017;32:151-162 pubmed 出版商
  25. McCauley K, Hawkins F, Serra M, Thomas D, JACOB A, Kotton D. Efficient Derivation of Functional Human Airway Epithelium from Pluripotent Stem Cells via Temporal Regulation of Wnt Signaling. Cell Stem Cell. 2017;20:844-857.e6 pubmed 出版商
  26. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  27. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  28. Beauchemin H, Shooshtarizadeh P, Vadnais C, Vassen L, Pastore Y, Moroy T. Gfi1b controls integrin signaling-dependent cytoskeleton dynamics and organization in megakaryocytes. Haematologica. 2017;102:484-497 pubmed 出版商
  29. Funabashi T, Katoh Y, Michisaka S, Terada M, Sugawa M, Nakayama K. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46-IFT56 as well as on its nuclear localization signal. Mol Biol Cell. 2017;28:624-633 pubmed 出版商
  30. Laporte A, Barrott J, Yao R, Poulin N, Brodin B, Jones K, et al. HDAC and Proteasome Inhibitors Synergize to Activate Pro-Apoptotic Factors in Synovial Sarcoma. PLoS ONE. 2017;12:e0169407 pubmed 出版商
  31. Yu F, Sharma S, Skowronek A, Erdmann K. The serologically defined colon cancer antigen-3 (SDCCAG3) is involved in the regulation of ciliogenesis. Sci Rep. 2016;6:35399 pubmed 出版商
  32. Xiaojun W, Yan L, Hong X, Xianghong Z, Shifeng L, Dingjie X, et al. Acetylated ?-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica. Sci Rep. 2016;6:32257 pubmed 出版商
  33. Furukawa Y, Tanemura K, Igarashi K, Ideta Otsuka M, Aisaki K, Kitajima S, et al. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period. Front Neurosci. 2016;10:339 pubmed 出版商
  34. Medler T, Craig J, Fiorillo A, Feeney Y, Harrell J, Clevenger C. HDAC6 Deacetylates HMGN2 to Regulate Stat5a Activity and Breast Cancer Growth. Mol Cancer Res. 2016;14:994-1008 pubmed
  35. Skoge R, Ziegler M. SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6. J Cell Sci. 2016;129:2972-82 pubmed 出版商
  36. Trairatphisan P, Wiesinger M, Bahlawane C, Haan S, Sauter T. A Probabilistic Boolean Network Approach for the Analysis of Cancer-Specific Signalling: A Case Study of Deregulated PDGF Signalling in GIST. PLoS ONE. 2016;11:e0156223 pubmed 出版商
  37. Airik R, Schueler M, Airik M, Cho J, Ulanowicz K, Porath J, et al. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. PLoS ONE. 2016;11:e0156081 pubmed 出版商
  38. Chu C, Ossipova O, Ioannou A, Sokol S. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci Rep. 2016;6:24104 pubmed 出版商
  39. Stritt S, Nurden P, Favier R, Favier M, Ferioli S, Gotru S, et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg(2+) homeostasis and cytoskeletal architecture. Nat Commun. 2016;7:11097 pubmed 出版商
  40. Yan Y, Tan K, Li C, Tran T, Chao S, Sugrue R, et al. Human nasal epithelial cells derived from multiple subjects exhibit differential responses to H3N2 influenza virus infection in vitro. J Allergy Clin Immunol. 2016;138:276-281.e15 pubmed 出版商
  41. M L, P P, T K, M P, E S, J P, et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol Oncol. 2016;10:735-750 pubmed 出版商
  42. Benbow S, Cook B, Reifert J, Wozniak K, Slusher B, Littlefield B, et al. Effects of Paclitaxel and Eribulin in Mouse Sciatic Nerve: A Microtubule-Based Rationale for the Differential Induction of Chemotherapy-Induced Peripheral Neuropathy. Neurotox Res. 2016;29:299-313 pubmed 出版商
  43. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  44. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  45. Jovasevic V, Naghavi M, Walsh D. Microtubule plus end-associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells. J Cell Biol. 2015;211:323-37 pubmed 出版商
  46. Ragot A, Pietropaolo S, Vincent J, Delage P, Zhang H, Allinquant B, et al. Genetic deletion of the Histone Deacetylase 6 exacerbates selected behavioral deficits in the R6/1 mouse model for Huntington's disease. Brain Behav. 2015;5:e00361 pubmed 出版商
  47. Taylor S, Dantas T, Durán I, Wu S, Lachman R, Nelson S, et al. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat Commun. 2015;6:7092 pubmed 出版商
  48. Woan K, Lienlaf M, Perez Villaroel P, Lee C, Cheng F, Knox T, et al. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation. Mol Oncol. 2015;9:1447-1457 pubmed 出版商
  49. Bailey J, Fields A, Cheng K, Lee A, Wagenaar E, Lagrois R, et al. WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem. 2015;290:8987-9001 pubmed 出版商
  50. Brown J, Santra T, Owens P, Morrison A, Barry F. Primary cilium-associated genes mediate bone marrow stromal cell response to hypoxia. Stem Cell Res. 2014;13:284-99 pubmed 出版商
  51. Wang W, Wu T, Kirschner M. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. elife. 2014;3:e03083 pubmed 出版商
  52. Cheng F, Lienlaf M, Wang H, Perez Villarroel P, Lee C, Woan K, et al. A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs. J Immunol. 2014;193:2850-62 pubmed 出版商
  53. Hou L, Ma F, Yang J, Riaz H, Wang Y, Wu W, et al. Effects of histone deacetylase inhibitor oxamflatin on in vitro porcine somatic cell nuclear transfer embryos. Cell Reprogram. 2014;16:253-65 pubmed 出版商
  54. Balmer N, Klima S, Rempel E, Ivanova V, Kolde R, Weng M, et al. From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014;88:1451-68 pubmed 出版商
  55. Li R, Tan J, Chen L, Feng J, Liang W, Guo X, et al. Iqcg is essential for sperm flagellum formation in mice. PLoS ONE. 2014;9:e98053 pubmed 出版商
  56. Erdozain A, Morentin B, Bedford L, King E, Tooth D, Brewer C, et al. Alcohol-related brain damage in humans. PLoS ONE. 2014;9:e93586 pubmed 出版商
  57. Fang G, Zhang D, Yin H, Zheng L, Bi X, Yuan L. Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion. J Cell Sci. 2014;127:1631-9 pubmed 出版商
  58. Klinger M, Wang W, Kuhns S, Bärenz F, Dräger Meurer S, Pereira G, et al. The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol Biol Cell. 2014;25:495-507 pubmed 出版商
  59. Schreiner A, Durry S, Aida T, Stock M, Ruther U, Tanaka K, et al. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol. 2014;522:204-24 pubmed 出版商