细胞生物学研究中的激活剂和抑制剂
Anandika Dhaliwal (anandika dot dhaliwal at gmail dot com)
Rutgers University, New Jersey, United States
译者
王秀英 (mary at labome dot com)
美国新泽西州普林斯顿合原研究有限责任公司 (Synatom Research)
DOI
http://dx.doi.org/10.13070/mm.cn.3.185
日期
更新 : 2015-10-19; 原始版 : 2013-04-27
引用
实验材料和方法 2013;3:185
摘要

在细胞生物学研究中使用的化学激活剂和抑制剂的综述。

英文摘要

A comprehensive review of chemical activators and inhibitors used in cell biology research.

介绍

细胞生物学研究细胞结构、生理特性及细胞功能。它涉及到对细胞器、细胞与周围环境间相互作用、生命周期、分化及死亡的研究。细胞生物学与遗传学、分子生物学、发育生物学和生物化学等其它生物学领域是密切相关的。

细胞生物学研究中的激活剂和抑制剂 图 1
图 1. 真核细胞骨架。肌动蛋白纤维显示为红色,微管为绿色,核为蓝色。肌动蛋白染色使用的是罗丹明-鬼笔环肽,微管使用的是连接有Alexa488的抗α微管蛋白着色剂,DNA则使用的是Hoechst染料。

对于细胞生物学领域的研究者而言,为了更加全面地理解细胞的功能、细胞的信号传递以及控制细胞命运、功能及表型的胞内机制,抑制剂与激活剂是至关重要的研究工具。许多抑制剂和激活剂都被广泛用于研究细胞动力学及功能。这里我们对真核细胞中各种细胞生物学研究如细胞内吞、分泌、粘附、细胞骨架动力学、内质网和高尔基体研究中常用的抑制剂和激活剂进行了综述。

细胞骨架

细胞骨架为细胞提供了特定的结构与形状。真核细胞主要有三种细胞骨架纤维:1)微丝,2)中间丝和3)微管。

  • 微丝(肌动蛋白丝):这是细胞骨架中最细的纤维。它们由肌动蛋白亚基的线性聚合物所组成,通过在纤维一端的伸长并伴随着另一端的收缩来产生力,从而使其间的纤维产生净移动。
  • 中间丝:这种纤维的平均大小为直径10纳米并且比肌动蛋白丝更稳定(是紧密结合的),是细胞骨架的异质成分。中间丝负责组织细胞内部的三维结构和细胞器,是核纤层的结构性组成部分。它们也参与一些细胞-细胞间和细胞-基质间的连接过程。
  • 微管:它们是直径为23nm的空心圆柱,大多数情况下由13条原纤维组成,而这些原纤维则是alpha微管蛋白和beta微管蛋白的聚合物。它们具有很高的动态活性,通过结合GTP来进行聚合反应并通常由中心体来组织。
抑制剂靶点机制作用特点及效果参考文献、来源及供应商
细胞松弛素D(C30H37NO6肌动蛋白结合于肌动蛋白核和F-肌动蛋白的生长端,从而抑制聚合反应。诱导肌动蛋白解聚。溶于DMSO和乙醇。抑制收缩。抑制依赖于p-53的细胞通路。引起G1-S转化过程中的细胞周期阻滞。抑制胰岛素刺激的葡萄糖转运。 [1-3], Sigma-Aldrich, EMD/Millipore, Tocris Bioscience, Enzo Life Science, Invitrogen, Santa Cruz Biotechnology, Cayman Chemical
Lantraculin A(C22H31NO5S)肌动蛋白扰乱微丝介导的过程。与G-肌动蛋白单体形成1:1的复合物(Kd = 200 nM)。溶于DMSO和乙醇。比细胞松弛素的抑制效果强10-100倍。抑制巨噬细胞的吞噬作用。比Lantraculin B的效果更强。 [1-4], Invitrogen, Tocris Bioscience, Sigma-Aldrich, Cayman Chemical, Santa Cruz Biotechnology, EMD/Millipore
Lantraculin B(C20H29NO5S)肌动蛋白体外反应中抑制肌动蛋白的聚合(Kd = 60 nM)。扰乱微丝的组织和微丝介导的过程。溶于DMSO、甲醇或乙醇。比细胞松弛素的抑制效果强10-100倍。在该复合物持续存在的情况下被血清缓慢失活并导致短暂的诱导变化。 [5-7], Invitrogen, Sigma-Aldrich, Cayman Chemical, Santa Cruz Biotechnology, EMD/Millipore, Enzo Life Science
Wiskostatin(C17H18Br2N2O)肌动蛋白选择性地抑制N-WASP(Wiskott-Aldrich综合症蛋白(WASp)家族成员)并抑制Arp2/3复合物的活化。该分子阻断肌动蛋白丝的组装。在DMSO中溶解度可达100 mM。同样抑制PIP2诱导的肌动蛋白聚合反应(EC50 ~ 4μM)。抑制依赖于肌动蛋白的细胞功能(迁移、运输、吞噬、内褶)。 [8-10], Affix Scientific, Enzo Life Science, Sigma-Aldrich, Tocris Bioscience
Mycalolide B(C52H74N4O17肌动蛋白它选择性地将F-肌动蛋白彻底解聚成G-肌动蛋白。 与肌动蛋白以1:1的摩尔比进行结合(Kd=13-20 nM)。溶于DMSO、甲醇或异丙醇。抑制肌动球蛋白ATP酶。 [11-13], Santa Cruz Biotechnology, Enzo Life Science
Nocodazole(C14H11N3O3S)微管抑制微管的动态变化并促使微管解聚。与β微管蛋白结合并阻止两个链间二硫键中任意一个的形成。在DMSO的溶解度达10 mg/ml。有丝分裂抑制剂。将细胞周期阻滞在G2/M期。抑制各种癌症相关的激酶,包括ABL、c-KIT、BRAF、MEK1、MEK2和MET。 [14-17], Sigma-Aldrich, Tocris Bioscience, Cell Signaling Technology, EMD/Millipore
长春碱(C46H58N4O9 · H2SO4微管解聚微管。与微管蛋白结合并诱导其自缔形成螺旋形聚合体,抑制微管组装。溶于水和甲醇。通过阻断有丝分裂纺锤体的形成将细胞周期阻滞于G2/M期。在一些肿瘤细胞系中诱导凋亡。抑制自噬体的成熟。 [16, 18, 19], Sigma-Aldrich, Tocris Bioscience, EMD/Millipore, Santa Cruz Biotechnology。
秋水仙碱(C22H25NO6微管与微管蛋白结合并阻止其聚合在乙醇中溶解度达50 mg/ml,在水中溶解度可达100 mM,DMSO中溶解度可达100 mM。有丝分裂抑制剂。在一些正常的及癌症细胞系中诱导凋亡 [20-22], Sigma-Aldrich, Tocris Bioscience, EMD/Millipore
长春新碱(C46H56N4O10 · H2SO4微管能与微管蛋白结合并抑制微管形成的吲哚生物碱。解聚微管。溶于甲醇和水。延迟细胞周期的进程。在人类淋巴瘤细胞中诱导凋亡。 [23-25], Sigma-Aldrich, Tocris Bioscience, EMD/Millipore, Santa Cruz Biotechnology。
表1。 常用的细胞骨架抑制剂。
激活剂靶点机制作用特点及效果参考文献、来源及供应商
Jasplakinolide(C36H45BrN4O6肌动蛋白在体外诱导肌动蛋白聚合及稳定。在体内同样诱导肌动蛋白单体聚合成F-肌动蛋白。在DMSO中溶解度>2 mg/ml。一种具有杀菌、杀虫、抗癌特性的环羧酚酸肽。无荧光且具有细胞透性的F-肌动蛋白。 [26-29], Sigma-Aldrich, EMD/Millipore, Santa Cruz Biotechnology, Invitrogen, Tocris Bioscience
紫杉醇(Taxol)(C47H51NO14微管结合于β-微管蛋白的N端,促进微管组装并抑制微管蛋白分解溶于DMSO和甲醇。抗肿瘤和抗白血病试剂。将细胞周期阻止于G2/M期。导致异常的有丝分裂并且有时会引起凋亡。 [30-32], Sigma-Aldrich, EMD/Millipore, Cell Signaling Technolgy, Cytoskeleton Inc.
鬼笔环肽(C35H48N8O11S)肌动蛋白与聚合的F-肌动蛋白结合并保持其稳定,防止解聚的发生(F-肌动蛋白转变为G-肌动蛋白)溶于乙醇和甲醇。从真菌中分离出的有毒双环七肽。干扰富含肌动蛋白的结构行使功能。鬼笔环肽的偶联物被用作确认纤维状肌动蛋白的探针。 [33-35], Sigma-Aldrich, EMD/Millipore, Tocris Bioscience, Santa Cruz Biotechnology, Enzo Life Science
表2。 常用的细胞骨架激活剂。
内质网

内质网(ER)是真核生物中一种会形成互连的膜囊泡网络的细胞器。它参与了细胞物质的合成、修饰和运输。它从细胞膜开始伸展,经过细胞质,一直与核膜相连。取决于细胞类型、细胞功能和细胞需求,内质网具有多种不同的功能。在结构与功能上,它由两种区域组成。

  • 粗面内质网:它是一系列扁平状囊泡且胞浆侧由核糖体组成。核糖体是细胞中的蛋白质合成位点。粗面内质网加工膜及分泌蛋白,在某些白细胞中产生抗体,而在胰腺细胞中产生胰岛素。其它功能还包括组装过程中的起始N-糖基化和溶酶体酶的加工。
  • 滑面内质网:它是一个光滑的微管网络并且不包含核糖体。它通常与粗面内质网相连,是那些负责将内质网产物运输到不同位点的囊泡的过渡区域。它具有多种功能,包括脂质合成、碳水化合物代谢、钙离子浓度调节、药物解毒和受体附着到细胞膜蛋白。在肌肉中,滑面内质网辅助肌肉细胞的收缩,在脑细胞中则合成雄性和雌性荷尔蒙。

内质网应激:内质网介导的蛋白折叠一旦失衡就会引起内质网应激。内质网的应激信号传导通路或应激响应被称作未折叠蛋白反应(UPR)。最初的UPR只是尝试通过停止蛋白翻译并激活可增加参与蛋白折叠的分子伴侣的信号通路来恢复细胞的正常运作。当UPR的这种初始尝试失败而扰乱还在持续的情况下,UPR就会开始诱导凋亡。

下面提到的抑制剂是用于抑制内质网功能或诱发内质网应激的,而提到的激活剂则用于诱导内质网功能或抵抗内质网应激的:

抑制剂靶点机制作用特点及效果参考文献、来源及供应商
Eeyarestatin I(C27H25Cl2N7O7内质网相关蛋白降解(ERAD)靶向p97相关的去泛素化过程(PAD)并抑制依赖于ataxin-3(atx3)的去泛素化过程。抑制内质网中Sec61介导的蛋白质转运。在DMSO中溶解度达100mM,在乙醇中溶解度达5mM。在淋巴样细胞系、BJAB、HBL-2、JEKO-1、Jurkat、KMS-12、MINO以及慢性淋巴细胞白血病中的原代白血病细胞中诱发细胞毒性。通过促凋亡蛋白NOXA诱导细胞死亡。 [36-40], Sigma-Aldrich, EMD/Millipore, Tocris Bioscience, Santa Cruz Biotechnology
DBeQ(C22H20N4内质网相关蛋白降解途径以可逆且ATP竞争性的方式(Ki = 3.2 µM)抑制ATP酶p97活性(对于野生型或C522A p97的IC50 = 1.6 µM)DMSO中溶解度达100 mM。在RPMI8226、HeLa和HEK29细胞中抑制细胞增殖。抑制caspase 3/7活性及凋亡。 [41, 42], Sigma-Aldrich, EMD/Millipore, Tocris Bioscience, BioVision Inc.
Xestospongin C(C28H50N2O2血管舒缓激肽和内质网的钙外流可逆地抑制内质网钙库中的血管舒缓激肽-和氨甲酰胆碱-Ca2+外流。溶于DMSO、乙醇和甲醇。大环双-1-oxaquinolizidine的合成形式。具有膜通透性。可逆地抑制IP3受体。 [43-45], Sigma-Aldrich, EMD/Millipore, Cayman Chemicals, Tocris Bioscience
Kifunensine(C8H12N2O6内质网相关蛋白降解(ERAD)抑制内质网相关的甘露糖苷酶活性。水(双蒸热水)中溶解度达50 mM。生物碱化合物。选择性抑制负责加工I类糖蛋白的α-甘露糖苷酶。 [46, 47], Sigma-Aldrich, EMD/Millipore, Cayman Chemicals, Tocris Bioscience, Santa Cruz Biotechnology.
衣霉素(C39H60N4O16蛋白折叠诱导内质网应激。抑制N-糖基化并阻断N-糖苷蛋白-糖类键的形成。溶于DMF、DMSO和吡啶。衣霉素A、B、C和D的混合物。引起G1期阻滞。抑制N-乙酰葡糖胺磷酸转移酶(GPT)。剂量依赖性地抑制DNA合成。 [48-50], Sigma-Aldrich, Tocris Bioscience, EMD/Millipore, Santa Cruz Biotechnology。
毒胡萝卜素(C34H50O12肌浆网Ca2+ ATP酶(SERCA)抑制肌浆网Ca2+-ATP酶。抑制自噬过程并诱发内质网应激。溶于DMSO和乙醇。可渗透细胞。诱导凋亡。被用于诱导哺乳动物细胞自噬。 [51-53], Sigma-Aldrich, EMD/Millipore, Tocris Bioscience.
ERO1抑制剂I, Erodoxin(C7H5BrN2O5内质网氧化酶1抑制剂选择性抑制酵母内质网氧化酶1(ERO1)。对小鼠ERO1α(IC50 = 400 µM)抑制较弱溶于DMSO。体外抑制依赖于ERO1的硫氧还蛋白-1(Trx1)氧化活性。与参与蛋白折叠、糖基化和细胞壁合成的基因聚类。 [54], EMD/Millipore
兔抗内质网蛋白72(623-638)多克隆抗体识别小鼠大脑、脾脏、睾丸和大鼠脑、肌肉、脾、睾丸组织中~72 kDa的ERp72蛋白。以及人宫颈上皮细胞(HeLa)、人成纤维细胞(A431)、人胸腺细胞(Hs67)和小鼠成纤维细胞(3T3)的细胞裂解物。 [55-57], EMD/Millipore, US Biological, Novus Biologicals.
表3。 常用的内质网抑制剂
激活剂靶点机制作用特点及效果参考文献、来源及供应商
5,8,11-二十碳三炔酸(C20H28O2在MDCK细胞中引发Ca2+从内质网中释放。引起Ca2+从内质网、线粒体和其它浓度达30 µM的钙库中释放出来乙醇中溶解度达25mg/ml,DMSO中溶解度达25mg/ml或溶于二甲基甲酰胺。脂肪氧化酶的抑制剂。在较高浓度下抑制环氧合酶。 [58, 59], Sigma-Aldrich, Cayman Chemicals, Enzo Life Sciences
Salubrinal(C21H17Cl3N4OS)防止内质网应激保护细胞免受内质网应激所诱导的凋亡(EC50 ~ 15 μM)。溶于DMSO。选择性抑制使真核翻译启动因子2亚基α(eIF-2α)去磷酸化的磷酸酶复合体 [60-62], Tocris Bioscience, Santa Cruz Biotechnology, EMD/Millipore.
牛磺脱氧胆酸(TUDCA)(C26H44NaNO6S)抵抗内质网应激抑制内质网应激。溶于水。被用作去垢剂来使脂质和膜结合蛋白增溶。 [60-62], Sigma Aldrich, Santa Cruz Biotechnology, EMD/Millipore.
表4。 常用的内质网激活剂。
高尔基体

高尔基体是真核细胞中的一种细胞器,是细胞内膜系统的一部分。高尔基体长约1 µM,并由两部分组成:被称为潴泡的扁平膜囊和膜封闭的小泡。它在各种蛋白分泌前的加工过程中起着重要的作用。

高尔基体的各种功能包括:它从来自粗面内质网、含有蛋白质的囊泡处接收蛋白并进行进一步修饰。细胞合成的各种大分子在分泌前或被送到各自目的地之前,都由它负责修饰、富集、分类及包装。它通过加入糖基和磷酸基团来对蛋白修饰。它在动物细胞胞外基质的蛋白聚糖合成中起着重要作用。植物细胞壁中的多糖合成位点。

抑制剂靶点机制作用特点及效果参考文献、来源及供应商
1,3-环己烷双甲胺(CBM)(C6H10(CH2NH2)2 通过高尔基体运输到质膜。在体内和体外都可以抑制外被体蛋白与高尔基体膜结合以及完整细胞的分泌溶于乙醇和乙醚 [63-65], Sigma-Aldrich, Fisher Scientific
布雷菲德菌素A(BFA)(C16H24O4膜运输、高尔基体<40 ng/ml时在许多哺乳动物细胞系中引起高尔基体解体和内质网肿胀溶于甲醇。可逆地阻断蛋白质从内质网(ER)向高尔基体的转运。高密度脂蛋白-介导的胆固醇外流的抑制剂。介导人肿瘤细胞凋亡。 [66-68], Sigma-Aldrich.Alomone Labs, Tocris Bioscience, Cell Signaling Technology, EMD/Millipore.
Golgicide A(C17H14F2N2组装和运输通过结合在Arf1和GBF1 Sec7功能域间形成的界面裂缝中选择性地可逆抑制顺面高尔基体ArfGEF GBF1。Arf属于Ras GTP酶家族并介导囊泡运输。溶于DMSO(>10 mg/ml)。导致高尔基体和反面高尔基网的解体与分散。抑制可溶性的和膜结合的蛋白质分泌。 [69, 70] Sigma-Aldrich, Tocris Bioscience, Santa Cruz Biotechnology, EMD/Millipore
1-Deoxymannojirimycin(DMM)(C6H13NO4·HCl)糖蛋白加工抑制N-糖基化。抑制甘露糖苷酶I。溶于乙醇和水。用于高尔基体介导的糖蛋白加工过程的研究。 [71-73], EMD/Millipore, Sigma-Aldrich, Tocris Bioscience, Santa Cruz Biotechnology.
表5。 常用的高尔基体抑制剂。
生物分子的分泌

分泌是指细胞或腺体产生和释放一种有用的物质,包括激素、酶、细胞因子和细胞外基质蛋白。该过程中物质被包装进囊泡然后以胞吐方式从细胞中分泌出来。

  • 分泌途径:在真核细胞中,经典的分泌过程是通过内质网、高尔基体和其它细胞内囊泡来实现的,是一个由细胞严格调控的过程。广义上来说,要输送出去的蛋白被核糖体合成后停靠在内质网上进行转运。然后含有正确折叠的蛋白的囊泡进入高尔基体。糖基化修饰后进一步进行翻译后修饰。然后蛋白质进入分泌囊泡,沿着细胞骨架移至细胞边缘。最后一步就是囊泡在一个被称为融合孔的结构处与细胞膜融合并进行胞吐,蛋白就被释放到环境中。
  • 非经典的蛋白质分泌途径:有许多蛋白不是通过牵涉到内质网和高尔基体的经典途径来分泌的,相反是利用各种不同的非经典的蛋白质分泌途径来分泌的。这些蛋白包括FGF-1(aFGF)、FGF-2(bFGF)和白细胞介素-1(IL1) [74, 75] 。

非经典的分泌机制大致可分为两种。1) 直接使物质跨过胞质蛋白的质膜进行转运,例如FGF2的分泌。2) 胞内转运中间物,例如酰基辅酶A结合蛋白的分泌 [76] 。

抑制剂靶点机制作用特点及效果参考文献、来源及供应商
CP-10447(C16H13BrN2O)载脂蛋白B(apoB)分泌抑制微粒体甘油三酯转移蛋白(MTP, MTTP)并刺激apoB的早期内质网降解溶于DMSO(≥10 mg/ml)。抑制甘油三酯分泌而不影响其合成。人体肝脏微粒体甘油三酯转运活性的有效抑制剂。 [77-79], Sigma-Aldrich, Pfizer
Exo 1(C15H12NFO3胞吐在哺乳动物细胞中通过诱导高尔基体膜解体和成管以及重新运输回内质网来可逆地抑制从内质网到高尔基体间的囊泡运输。溶于DMSO、DMF、甲醇或乙醇。它的影响仅限于高尔基体,不能影响其它的内吞细胞器。活化高尔基ARF 1(ADP核糖基化因子)GTP酶。 [80], Sigma-Aldrich, EMD Millipore
Exo 2(C18H18N4O2S)胞吐类似于BFA但是选择性更强。可能的靶点包括TGN(反面高尔基网)、高尔基体和一部分早期内涵体溶于DMSO(>20 mg/ml)。抑制志贺毒素运送到内质网。作为胞内运输的一种化学探针。 [81-83], Sigma-Aldrich, Santa Cruz Biotechnology
生长激素抑制素(C76H104N18O19S2生长激素、胰岛素和胰高血糖素抑制生长激素、胰岛素和胰高血糖素的内源性肽溶于5%乙酸,水中溶解度为0.30 mg/ml。它是一个环状十四肽。同样抑制电压门控Ca2+通道。 [84-86], Tocris Bioscience, Sigma-Aldrich, EMD/Millipore
奥曲肽(C49H66N10O10S2胃肠胰肽激素和生长激素它是一个合成的较长作用八肽,是生长激素抑制素的类似物。溶于水 [87, 88], Sigma-Aldrich, Bachem, Tocris Bioscience
SXN101742,一种定向分泌抑制剂(TSI)生长激素它靶向于GHRH(生长激素释放激素)受体并使参与GH(生长激素)胞吐过程的SNARE蛋白耗尽。TSI是来自于肉毒毒素(BoNTs)的重组蛋白。 [89, 90], Syntaxin Ltd.
抗FGF1抗体酸性成纤维细胞生长因子(aFGF)酸性成纤维细胞生长因子抗体/Beta血管内皮细胞生长因子抗体。产自于兔子或小鼠。与人反应。其应用包括WB、ELISA、IHC-P及中和。用于各种应用的方法及浓度请参考生产商的操作流程 [91-94], Sigma-aldrich, Abcam, Origene, Thermo Scientific.
表6。 常用的分泌抑制剂
激活剂靶点机制作用特点及效果参考文献、来源及供应商
α-蛛毒素诱导胞吐与蛛毒素受体结合。利用Ca2+依赖性和非依赖性的作用机制。溶于50%甘油。引起神经递质的释放。导致Ca2+非依赖性的胰岛素胞吐。刺激皮质星形胶质细胞培养物中Ca2+非依赖性的GABA和谷氨酸释放。 [95-97], Alomone Labs, EMD/Millipore, Enzo Life Sciences
那格列奈(C19H27NO3胰岛素通过增加胞浆中Ca2+浓度来引起胰腺β-细胞中的胰岛素分泌。溶于DMSO(>5 mg/ml)。它是Kir6.2/SUR1通道的抑制剂。刺激ATP敏感性钾通道依赖性和非依赖性胰岛素分泌。降血糖药。 [98-101], Sigma-Aldrich, Tocris Bioscience, TCI America
血管紧张素II(C50H71N13O12醛固酮导致肾上腺中的醛固酮释放溶于水或5%乙酸。刺激血管生成并增加微血管密度。有很强的血管收缩效果。在血管平滑肌细胞中活化p60c-src和ERK1/2、JNK及p38丝裂原活化蛋白激酶。 [102-104], Sigma-Aldrich, Calbiochem/ EMD/Millipore.
甲苯磺丁脲(磺脲类)(C12H18N2O3S)胰岛素通过直接作用于胰腺β细胞中的ATP敏感性钾通道引起胰岛素释放溶于DMSO或100%乙醇。被CYP2C9(甲苯磺丁脲羟化酶)所代谢 [105-108], Santa Cruz Biotechnology, Sigma-Aldrich, Abcam.
瑞格列奈(C27H36N2O4胰岛素关闭胰腺β细胞质膜上的ATP敏感性钾(KATP)通道在DMSO中溶解度达100 mM,在乙醇中溶解度达100 mM。体内具有降血糖效果。 [109-112], Sigma-Aldrich, Tocris Bioscience
油酸钠(CH3(CH2)7CH=CH(CH2)7COONa)载脂蛋白B100(Apo-B)增加肝脏中的载脂蛋白B100分泌溶于水(100 mg/ml)、甲醇(50 mg/ml)和乙醇。激活肝细胞中的蛋白激酶C(PKC)。在较高生理剂量下抑制载脂蛋白B100分泌。 [113, 114], Santa Cruz Biotechnology, Sigma-Aldrich, TCI America
分泌素(C130H220N44O40胰液刺激富含碳酸盐的胰液分泌溶于5%的乙酸或水。它是一种强碱性胃肠肽类激素。放松平滑肌。引起胰管线中剂量依赖性的cAMP积累。 [115-117], Sigma-Aldrich, EMD/Millipore
表7。 常用的分泌激活剂。
内吞

细胞通过内陷产生的囊泡从膜上脱落来吸收大分子和溶质的过程被称为“内吞”。内吞可大致分为两类:1)吞噬和2)胞饮。吞噬是特定细胞摄取大颗粒。胞饮是所有细胞中都发生的摄入液体和溶质过程。当泛指细胞内化时,“吞噬”和“胞饮”多数被用作同义词。主要有三种内吞途径:1)网格蛋白介导的内吞作用,2)胞膜窖介导的内吞作用和3)巨胞饮。在这三种内吞途径中,内化步骤始于质膜内陷并将该膜转变为称作内涵体的封闭囊泡。每个途径都有控制内化的一套分子。

抑制剂靶点机制作用特点及效果参考文献、来源及供应商
氯丙嗪(C17H19ClN2S · HCl)网格蛋白介导的内吞作用引起网格蛋白网络在内涵体膜上的组装并阻止细胞表面上的被膜小窝组装。溶于水和甲醇。抑制钙调蛋白依赖性的环核苷酸磷酸二酯酶和一氧化氮合成酶激活。对白血病细胞具有细胞毒性和抗增殖活性。 [118, 119], Santa Cruz Biotechnology, Sigma-Aldrich, EMD/Millipore
金雀异黄素(C15H10O5胞膜窖介导的内吞作用可逆性抑制酪氨酸激酶溶于DMSO。可渗透细胞。抑制表皮生长因子受体激酶。抗血管生成剂。抑制肿瘤细胞增殖。抑制肿瘤细胞分化。体外抑制拓扑异构酶II活性。 [119-122], Sigma-Aldrich, EMD/Millipore
β-环糊精(C42H70O35胞膜窖介导的内吞作用清除胆固醇水中溶解度达50 mg/ml。由相同的环状α1,4-糖苷键连接的D-葡萄吡喃糖单元形成的七元环。形成包合物。常用的络合剂。 [123, 124], Sigma-Aldrich, Fisher Scientific, EMD/Millipore
盐酸阿米洛利(C6H8ClN7O.HCl.H2O)巨胞饮抑制Na+/H+交换。降低膜下pH值。阻止Rac1和Cdc42的信号传导。S水中溶解度达50 mg/ml。T-型钙通道阻滞剂。抑制尿激酶纤溶酶原激活物(uPA)。抑制血管生成。 [125-127], Sigma-Aldrich, Tocris Bioscience, EMD4Bioscience, Alomone Labs
Dynasore(C18H14N2O4网格蛋白介导的内吞作用中的动力蛋白抑制动力蛋白1和2的GTP酶活性(IC50 ~15 µM)。溶于DMSO和乙醇。同样抑制Drp1(线粒体)。会引起纤维化并在胸膜间皮细胞中诱导PAI-1。抑制BSC1细胞的细胞铺展和迁移。 [128-130], Sigma-Aldrich, Tocris Bioscience, Santa Cruz Biotechnology, EMD4Bioscience, Abcam
非律平(C35H58O11胞膜窖介导的内吞作用与膜上的胆固醇结合并形成超微机构聚集与复合。非律平由4个异构的多烯大环内酯组成。非律平III是主要成分。抗生素和抗真菌。抑制朊蛋白(PrP)的内吞。 [123, 131-133], Cayman Chemical, Sigma-Aldrich, Santa Cruz Biotechnology.
制霉菌素(C47H75NO17胞膜窖介导的内吞作用胆固醇隔离。溶于DMSO、DMF、乙醇和甲醇。抗微生物(酵母、支原体)。增加Na+ - K+泵活性。 [134-136], Sigma-Aldrich, EMD4Bioscience, Invitrogen
莫能菌素(C36H61O11。 Na)内涵体成熟阻止内涵体酸化溶于氯仿、乙醇和甲醇。聚醚类抗生素。Na+离子载体。阻断糖蛋白分泌。阻断神经酰胺在高尔基体中的运输 [137-140], Sigma-Aldrich, EMD/Millipore, Enzo Life Sciences
磷酸氯喹(C18H26ClN3·2H3PO4内涵体成熟它是一种可以装入内涵体和溶酶体这样的酸性囊泡的弱碱,从而抑制内涵体酸化和溶酶体酶活性。水中溶解度达100 mM。内涵体Toll样受体抑制剂(拮抗剂)。在许多癌症细胞系中抑制细胞生长并诱导细胞死亡。 [128, 139, 141], Sigma-Aldrich, Tocris Bioscience, Imgenex
渥曼青霉素(C23H24O8巨胞饮抑制磷脂酰肌醇-3激酶(PI3激酶)(IC50 = 5nM)溶于DMSO。具有细胞通透性。在很高浓度时抑制肌球蛋白轻链激酶和PI4激酶活性。抑制polo样激酶1(PLK1)(IC50 = 5.8 nM)。 [142-145], Cell Signaling Technology, Sigma-Aldrich, Tocris Bioscience, EMD/Millipore
表8。 常用的内吞作用抑制剂。HOE.64和LY294002是另外两种巨胞饮抑制剂。单丹磺酰尸胺和巴弗洛霉素A1是用于研究网格蛋白介导的内吞作用的另外两种抑制剂。
激活剂靶点机制作用特点及效果参考文献、来源及供应商
佛波醇-12-十四酸酯-13-乙酸酯(PMA)(C36H56O8)(佛波酯)巨胞饮在体内和体外都激活蛋白激酶C。诱导膜转运和酶激活。DMSO中可溶解至100 mM,在乙醇中可溶解至10 mM。具有感光性。强力的肿瘤诱发物 [146-148], Sigma-Aldrich, Enzo Life Sciences, Tocris Bioscience, Abcam
12-O-十四烷酰佛波醋酸酯-13(TPA)(C36H56O8)(佛波酯)内吞作用结合并激活蛋白激酶C溶于DMSO和乙醇。具有感光性。强力的肿瘤诱发物。人单核U937细胞中诱导凋亡。 [149-152], Sigma-Aldrich, Cell signaling technology
表9。 常用的内吞作用激活剂。12,13-二丁酸佛波醇是另一种类似于PMA和TPA的佛波酯,被用于刺激内吞摄取。
核运输

核运输主要是通过核孔复合物(NPC)进行的。离子和小分子是通过被动扩散穿越NPC来进行转运的。较大核蛋白质、RNA及核糖核蛋白的输入由核定位信号(NLS)介导停靠于核孔。另一方面,核输出是由核输出信号(NES)介导的。

核输入途径大致由四步组成:1)在输入物、输入蛋白α和输入蛋白β间形成三聚复合物,2)将复合物停靠于NPC(核孔复合物),3)通过中央通道进行转位,4)复合物解离并将输入物释放到核质中。

抑制剂靶点机制作用特点及效果参考文献、来源及供应商
麦胚凝集素(WGA)核输入通过直接与核孔相互作用来抑制核蛋白运输。细胞生物学中广泛使用的一种外源凝集素。对N-乙酰-β-D-葡糖胺基和N-乙酰-β-D-葡糖胺寡聚物有亲和性。用于细胞粘附研究。也用于影响淋巴细胞活化及研究基于糖类的治疗方法。 [153-155], Sigma-Aldrich, Polysciences Inc., Invitrogen
来普霉素A(C32H46O6核输出直接与CRM1(输出蛋白-1)这一主要的核输出蛋白结合。溶于甲醇和乙醇。来普霉素A和B的性质是很相似的。具有细胞通透性,抗真菌及抗生素。可以诱导野生型ERK5在核内积聚。 [156, 157], Sigma-Aldrich, Santa Cruz Biotechnology, EMD/Millipore
来普霉素B(C33H48O6核输出抑制核运输受体Crm1,该蛋白用于识别底物蛋白中被称为核输出序列(NES)的短肽溶于乙醇。抗真菌、抗生素。抗肿瘤细胞毒素。比来普霉素A效力强两倍。受来普霉素B影响的含NES的蛋白包括HIV-1 REV、肌动蛋白、c-Abl、细胞周期蛋白B1、MDM2/p53、MPF、PKA和MEK。 [158-160], LC labs, Sigma-Aldrich, Cell signaling technology, EMD/Millipore
Ratjadone A(C28H40O5核输出通过与CRM1共价结合来抑制含有LR-NES(富含亮氨酸的核输出信号)的蛋白溶于含水缓冲液和甲醇。可通透细胞的聚酮。抗生素。与来普霉素B一样有效。抑制扩增。导致肿瘤细胞在G1期发生细胞周期阻滞。 [161-163], Sigma-Aldrich, EMD/Millipore, Cell signaling technology, Santa Cruz Biotech.
依维菌素(C48H74O14(22,23-dihydroavermectin B1a)+ C47H72O14 (22,23dihydroavermectin B1b)核输入最近被发现对于输入蛋白α/β介导的核输入具有广谱作用抗病毒。对于研究蛋白质核输入十分有用。调节谷氨酸-GABA活化的氯通道。 [164-166], MP Biomedicals, Sigma-Aldrich, Fisher Scientific
表10。 核运输的常用抑制剂。

一般为了诱导核输入会将设计成NLS的肽段结合在输入底物上。另一方面,针对诸如输入蛋白和运蛋白等可以识别NLS的核运输受体而设计的细胞通透性肽被用于抑制核运输 [167] 。

细胞收缩

在特定胞内Ca2+浓度下,磷脂酶C(PLC)、蛋白激酶C(PKC)、Rho GTP酶、Rho激酶(RhoA的下游效应蛋白)、肌球蛋白轻链激酶(MLCK)和肌球蛋白轻链磷酸酶(MLCPh)都会参与细胞收缩过程。

细胞生物学研究中的激活剂和抑制剂 图 2
图 2. 细胞收缩。

MLCK和MLCPh的作用:细胞收缩主要由肌动蛋白和肌球蛋白介导。肌球蛋白轻链的磷酸化会诱发肌动蛋白和肌球蛋白分子之间的相互作用。肌球蛋白轻链的磷酸化是由肌球蛋白轻链激酶(MLCK)活化与肌球蛋白轻链磷酸酶(MLCPh)之间的平衡所决定的。

Rho GTP酶和Rho激酶的作用:细胞通过粘附位点与微环境间的相互作用会活化Rho GTP酶。活化的Rho GTP酶会与丝氨酸/苏氨酸激酶、Rho激酶、ROK及相关的p160ROCK等激酶结合并提高它们的活性。活化的Rho-激酶会抑制肌球蛋白磷酸酶的活性,从而促使肌球蛋白轻链(MLC)磷酸化。

PLC、 Ca2+和PKC的作用 [168] :收缩过程始于磷脂酶C(PLC)活化,从而产生两种第二信使,甘油二酯(DG)和肌醇1,4,5-三磷酸(IP3)。IP3会导致Ca2+从肌质网中释放出来。Ca2+会以两种方式来诱导收缩:1)Ca2+与DG一起激活蛋白激酶C。PKC则通过使L型Ca2+通道和其它调控横桥周期的蛋白发生磷酸化来进一步促进收缩,2)Ca2+与钙调蛋白结合并活化肌球蛋白轻链激酶(MLCK)。

现在用于研究细胞收缩途径的各种抑制剂和激活剂包括:

抑制剂靶点机制作用特点及效果参考文献、来源及供应商
星孢菌素(C28H26N4O3肌球蛋白轻链激酶(MLCK)、蛋白激酶C(PKC)抑制肌球蛋白轻链激酶(IC50 = 1.3 nM)、蛋白激酶C(IC50 = 700 pM)溶于DMSO和甲醇。也抑制蛋白激酶A(IC50 = 7 nM)和蛋白激酶G(IC50 = 8.5 nM)。将正常细胞的细胞周期阻滞于G1期检查点。 [169-171], Cell signaling Technology Inc., Sigma-Aldrich, EMD/Millipore, Tocris Bioscience, Enzo Life Sciences
Y-27632(C14H21N3O · 2HCl)ROCKRho关联蛋白激酶的可逆选择性抑制剂(p160ROCK的Ki = 140 nM)。同样抑制ROCK-II。这种抑制对于ATP是竞争性的。在水中可溶达14 mg/ml。抑制激动剂诱导的肌球蛋白磷酸化和平滑肌收缩的Ca2+致敏。同样抑制蛋白激酶C相关激酶(IC50 = 600 nM)。已经被发现会阻止凋亡并增加解离的人胚胎干细胞的存活率及克隆效率而不影响其多能性 [172-175], Sigma-Aldrich, EMD/Millipore, Tocris Bioscience, Stemgent.
H-1152(C16H21N3O2S.2HCl)ROCK选择性的ATP竞争性rho激酶(ROCK)抑制剂在水中溶达100 mM,在DMSO中溶达50 mM in DMSO。比Y-27632的效力及选择性更强。对于其它丝氨酸/苏氨酸激酶的亲和性较弱(PKA的Ki=630nM,PKC的为9.27m而MLCK的为10.1mM)。 [176-179], Tocris Bioscience, Enzo Life Sciences, Sigma-Aldrich, Santa Cruz Biotechnology,
ML-9(C15H17N2O2SCl · HCl)肌球蛋白轻链激酶(MLCK)、蛋白激酶C(PKC)肌球蛋白轻链激酶(MLCK)(Ki = 4 μM)和PKC(Ki = 54 μM)的选择性抑制剂在DMSO中溶达25 mM。抑制PKA(Ki = 32 μM)。 浓度为10-100 µM时抑制血管平滑肌张力并降低胞内Ca2+浓度。 [180-182], Tocris Bioscience, Cayman Chemical, Sigma-Aldrich, EMD/Millipore
ML-7(C15H17IN2O2S · HCl)肌球蛋白轻链激酶(MLCK)肌球蛋白轻链激酶的ATP竞争性选择抑制剂(Ki = 300 nM)溶于DMSO或50%乙醇。在较高浓度时抑制蛋白激酶A(Ki = 21 µM)和蛋白激酶C(Ki = 42 µM)。ML-9的衍生物。与ML-9相比是更加强劲的抑制剂。 [180, 183, 184], Sigma-Aldrich, Tocris Bioscience, Santa Cruz Biotechnology, EMD/Millipore
K-252a(C27H21N3O5MLCK、PKC抑制PKC(IC50 = 32.9 nM)和MLCK(Ki = 20 nM)。作为ATP竞争性抑制剂同样抑制PKA、PKG、CaMK、磷酸化酶激酶、MAP激酶和受体酪氨酸激酶的trk家族。溶于DMF或DMSO。星孢菌素类似物。阻止下游效应蛋白(MAPK、Akt)的自磷酸化与活化。通过抑制Cdc2和Cdc25来引起凋亡和细胞周期阻滞。 [185-188], LC Laboratories, Tocris Bioscience, EMD/Millipore/Millipore, Invitrogen, Sigma-Aldrich
三氟拉嗪钙调蛋白钙调蛋白拮抗剂。抑制Ca2+/钙调蛋白依赖性的磷酸二酯酶。吩噻嗪类抗精神病D2多巴胺受体拮抗剂,抑制门控阳离子通道(IC50 = 13 µM)并抑制肝鸟氨酸脱羧酶活性。 [189] Sigma-Aldrich, EMD/Millipore
W-7(C16H21ClN2O2S · HCl)钙调蛋白抑制Ca2+/钙调蛋白活化的磷酸二酯酶(IC50 = 28 µM)和肌球蛋白轻链激酶(IC50 = 51 µM)。抑制仓鼠卵巢K1细胞增殖 [190-192], Sigma-Aldrich, EMD/Millipore, Santa Cruz Biotechnology
表11。 常用的细胞收缩抑制剂。
激活剂靶点机制作用特点及效果参考文献、来源及供应商
内皮素I(C109H159N25O32S5MLC磷酸化有效的血管收缩剂。 内皮素I通过激活Rho激酶途径以及之后的MLC磷酸化来调节收缩在1%乙酸和水中溶解度 >1mg/ml。诱导缺氧诱导因子1α及VEGF的产生。在表达ETA受体的成纤维细胞中激活PLC。 [193-196], Sigma-Aldrich, EMD/Millipore, Fisher
Calpeptin(C20H30N2O4Rho GTP酶激活RhoA、B和C。RhoA的激活可能是由于抑制了肌球蛋白轻链磷酸化。溶于DMSO和DMF。它是钙蛋白酶这种Ca2+依赖性的蛋白酶的抑制剂,组织蛋白酶L的有效抑制剂并且优先抑制膜相关酪氨酸磷酸酶活性。 [197, 198], Cytoskeleton Inc., Santa Cruz Biotechnology, Tocris Bioscience, EMD/Millipore
佛波醇 12-十四酸酯-13-乙酸酯(PMA)(C36H56O8蛋白激酶C与PKC可逆结合光敏的。溶于DMSO和乙醇。甚至在nM浓度时就能在体外和体内激活PKC。它也是强力的肿瘤诱发物。 [199-201], Sigma-Aldrich, EMD/Millipore
密执毒素(C38H38O10蛋白激酶C在nM浓度时活化蛋白激酶。在乙醇中100%可容。肿瘤诱发物。诱导白细胞介素1α,与植物血凝素一起诱导干扰素。 [202, 203], Sigma-Aldrich, Santa Cruz Biotechnology
BAY K 8644(C16H15F3N2O4Ca2+通道L型Ca2+通道激活剂(EC50 = 17.3 nM)溶于甲醇(63 mg/ml)、乙醇(63 mg/ml)和DMSO(20 mg/ml)。抑制自噬。促进β-细胞增殖与再生。 [204-206] Tocris Bioscience, Sigma-Aldrich, Santa Cruz Biotechnology, EMD/Millipore
12,13-二丁酸佛波醇(PDBu)(C28H40O8蛋白激酶C活化蛋白激酶C光敏的。溶于水、DMSO、丙酮、乙醇。由于相对不疏水,比PMA更容易从组织培养中的细胞内清洗出来。引起Na+,K+-ATP酶的磷酸化。也会促使生成一氧化氮。 [177, 207, 208], Sigma-Aldrich, EMD/Millipore
表12。 细胞收缩的常用激活剂。
细胞粘附(细胞-细胞间粘附和细胞与微环境间的粘附)

细胞粘附:细胞利用细胞粘附分子与胞外基质、其它细胞或细胞培养物的表面发生相互作用并发生粘附。细胞粘附分子(CAM)包括选择素、整合素和钙粘素。每种粘附分子识别不同的分子且功能各异。

细胞生物学研究中的激活剂和抑制剂 图 3
图 3. 细胞粘附分子(CAM)。大多数CAM属于四大家族:整合素、钙粘蛋白、选择素及包含PECAM-1和ICAM-1的免疫球蛋白超家族。CAM参与嗜同种受体反应,如与相同类型的其它CAM相互作用,或是参与与其它CAM抑或是胞外基质(ECM)间的嗜异种受体反应。

细胞-细胞间相互作用:细胞-细胞间粘附主要由钙粘素调节。

细胞-微环境间的相互作用:细胞与ECM(胞外基质)间的粘附主要由整合素调节。

细胞连接
锚定连接:它们包括粘着连接、桥粒与半桥粒。

粘着连接见于多种细胞类型,在上皮细胞中十分常见。细胞连接的胞质侧与肌动蛋白细胞骨架相连。此处钙粘素受体通过它们的嗜同种受体反应跨过相邻的质膜。

桥粒是专门用于细胞与细胞间粘附的,常见于源自外胚层的细胞系。它们帮助细胞抵抗机械应力。在上皮、肌肉组织中结合细胞时以及维持皮肤和心脏等器官的完整性中都需要它们 [209, 210] 。半桥粒形式类似桥粒。与将两个细胞结合在一起的桥粒不同的是,半桥粒将细胞与胞外基质相连。 

间隙连接:它们由小通道构成的阵列组成,每个通道由两个连接子组成并直接与两个细胞的胞质相连。它们辅助两个细胞间的各种分子及离子的运输,从而调节机电偶联。
紧密连接:也被称作封闭连接,通过形成一个不可渗透的阻碍物来封闭两个细胞间的间隙。它们直接与两个细胞的细胞骨架相连。
突触:它们是神经系统的一部分。
细胞粘附分子(CAM)

整合素:它们是一个异二聚体的跨膜糖蛋白家族。它们由120-170 kDa的大“α”亚基与90-100 kDa的小“β”亚基组成。由9种β亚基和24种α亚基可以组成各种整合素 [211-214] 。

选择素:它们是结合糖部分的单链跨膜糖蛋白。有3种选择素,即L-、E-和P-选择素。 [215-218] 。

钙粘素:它们是一类依赖钙离子行使功能的1型跨膜蛋白。它们是细胞粘附分子(CAM)的一个超家族并可以分成几个亚类,包括E-、N-和P-钙粘素 [219-222] 。免疫球蛋白超家族(IgSF CAMs):Ig超家族成员包括NCAM(神经细胞粘附分子)、ICAM-1(细胞间黏附分子)、VCAM-1(血管细胞粘附分子)和PECAM-1(血小板内皮细胞粘附分子)。

抑制剂靶点机制作用特点及效果参考文献、来源及供应商
蛇毒锯鳞蝰素(α1型)(C217H341N71O74S9细胞粘附ECM整合素β1和β3水中溶达1 mg/ml。去整合素家族成员。扰乱破骨细胞粘附到骨骼。抑制黑色素瘤细胞及成纤维细胞与纤维粘连蛋白的粘附。抑制血小板聚集。 [223-226], Sigma Aldrich, Tocris Bioscience
聚(甲基丙烯酸羟乙酯)(C6H10O3)n细胞与组织培养处理过的表面间的粘附。抑制培养容器中细胞粘附到生长表面溶于乙醇。水溶胀性的多聚物。 [227, 228], Sigma Aldrich, Santa Cruz Biotechnology, Polysciences Inc.
CyloRGDfV(C26H38N8O7)或RGDS肽细胞与RGD结合它是一种含RGD序列的肽拮抗剂。针对α(V)β(3)整合素。被用于抑制细胞与玻连蛋白和纤维连接蛋白等RGD蛋白结合。 [229-231], Sigma-Aldrich, Anaspec, GenScript, Tocris Bioscience
KF 38789(C19H21NO5S)P-选择素介导的细胞粘附特异性抑制P-选择素介导的细胞粘附(IC50 = 1.97 μM)。DMSO中溶达100 mM。 [232-234], Tocris Bioscience, R&D systems, Santa Cruz Biotechnology
A 205804(C15H12N2OS2细胞-细胞间粘附(E-selectin、ICAM-1)特异性抑制E-选择素和ICAM-1表达。DMSO中可溶解至100 mM,在乙醇中可溶解至10 mM。 [235-237], Tocris Bioscience, R&D systems, Santa Cruz Biotechnology
A 286982(C24H27N3O4S)细胞-细胞间粘附(LFA-1 - ICAM-1)抑制LFA-1/ICAM-1相互作用。DMSO中溶达100 mM,乙醇中溶达50 mM [238, 239], Tocris Bioscience, R&D systems, Santa Cruz Biotechnology
FAK抑制剂14(1,2,4,5-苯四胺四盐酸)(C6H10N4.4HCl)细胞粘附(局部粘着斑激酶)特异性地抑制局部粘着斑激酶(FAK)。体外抑制细胞粘附。溶于水和DMSO。 [240], Tocris Bioscience, Sigma Aldrich, Selleck Chemicals, R&D systems, Santa Cruz Biotechnology
PF 573228(C22H20F3N5O3S)细胞粘附(局部粘着斑激酶)特异性地抑制局部粘着斑激酶(FAK)(IC50 = 4 nM)。溶于DMSO。阻断血清和纤维连接蛋白介导的定向迁移。非受体酪氨酸激酶抑制剂。 [241, 242] Tocris Bioscience, Sigma Aldrich, Santa Cruz Biotechnology
Obtustatin(C184H284N52O57S8细胞粘附(α1β1抑制剂)41个氨基酸的去整合素肽,极强的整合素α1β1抑制剂水中溶达2 mg/ml。体内抑制血管生成。不含有经典的RGD序列。 [243-245], Smartox biotechnology, Tocris Bioscience, R&D systems
Lebestatin整合素介导的细胞粘附去整合素家族成员。 [243, 246]
依替巴肽(C35H49N11O9S2糖蛋白IIa/IIIb血小板受体整合素糖蛋白IIb/IIIa溶于水。抑制血小板聚集。 [247], Fisher Scientific, Tocris Bioscience, R&D systems
表13。 细胞连接的常用抑制剂。抗粘附分子抗体也被用于抑制细胞粘附,包括抗E-钙粘蛋白抗体、抗联接蛋白32抗体、抗NCAM1抗体和抗zo-1抗体。
激活剂靶点机制作用特点及效果参考文献、来源及供应商
肽F9(C110H175N31O27S2细胞粘附与肝素结合。溶于水。它是来自于层粘连蛋白B1链上的肝素结合域。 [248, 249], Tocris Bioscience, R&D systems
RGD肽细胞粘连与整合素结合用于引导整合素介导的细胞在生物材料、多聚物和纳米颗粒上的粘附。 [250-252], Santa Cruz Biotechnology, Anaspec, Sigma-Aldrich, Enzo life sciences
表14。 常用的细胞连接激活剂。
文献中的活化剂和抑制剂

来邦网系统性地调查文献中的抗体和其他试剂,仪器的应用。 至2015年10月17日,2555文章已被查阅, (总共10598篇; 文章的其他部分只查阅抗体的应用)。表15列出这2555的文章引用的活化剂和抑制剂和他们的主要供应商。

文献
化学名总文献数供应商供应商文献数
细胞骨架
细胞松弛素B5
Sigma5 [253-257]
细胞松弛素D5
Sigma4 [258-261]
Tocris1 [262]
Latrunculin A4
Life Tech/Molecular Probes1 [263]
EMD/Millipore1 [264]
Cayman chemical1 [260]
Sigma1 [265]
Latrunculin B4
BioMol/Enzo2 [262, 266]
EMD/Millipore2 [267, 268]
Nocodazole12
Sigma8 [269-276]
EMD/Millipore2 [261, 277]
Invitrogen1 [278]
Applied Precision1 [279]
紫杉醇(Paclitaxel)5
Sigma3 [280-282]
Calbiochem3 [283]
Cytoskeleton3 [284]
鬼笔环肽(Phalloidin)44
Life Tech36 [258, 278, 285-316]
Sigma8 [317-324]
内质网(Endoplasmic Reticulum)
Xestospongin C1
EMD/Millipore1 [325]
Kifunensine1
Toronto Research Chemicals1 [326]
衣霉素(Tunicamycin)8
Sigma4 [327-330]
EMD/Millipore4 [262, 331-333]
毒胡萝卜素(Thapsigargin)11
Sigma9 [332-340]
EMD/Millipore2 [262, 331]
高尔基体(Golgi)
布雷菲德菌素A(Brefeldin A)19
Sigma15 [264, 329, 341-354]
BD Biosciences3 [355-357]
Life Technologies1 [358]
内吞(Endocytosis)
β-Cyclodextrin6
Sigma6 [259, 304, 359-362]
Filipin3
Sigma3 [363-365]
制霉菌素(Nystatin)2
Sigma2 [366, 367]
莫能菌素(Monensin)3
Sigma1 [368]
BD Biosciences1 [369]
eBioscience1 [370]
磷酸氯喹(Chloroquin)5
Sigma5 [328, 371-374]
渥曼青霉素(Wortmannin)9
EMD/Millipore5 [331, 339, 375-377]
Sigma2 [378, 379]
Enzo1 [380]
Cell Signaling Technologies1 [381]
佛波酯(Phorbol ester ; PMA/TPA)37
Sigma28 [253, 292, 335, 346, 350-352, 356, 369, 382-400]
EMD/Millipore6 [344, 401-405]
Enzo1 [339]
AppliChem1 [406]
Cell Signaling Technology1 [407]
细胞收缩 (Cell Contraction)
星孢菌素(staurosporine)5
Sigma5 [366, 408-411]
Table 15。 至2015年10月17日, 来邦网查阅的10598篇文献中的活化剂和抑制剂和他们的主要供应商。
参考文献
  1. Iqbal A, Regan-Komito D, Christou I, White G, McNeill E, Kenyon A, et al. A real time chemotaxis assay unveils unique migratory profiles amongst different primary murine macrophages. PLoS ONE. 2013;8:e58744 pubmed publisher
  2. Goddette D, Frieden C. Actin polymerization. The mechanism of action of cytochalasin D. J Biol Chem. 1986;261:15974-80 pubmed
  3. Schulze C, Müller K, KAS J, Gerdelmann J. Compaction of cell shape occurs before decrease of elasticity in CHO-K1 cells treated with actin cytoskeleton disrupting drug cytochalasin D. Cell Motil Cytoskeleton. 2009;66:193-201 pubmed publisher
  4. Coue M, Brenner S, Spector I, Korn E. Inhibition of actin polymerization by latrunculin A. FEBS Lett. 1987;213:316-8 pubmed
  5. de Oliveira C, Mantovani B. Latrunculin A is a potent inhibitor of phagocytosis by macrophages. Life Sci. 1988;43:1825-30 pubmed
  6. Oliveira C, Kashman Y, Mantovani B. Effects of latrunculin A on immunological phagocytosis and macrophage spreading-associated changes in the F-actin/G-actin content of the cells. Chem Biol Interact. 1996;100:141-53 pubmed
  7. Liu X, Wu Z, Sheibani N, Brandt C, Polansky J, Kaufman P. Low dose latrunculin-A inhibits dexamethasone-induced changes in the actin cytoskeleton and alters extracellular matrix protein expression in cultured human trabecular meshwork cells. Exp Eye Res. 2003;77:181-8 pubmed
  8. Gronewold T, Sasse F, Lunsdorf H, Reichenbach H. Effects of rhizopodin and latrunculin B on the morphology and on the actin cytoskeleton of mammalian cells. Cell Tissue Res. 1999;295:121-9 pubmed
  9. Moscatelli A, Idilli A, Rodighiero S, Caccianiga M. Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes. Plant Biol (Stuttg). 2012;: pubmed
  10. Morton W, Ayscough K, McLaughlin P. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol. 2000;2:376-8 pubmed
  11. Guerriero C, Weisz O. N-WASP inhibitor wiskostatin nonselectively perturbs membrane transport by decreasing cellular ATP levels. Am J Physiol Cell Physiol. 2007;292:C1562-6 pubmed
  12. Wegner A, Nebhan C, Hu L, Majumdar D, Meier K, Weaver A, et al. N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. J Biol Chem. 2008;283:15912-20 pubmed publisher
  13. Legg J, Bompard G, Dawson J, Morris H, Andrew N, Cooper L, et al. N-WASP involvement in dorsal ruffle formation in mouse embryonic fibroblasts. Mol Biol Cell. 2007;18:678-87 pubmed
  14. Lázaro-Diéguez F, Jimenez N, Barth H, Koster A, Renau-Piqueras J, Llopis J, et al. Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH. Cell Motil Cytoskeleton. 2006;63:778-91 pubmed
  15. Saito S, Watabe S, Ozaki H, Fusetani N, Karaki H. Mycalolide B, a novel actin depolymerizing agent. J Biol Chem. 1994;269:29710-4 pubmed
  16. Hori M, Saito S, Shin Y, Ozaki H, Fusetani N, Karaki H. Mycalolide-B, a novel and specific inhibitor of actomyosin ATPase isolated from marine sponge. FEBS Lett. 1993;322:151-4 pubmed
  17. Vasquez R, Howell B, Yvon A, Wadsworth P, Cassimeris L. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol Biol Cell. 1997;8:973-85 pubmed
  18. Park H, Hong S, Hong S. Nocodazole is a High-Affinity Ligand for the Cancer-Related Kinases ABL, c-KIT, BRAF, and MEK. ChemMedChem. 2012;7:53-6 pubmed publisher
  19. Jordan M, Thrower D, Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci. 1992;102:401-16 pubmed
  20. Baudoin J, Alvarez C, Gaspar P, Metin C. Nocodazole-induced changes in microtubule dynamics impair the morphology and directionality of migrating medial ganglionic eminence cells. Dev Neurosci. 2008;30:132-43 pubmed
  21. Lobert S, Ingram J, Correia J. Additivity of dilantin and vinblastine inhibitory effects on microtubule assembly. Cancer Res. 1999;59:4816-22 pubmed
  22. Zhou Q, Lui V, Lau C, Cheng S, Ng M, Cai Y, et al. Sustained antitumor activity by co-targeting mTOR and the microtubule with temsirolimus/vinblastine combination in hepatocellular carcinoma. Biochem Pharmacol. 2012;83:1146-58 pubmed publisher
  23. Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008;28:155-83 pubmed
  24. Burns R. Analysis of the colchicine-binding site of beta-tubulin. FEBS Lett. 1992;297:205-8 pubmed
  25. Hastie S. Interactions of colchicine with tubulin. Pharmacol Ther. 1991;51:377-401 pubmed
  26. Ge S, White J, Haynes C. Cytoskeletal F-actin, not the circumferential coil of microtubules, regulates platelet dense-body granule secretion. Platelets. 2012;23:259-63 pubmed publisher
  27. Novichkova E, Onishchenko G, Shtil A. Microtubule depolymerization by vincristine causes cell death after transition from C mitosis to interphase. Dokl Biol Sci. 2003;393:575-8 pubmed
  28. Hanauske A, Depenbrock H, Shirvani D, Rastetter J. Effects of the microtubule-disturbing agents docetaxel (Taxotere), vinblastine and vincristine on epidermal growth factor-receptor binding of human breast cancer cell lines in vitro. Eur J Cancer. 1994;30:1688-94 pubmed
  29. Zhang X, Cui X, Cheng L, Guan X, Li H, Li X, et al. Actin stabilization by jasplakinolide affects the function of bone marrow-derived late endothelial progenitor cells. PLoS ONE. 2012;7:e50899 pubmed publisher
  30. Holzinger A. Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods Mol Biol. 2009;586:71-87 pubmed publisher
  31. Bubb M, Senderowicz A, Sausville E, Duncan K, Korn E. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem. 1994;269:14869-71 pubmed
  32. Bubb M, Spector I, Beyer B, Fosen K. Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem. 2000;275:5163-70 pubmed
  33. Long B, Fairchild C. Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res. 1994;54:4355-61 pubmed
  34. Schiff P, Fant J, Horwitz S. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665-7 pubmed
  35. Rowinsky E, Cazenave L, Donehower R. Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst. 1990;82:1247-59 pubmed
  36. Wiseman H, Lieblich A. Individuation in a collective community. Adolesc Psychiatry. 1992;18:156-79 pubmed
  37. Coluccio L, Tilney L. Phalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol. 1984;99:529-35 pubmed
  38. Wehland J, Osborn M, Weber K. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc Natl Acad Sci U S A. 1977;74:5613-7 pubmed
  39. Cross B, McKibbin C, Callan A, Roboti P, Piacenti M, Rabu C, et al. Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. J Cell Sci. 2009;122:4393-400 pubmed publisher
  40. McKibbin C, Mares A, Piacenti M, Williams H, Roboti P, Puumalainen M, et al. Inhibition of protein translocation at the endoplasmic reticulum promotes activation of the unfolded protein response. Biochem J. 2012;442:639-48 pubmed publisher
  41. Wang Q, Mora-Jensen H, Weniger M, Perez-Galan P, Wolford C, Hai T, et al. ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc Natl Acad Sci U S A. 2009;106:2200-5 pubmed publisher
  42. Wang Q, Shinkre B, Lee J, Weniger M, Liu Y, Chen W, et al. The ERAD inhibitor Eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. PLoS ONE. 2010;5:e15479 pubmed publisher
  43. Aletrari M, McKibbin C, Williams H, Pawar V, Pietroni P, Lord J, et al. Eeyarestatin 1 interferes with both retrograde and anterograde intracellular trafficking pathways. PLoS ONE. 2011;6:e22713 pubmed publisher
  44. Yi P, Higa A, Taouji S, Bexiga M, Marza E, Arma D, et al. Sorafenib-mediated targeting of the AAA⁺ ATPase p97/VCP leads to disruption of the secretory pathway, endoplasmic reticulum stress, and hepatocellular cancer cell death. Mol Cancer Ther. 2012;11:2610-20 pubmed publisher
  45. Chou T, Brown S, Minond D, Nordin B, Li K, Jones A, et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc Natl Acad Sci U S A. 2011;108:4834-9 pubmed publisher
  46. Devarajan A, Grijalva V, Bourquard N, Meriwether D, Imaizumi S, Shin B, et al. Macrophage paraoxonase 2 regulates calcium homeostasis and cell survival under endoplasmic reticulum stress conditions and is sufficient to prevent the development of aggravated atherosclerosis in paraoxonase 2 deficiency/apoE-/- mice on a Western diet. Mol Genet Metab. 2012;107:416-27 pubmed publisher
  47. Chao C, Huang C, Lu D, Wong K, Chen Y, Cheng T, et al. Ca2+ store depletion and endoplasmic reticulum stress are involved in P2X7 receptor-mediated neurotoxicity in differentiated NG108-15 cells. J Cell Biochem. 2012;113:1377-85 pubmed publisher
  48. de Smet P, Parys J, Callewaert G, Weidema A, Hill E, De Smedt H, et al. Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-trisphosphate receptor and the endoplasmic-reticulum Ca(2+) pumps. Cell Calcium. 1999;26:9-13 pubmed
  49. Wang F, Song W, Brancati G, Segatori L. Inhibition of endoplasmic reticulum-associated degradation rescues native folding in loss of function protein misfolding diseases. J Biol Chem. 2011;286:43454-64 pubmed publisher
  50. Hering K, Karaveg K, Moremen K, Pearson W. A practical synthesis of kifunensine analogues as inhibitors of endoplasmic reticulum alpha-mannosidase I. J Org Chem. 2005;70:9892-904 pubmed
  51. Pang X, He G, Liu Y, Wang Y, Zhang B. Endoplasmic reticulum stress sensitizes human esophageal cancer cell to radiation. World J Gastroenterol. 2013;19:1736-48 pubmed publisher
  52. Wu Z, Li Y, Huang A, Li M, Zhang X, Wang J, et al. Endoplasmic reticulum stress induced by tunicamycin and antagonistic effect of Tiantai No.1 (1) on mesenchymal stem cells. Chin J Integr Med. 2010;16:41-9 pubmed publisher
  53. Duriez M, Rossignol J, Sitterlin D. The hepatitis B virus precore protein is retrotransported from endoplasmic reticulum (ER) to cytosol through the ER-associated degradation pathway. J Biol Chem. 2008;283:32352-60 pubmed publisher
  54. Földi I, Tóth A, Szabo Z, Mozes E, Berkecz R, Datki Z, et al. Proteome-wide study of endoplasmic reticulum stress induced by thapsigargin in N2a neuroblastoma cells. Neurochem Int. 2013;62:58-69 pubmed publisher
  55. Treiman M, Caspersen C, Christensen S. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases. Trends Pharmacol Sci. 1998;19:131-5 pubmed
  56. Ding W, Ni H, Gao W, Hou Y, Melan M, Chen X, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 2007;282:4702-10 pubmed
  57. Blais J, Chin K, Zito E, Zhang Y, Heldman N, Harding H, et al. A small molecule inhibitor of endoplasmic reticulum oxidation 1 (ERO1) with selectively reversible thiol reactivity. J Biol Chem. 2010;285:20993-1003 pubmed publisher
  58. Voinnesson A, Salaun M. [Hereditary dysfibrinogenaemia. Study of a family (author's transl)]. Sem Hop. 1979;55:1507-12 pubmed
  59. Li X, Lee A. Competitive inhibition of a set of endoplasmic reticulum protein genes (GRP78, GRP94, and ERp72) retards cell growth and lowers viability after ionophore treatment. Mol Cell Biol. 1991;11:3446-53 pubmed
  60. Kuznetsov G, Chen L, Nigam S. Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum. J Biol Chem. 1997;272:3057-63 pubmed
  61. Kanda H, Hori M, Golub M, Tuck M. Inhibitors of arachidonic acid metabolism have variable effects on calcium signaling pathways. Am J Hypertens. 2001;14:248-53 pubmed
  62. Lee K, Chou K, Cheng J, Wang J, Tang K, Tseng L, et al. Novel effects of 5,8,11-eicosatriynoic acid, a lipoxygenase inhibitor, on Ca2+ mobilization in Madin Darby canine kidney cells. Pharmacol Toxicol. 2001;88:20-6 pubmed
  63. Gong T, Wang Q, Lin Z, Chen M, Sun G. Endoplasmic reticulum (ER) stress inhibitor salubrinal protects against ceramide-induced SH-SY5Y cell death. Biochem Biophys Res Commun. 2012;427:461-5 pubmed publisher
  64. Methippara M, Mitrani B, Schrader F, Szymusiak R, McGinty D. Salubrinal, an endoplasmic reticulum stress blocker, modulates sleep homeostasis and activation of sleep- and wake-regulatory neurons. Neuroscience. 2012;209:108-18 pubmed publisher
  65. Boyce M, Bryant K, Jousse C, Long K, Harding H, Scheuner D, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307:935-9 pubmed
  66. Hu T, Kao C, Hudson R, Chen A, Draper R. Inhibition of secretion by 1,3-Cyclohexanebis(methylamine), a dibasic compound that interferes with coatomer function. Mol Biol Cell. 1999;10:921-33 pubmed
  67. Chen A, Hu T, Mikoryak C, Draper R. Retrograde transport of protein toxins under conditions of COPI dysfunction. Biochim Biophys Acta. 2002;1589:124-39 pubmed
  68. Draper R, Hudson R, Hu T. Use of aminoglycoside antibiotics and related compounds to study ADP-ribosylation factor (ARF)/coatomer function in Golgi traffic. Methods Enzymol. 2001;329:372-9 pubmed
  69. Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem. 1988;263:18545-52 pubmed
  70. Niu T, Pfeifer A, Lippincott-Schwartz J, Jackson C. Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol Biol Cell. 2005;16:1213-22 pubmed
  71. Madison S, Nebenführ A. Live-cell imaging of dual-labeled Golgi stacks in tobacco BY-2 cells reveals similar behaviors for different cisternae during movement and brefeldin A treatment. Mol Plant. 2011;4:896-908 pubmed publisher
  72. Day P, Thompson C, Schowalter R, Lowy D, Schiller J. Identification of a role for the trans-Golgi network in human papillomavirus 16 pseudovirus infection. J Virol. 2013;87:3862-70 pubmed publisher
  73. Saenz J, Sun W, Chang J, Li J, Bursulaya B, Gray N, et al. Golgicide A reveals essential roles for GBF1 in Golgi assembly and function. Nat Chem Biol. 2009;5:157-65 pubmed publisher
  74. van den Elsen J, Kuntz D, Rose D. Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J. 2001;20:3008-17 pubmed
  75. Vitale A, Zoppe M, Bollini R. Mannose analog 1-deoxymannojirimycin inhibits the Golgi-mediated processing of bean storage glycoproteins. Plant Physiol. 1989;89:1079-84 pubmed
  76. Fabbrini M, Zoppe M, Bollini R, Vitale A. 1-Deoxymannojirimycin inhibits Golgi-mediated processing of glycoprotein in Xenopus oocytes. FEBS Lett. 1988;234:489-92 pubmed
  77. Prudovsky I, Mandinova A, Soldi R, Bagala C, Graziani I, Landriscina M, et al. The non-classical export routes: FGF1 and IL-1alpha point the way. J Cell Sci. 2003;116:4871-81 pubmed
  78. Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol. 2009;10:148-55 pubmed publisher
  79. Nickel W. Pathways of unconventional protein secretion. Curr Opin Biotechnol. 2010;21:621-6 pubmed publisher
  80. Haghpassand M, Wilder D, Moberly J. Inhibition of apolipoprotein B and triglyceride secretion in human hepatoma cells (HepG2). J Lipid Res. 1996;37:1468-80 pubmed
  81. Sakata N, Phillips T, Dixon J. Distribution, transport, and degradation of apolipoprotein B-100 in HepG2 cells. J Lipid Res. 2001;42:1947-58 pubmed
  82. Pan M, Liang Js J, Fisher E, Ginsberg H. The late addition of core lipids to nascent apolipoprotein B100, resulting in the assembly and secretion of triglyceride-rich lipoproteins, is independent of both microsomal triglyceride transfer protein activity and new triglyceride synthesis. J Biol Chem. 2002;277:4413-21 pubmed
  83. Feng Y, Yu S, Lasell T, Jadhav A, Macia E, Chardin P, et al. Exo1: a new chemical inhibitor of the exocytic pathway. Proc Natl Acad Sci U S A. 2003;100:6469-74 pubmed
  84. Spooner R, Watson P, Smith D, Boal F, Amessou M, Johannes L, et al. The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network. Biochem J. 2008;414:471-84 pubmed publisher
  85. Barbier J, Bouclier C, Johannes L, Gillet D. Inhibitors of the cellular trafficking of ricin. Toxins (Basel). 2012;4:15-27 pubmed publisher
  86. Guetzoyan L, Spooner R, Boal F, Stephens D, Lord J, Roberts L, et al. Fine tuning Exo2, a small molecule inhibitor of secretion and retrograde trafficking pathways in mammalian cells. Mol Biosyst. 2010;6:2030-8 pubmed publisher
  87. Gruszka A, Culler M, Melmed S. Somatostatin analogs and chimeric somatostatin-dopamine molecules differentially regulate human growth hormone and prolactin gene expression and secretion in vitro. Mol Cell Endocrinol. 2012;362:104-9 pubmed publisher
  88. Very N, Sheridan M. Somatostatin regulates hepatic growth hormone sensitivity by internalizing growth hormone receptors and by decreasing transcription of growth hormone receptor mRNAs. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1956-62 pubmed
  89. Very N, Kittilson J, Klein S, Sheridan M. Somatostatin inhibits basal and growth hormone-stimulated hepatic insulin-like growth factor-I production. Mol Cell Endocrinol. 2008;281:19-26 pubmed
  90. Melacini G, Zhu Q, Goodman M. Multiconformational NMR analysis of sandostatin (octreotide): equilibrium between beta-sheet and partially helical structures. Biochemistry. 1997;36:1233-41 pubmed
  91. Tringali G, Greco M, Lisi L, Pozzoli G, Navarra P. Cortistatin modulates the expression and release of corticotrophin releasing hormone in rat brain. Comparison with somatostatin and octreotide. Peptides. 2012;34:353-9 pubmed publisher
  92. Somm E, Bonnet N, Martinez A, Marks P, Cadd V, Elliott M, et al. A botulinum toxin-derived targeted secretion inhibitor downregulates the GH/IGF1 axis. J Clin Invest. 2012;122:3295-306 pubmed publisher
  93. Keith F, John C. Targeted secretion inhibitors-innovative protein therapeutics. Toxins (Basel). 2010;2:2795-815 pubmed publisher
  94. Ito J, Nagayasu Y, Lu R, Kheirollah A, Hayashi M, Yokoyama S. Astrocytes produce and secrete FGF-1, which promotes the production of apoE-HDL in a manner of autocrine action. J Lipid Res. 2005;46:679-86 pubmed
  95. Myoken Y, Okamoto T, Kan M, Sato J, Takada K. Release of fibroblast growth factor-1 by human squamous cell carcinoma correlates with autocrine cell growth. In Vitro Cell Dev Biol Anim. 1994;30:790-5 pubmed
  96. Guillonneau X, Bryckaert M, Launay-Longo C, Courtois Y, Mascarelli F. Endogenous FGF1-induced activation and synthesis of extracellular signal-regulated kinase 2 reduce cell apoptosis in retinal-pigmented epithelial cells. J Biol Chem. 1998;273:22367-73 pubmed
  97. Lee M, Kang Y, Suk K, Schwab C, Yu S, McGeer P. Acidic fibroblast growth factor (FGF) potentiates glial-mediated neurotoxicity by activating FGFR2 IIIb protein. J Biol Chem. 2011;286:41230-45 pubmed publisher
  98. Lajus S, Vacher P, Huber D, Dubois M, Benassy M, Ushkaryov Y, et al. Alpha-latrotoxin induces exocytosis by inhibition of voltage-dependent K+ channels and by stimulation of L-type Ca2+ channels via latrophilin in beta-cells. J Biol Chem. 2006;281:5522-31 pubmed
  99. Hiramatsu H, Tadokoro S, Nakanishi M, Hirashima N. Latrotoxin-induced exocytosis in mast cells transfected with latrophilin. Toxicon. 2010;56:1372-80 pubmed publisher
  100. Lang J, Ushkaryov Y, Grasso A, Wollheim C. Ca2+-independent insulin exocytosis induced by alpha-latrotoxin requires latrophilin, a G protein-coupled receptor. EMBO J. 1998;17:648-57 pubmed
  101. Ball A, Flatt P, McClenaghan N. Acute and long-term effects of nateglinide on insulin secretory pathways. Br J Pharmacol. 2004;142:367-73 pubmed
  102. Fujitani S, Okazaki K, Yada T. The ability of a new hypoglycaemic agent, A-4166, compared to sulphonylureas, to increase cytosolic Ca2+ in pancreatic beta-cells under metabolic inhibition. Br J Pharmacol. 1997;120:1191-8 pubmed
  103. Chachin M, Yamada M, Fujita A, Matsuoka T, Matsushita K, Kurachi Y. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or benzamido moiety, specifically inhibits pancreatic beta-cell-type K(ATP) channels. J Pharmacol Exp Ther. 2003;304:1025-32 pubmed
  104. Shinkai H, Nishikawa M, Sato Y, Toi K, Kumashiro I, Seto Y, et al. N-(cyclohexylcarbonyl)-D-phenylalanines and related compounds. A new class of oral hypoglycemic agents. 2. J Med Chem. 1989;32:1436-41 pubmed
  105. Oki K, Plonczynski M, Lam M, Gomez-Sanchez E, Gomez-Sanchez C. The potassium channel, Kir3.4 participates in angiotensin II-stimulated aldosterone production by a human adrenocortical cell line. Endocrinology. 2012;153:4328-35 pubmed publisher
  106. Rajamohan S, Raghuraman G, Prabhakar N, Kumar G. NADPH oxidase-derived H(2)O(2) contributes to angiotensin II-induced aldosterone synthesis in human and rat adrenal cortical cells. Antioxid Redox Signal. 2012;17:445-59 pubmed publisher
  107. Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev. 2004;84:489-539 pubmed
  108. Bose B, Shenoy P S. Non insulin producing cell line, MIA PaCa-2 is rendered insulin producing in vitro via mesenchymal epithelial transition. J Cell Biochem. 2013;114:1642-52 pubmed publisher
  109. Burns C, Minger S, Hall S, Milne H, Ramracheya R, Evans N, et al. The in vitro differentiation of rat neural stem cells into an insulin-expressing phenotype. Biochem Biophys Res Commun. 2005;326:570-7 pubmed
  110. Mariot P, Gilon P, Nenquin M, Henquin J. Tolbutamide and diazoxide influence insulin secretion by changing the concentration but not the action of cytoplasmic Ca2+ in beta-cells. Diabetes. 1998;47:365-73 pubmed
  111. Tian Y, Johnson G, Ashcroft S. Sulfonylureas enhance exocytosis from pancreatic beta-cells by a mechanism that does not involve direct activation of protein kinase C. Diabetes. 1998;47:1722-6 pubmed
  112. Hansen A, Hansen J, Carr R, Ashcroft F, Wahl P. Kir6.2-dependent high-affinity repaglinide binding to beta-cell K(ATP) channels. Br J Pharmacol. 2005;144:551-7 pubmed
  113. Sheng F, Ren X, Dai X, Xu X, Dong M, Pei Q, et al. Effect of nicotinamide mononucleotide on insulin secretion and gene expressions of PDX-1 and FoxO1 in RIN-m5f cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36:958-63 pubmed publisher
  114. Kühner P, Prager R, Stephan D, Russ U, Winkler M, Ortiz D, et al. Importance of the Kir6.2 N-terminus for the interaction of glibenclamide and repaglinide with the pancreatic K(ATP) channel. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:299-311 pubmed publisher
  115. Dabrowski M, Wahl P, Holmes W, Ashcroft F. Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Diabetologia. 2001;44:747-56 pubmed
  116. Diaz-Guerra M, Junco M, Bosca L. Oleic acid promotes changes in the subcellular distribution of protein kinase C in isolated hepatocytes. J Biol Chem. 1991;266:23568-76 pubmed
  117. Norikura T, Mukai Y, Fujita S, Mikame K, Funaoka M, Sato S. Lignophenols decrease oleate-induced apolipoprotein-B secretion in HepG2 cells. Basic Clin Pharmacol Toxicol. 2010;107:813-7 pubmed publisher
  118. Kofod H. Secretin and the endocrine pancreas. Structure-activity relationship between secretin and the release of glucose-regulated hormones from isolated pancreatic islets. Acta Endocrinol (Copenh). 1992;126:1-41 pubmed
  119. Kofod H, Hansen B, Lernmark A, Hedeskov C. Secretin and its C-terminal hexapeptide potentiates insulin release in mouse islets. Am J Physiol. 1986;250:E107-13 pubmed
  120. Wang J, Novak I. Ion transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, and purinergic receptors. Pancreas. 2013;42:452-60 pubmed publisher
  121. Wang L, Rothberg K, Anderson R. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol. 1993;123:1107-17 pubmed
  122. Vercauteren D, Vandenbroucke R, Jones A, Rejman J, Demeester J, De Smedt S, et al. The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther. 2010;18:561-9 pubmed publisher
  123. Wu M, Yuan F. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells. PLoS ONE. 2011;6:e20923 pubmed publisher
  124. Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther. 2005;12:468-74 pubmed
  125. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987;262:5592-5 pubmed
  126. Nabi I, Le P. Caveolae/raft-dependent endocytosis. J Cell Biol. 2003;161:673-7 pubmed
  127. Buschiazzo J, Bonini I, Alonso T. Inhibition of Bufo arenarum oocyte maturation induced by cholesterol depletion by methyl-beta-cyclodextrin. Role of low-density caveolae-like membranes. Biochim Biophys Acta. 2008;1778:1398-406 pubmed publisher
  128. Koivusalo M, Welch C, Hayashi H, Scott C, Kim M, Alexander T, et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol. 2010;188:547-63 pubmed publisher
  129. Kleyman T, Cragoe E. Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988;105:1-21 pubmed
  130. Alliegro M, Alliegro M, Cragoe E, Glaser B. Amiloride inhibition of angiogenesis in vitro. J Exp Zool. 1993;267:245-52 pubmed
  131. Wang Y, Yang Y, Liu X, Wang N, Cao H, Lu Y, et al. Inhibition of clathrin/dynamin-dependent internalization interferes with LPS-mediated TRAM-TRIF-dependent signaling pathway. Cell Immunol. 2012;274:121-9 pubmed publisher
  132. Varkevisser R, Houtman M, Waasdorp M, Man J, Heukers R, Takanari H, et al. Inhibiting the clathrin-mediated endocytosis pathway rescues K(IR)2.1 downregulation by pentamidine. Pflugers Arch. 2013;465:247-59 pubmed publisher
  133. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell. 2006;10:839-50 pubmed
  134. Yue W, Yao S, Zhou X, Si Y, Sang H, Wang J, et al. [Inhibitory effect of caveolin-1 on endoplasmic reticulum stress-induced apoptosis in macrophages via p38 MAPK pathway]. Sheng Li Xue Bao. 2012;64:149-54 pubmed
  135. Orlandi P, Fishman P. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol. 1998;141:905-15 pubmed
  136. Schnitzer J, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol. 1994;127:1217-32 pubmed
  137. Kim H, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H, et al. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci. 2007;64:356-64 pubmed
  138. Moriyama T, Marquez J, Wakatsuki T, Sorokin A. Caveolar endocytosis is critical for BK virus infection of human renal proximal tubular epithelial cells. J Virol. 2007;81:8552-62 pubmed
  139. Chen Y, Wang S, Lu X, Zhang H, Fu Y, Luo Y. Cholesterol sequestration by nystatin enhances the uptake and activity of endostatin in endothelium via regulating distinct endocytic pathways. Blood. 2011;117:6392-403 pubmed publisher
  140. Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663-700 pubmed
  141. Mollenhauer H, Morre D, Rowe L. Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta. 1990;1031:225-46 pubmed
  142. Ippoliti R, Ginobbi P, Lendaro E, D'Agostino I, Ombres D, Benedetti P, et al. The effect of monensin and chloroquine on the endocytosis and toxicity of chimeric toxins. Cell Mol Life Sci. 1998;54:866-75 pubmed
  143. Pohlmann R, Kruger S, Hasilik A, Von Figura K. Effect of monensin on intracellular transport and receptor-mediated endocytosis of lysosomal enzymes. Biochem J. 1984;217:649-58 pubmed
  144. Jiang P, Zhao Y, Deng X, Mao Y, Shi W, Tang Q, et al. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed Pharmacother. 2010;64:609-14 pubmed publisher
  145. Araki N, Johnson M, Swanson J. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol. 1996;135:1249-60 pubmed
  146. Sokolova V, Kozlova D, Knuschke T, Buer J, Westendorf A, Epple M. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells. Acta Biomater. 2013;9:7527-35 pubmed publisher
  147. Powis G, Bonjouklian R, Berggren M, Gallegos A, Abraham R, Ashendel C, et al. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res. 1994;54:2419-23 pubmed
  148. Liu Y, Shreder K, Gai W, Corral S, Ferris D, Rosenblum J. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase. Chem Biol. 2005;12:99-107 pubmed
  149. García-Pérez B, De la Cruz-López J, Castañeda-Sánchez J, Muñóz-Duarte A, Hernández-Pérez A, Villegas-Castrejon H, et al. Macropinocytosis is responsible for the uptake of pathogenic and non-pathogenic mycobacteria by B lymphocytes (Raji cells). BMC Microbiol. 2012;12:246 pubmed publisher
  150. Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 2011;5:1657-69 pubmed publisher
  151. Emerit I, Cerutti P. Tumour promoter phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action. Nature. 1981;293:144-6 pubmed
  152. Sandvig K, van Deurs B. Selective modulation of the endocytic uptake of ricin and fluid phase markers without alteration in transferrin endocytosis. J Biol Chem. 1990;265:6382-8 pubmed
  153. Johnson G, Dechtiaruk W, Solomon H. Gas-chromatographic determination of theophylline in human serum and saliva. Clin Chem. 1975;21:144-7 pubmed
  154. Fykerud T, Kjenseth A, Schink K, Sirnes S, Bruun J, Omori Y, et al. Smad ubiquitination regulatory factor-2 controls gap junction intercellular communication by modulating endocytosis and degradation of connexin43. J Cell Sci. 2012;125:3966-76 pubmed publisher
  155. Takada Y, Hachiya M, Osawa Y, Hasegawa Y, Ando K, Kobayashi Y, et al. 12-O-tetradecanoylphorbol-13-acetate-induced apoptosis is mediated by tumor necrosis factor alpha in human monocytic U937 cells. J Biol Chem. 1999;274:28286-92 pubmed
  156. Whitehurst A, Wilsbacher J, You Y, Luby-Phelps K, Moore M, Cobb M. ERK2 enters the nucleus by a carrier-independent mechanism. Proc Natl Acad Sci U S A. 2002;99:7496-501 pubmed
  157. Finlay D, Newmeyer D, Price T, Forbes D. Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol. 1987;104:189-200 pubmed
  158. Nagata Y, Burger M. Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem. 1974;249:3116-22 pubmed
  159. Yoshida M, Kudo N, Horinouchi S. [Leptomycin: a specific inhibitor of protein nuclear export]. Tanpakushitsu Kakusan Koso. 1999;44:1379-88 pubmed
  160. Buschbeck M, Ullrich A. The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. J Biol Chem. 2005;280:2659-67 pubmed
  161. Reyes-Pardo H, Barbosa-Camacho A, Pérez-Mejía A, Lara-Chacón B, Salas-Estrada L, Robledo-Rivera A, et al. A nuclear export sequence in GPN-loop GTPase 1, an essential protein for nuclear targeting of RNA polymerase II, is necessary and sufficient for nuclear export. Biochim Biophys Acta. 2012;1823:1756-66 pubmed publisher
  162. Wu W, Pante N. The directionality of the nuclear transport of the influenza A genome is driven by selective exposure of nuclear localization sequences on nucleoprotein. Virol J. 2009;6:68 pubmed publisher
  163. Wolff B, Sanglier J, Wang Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol. 1997;4:139-47 pubmed
  164. Strunze S, Trotman L, Boucke K, Greber U. Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol Biol Cell. 2005;16:2999-3009 pubmed
  165. Meissner T, Krause E, Vinkemeier U. Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. FEBS Lett. 2004;576:27-30 pubmed
  166. Köster M, Lykke-Andersen S, Elnakady Y, Gerth K, Washausen P, Hofle G, et al. Ratjadones inhibit nuclear export by blocking CRM1/exportin 1. Exp Cell Res. 2003;286:321-31 pubmed
  167. Adelsberger H, Lepier A, Dudel J. Activation of rat recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptor by the insecticide ivermectin. Eur J Pharmacol. 2000;394:163-70 pubmed
  168. Wagstaff K, Rawlinson S, Hearps A, Jans D. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. J Biomol Screen. 2011;16:192-200 pubmed publisher
  169. Wagstaff K, Sivakumaran H, Heaton S, Harrich D, Jans D. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J. 2012;443:851-6 pubmed publisher
  170. Levin A, Hayouka Z, Friedler A, Loyter A. Transportin 3 and importin α are required for effective nuclear import of HIV-1 integrase in virus-infected cells. Nucleus. 2010;1:422-31 pubmed publisher
  171. Webb R. Smooth muscle contraction and relaxation. Adv Physiol Educ. 2003;27:201-6 pubmed
  172. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986;135:397-402 pubmed
  173. Jin M, Ande A, Kumar A, Kumar S. Regulation of cytochrome P450 2e1 expression by ethanol: role of oxidative stress-mediated pkc/jnk/sp1 pathway. Cell Death Dis. 2013;4:e554 pubmed publisher
  174. Ward N, O'Brian C. Kinetic analysis of protein kinase C inhibition by staurosporine: evidence that inhibition entails inhibitor binding at a conserved region of the catalytic domain but not competition with substrates. Mol Pharmacol. 1992;41:387-92 pubmed
  175. Koyanagi M, Takahashi J, Arakawa Y, Doi D, Fukuda H, Hayashi H, et al. Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. J Neurosci Res. 2008;86:270-80 pubmed
  176. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681-6 pubmed
  177. Nobes C, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 1999;144:1235-44 pubmed
  178. Yu Z, Liu M, Fu P, Xie M, Wang W, Luo X. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord. Neurochem Int. 2012;61:1114-20 pubmed publisher
  179. Hudson C, Heesom K, Lopez Bernal A. Phasic contractions of isolated human myometrium are associated with Rho-kinase (ROCK)-dependent phosphorylation of myosin phosphatase-targeting subunit (MYPT1). Mol Hum Reprod. 2012;18:265-79 pubmed publisher
  180. Wang T, Kendig D, Trappanese D, Smolock E, Moreland R. Phorbol 12,13-dibutyrate-induced, protein kinase C-mediated contraction of rabbit bladder smooth muscle. Front Pharmacol. 2012;2:83 pubmed
  181. Fuentes E, Leemhuis J, Stark G, Lang E. Rho kinase inhibitors Y27632 and H1152 augment neurite extension in the presence of cultured Schwann cells. J Brachial Plex Peripher Nerve Inj. 2008;3:19 pubmed publisher
  182. Hammar E, Tomas A, Bosco D, Halban P. Role of the Rho-ROCK (Rho-associated kinase) signaling pathway in the regulation of pancreatic beta-cell function. Endocrinology. 2009;150:2072-9 pubmed publisher
  183. Makishima M, Honma Y, Hozumi M, Sampi K, Hattori M, Motoyoshi K. Induction of differentiation of human leukemia cells by inhibitors of myosin light chain kinase. FEBS Lett. 1991;287:175-7 pubmed
  184. Yamamoto-Yamaguchi Y, Makishima M, Kanatani Y, Kasukabe T, Honma Y. Reversible differentiation of human monoblastic leukemia U937 cells by ML-9, an inhibitor of myosin light chain kinase. Exp Hematol. 1996;24:682-9 pubmed
  185. Ito S, Kume H, Honjo H, Kodama I, Katoh H, Hayashi H, et al. ML-9, a myosin light chain kinase inhibitor, reduces intracellular Ca2+ concentration in guinea pig trachealis. Eur J Pharmacol. 2004;486:325-33 pubmed
  186. Saitoh M, Ishikawa T, Matsushima S, Naka M, Hidaka H. Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem. 1987;262:7796-801 pubmed
  187. Lin H, Cadete V, Sawicka J, Wozniak M, Sawicki G. Effect of the myosin light chain kinase inhibitor ML-7 on the proteome of hearts subjected to ischemia-reperfusion injury. J Proteomics. 2012;75:5386-95 pubmed publisher
  188. Nakanishi S, Yamada K, Kase H, Nakamura S, Nonomura Y. K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase. J Biol Chem. 1988;263:6215-9 pubmed
  189. Hashimoto Y, Nakayama T, Teramoto T, Kato H, Watanabe T, Kinoshita M, et al. Potent and preferential inhibition of Ca2+/calmodulin-dependent protein kinase II by K252a and its derivative, KT5926. Biochem Biophys Res Commun. 1991;181:423-9 pubmed
  190. Kase H, Iwahashi K, Nakanishi S, Matsuda Y, Yamada K, Takahashi M, et al. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun. 1987;142:436-40 pubmed
  191. Chin L, Murray S, Doherty P, Singh S. K252a induces cell cycle arrest and apoptosis by inhibiting Cdc2 and Cdc25c. Cancer Invest. 1999;17:391-5 pubmed
  192. Minardi A, Christ D, Saz H. Effects of calmodulin and protein kinase C antagonists on muscle in the filariid, Acanthocheilonema viteae. J Parasitol. 1995;81:989-96 pubmed
  193. Pinto C, Reif G, Nivens E, White C, Wallace D. Calmodulin-sensitive adenylyl cyclases mediate AVP-dependent cAMP production and Cl- secretion by human autosomal dominant polycystic kidney cells. Am J Physiol Renal Physiol. 2012;303:F1412-24 pubmed publisher
  194. Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, et al. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci U S A. 1981;78:4354-7 pubmed
  195. Song Y, Lin P, Chen M. The effects of calcium channel blocker benidipine and calmodulin antagonist W7 on GDP-binding capacity of brown adipose tissue in mice. Biol Trace Elem Res. 2009;127:245-50 pubmed publisher
  196. Kodama M, Yamamoto H, Kanaide H. Myosin phosphorylation and Ca2+ sensitization in porcine coronary arterial smooth muscle stimulated with endothelin-1. Eur J Pharmacol. 1994;288:69-77 pubmed
  197. Abe Y, Kasuya Y, Kudo M, Yamashita K, Goto K, Masaki T, et al. Endothelin-1-induced phosphorylation of the 20-kDa myosin light chain and caldesmon in porcine coronary artery smooth muscle. Jpn J Pharmacol. 1991;57:431-5 pubmed
  198. Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T. Endothelin-1 stimulates contraction and migration of rat pancreatic stellate cells. World J Gastroenterol. 2005;11:6144-51 pubmed
  199. Weigand L, Sylvester J, Shimoda L. Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol. 2006;290:L284-90 pubmed
  200. Schoenwaelder S, Burridge K. Evidence for a calpeptin-sensitive protein-tyrosine phosphatase upstream of the small GTPase Rho. A novel role for the calpain inhibitor calpeptin in the inhibition of protein-tyrosine phosphatases. J Biol Chem. 1999;274:14359-67 pubmed
  201. Kang Y, Shin H. Vasorelaxant effect of Cinnamomi ramulus ethanol extract via rho-kinase signaling pathway. Am J Chin Med. 2011;39:867-78 pubmed publisher
  202. Minshall R, Vandenbroucke E, Holinstat M, Place A, Tiruppathi C, Vogel S, et al. Role of protein kinase Czeta in thrombin-induced RhoA activation and inter-endothelial gap formation of human dermal microvessel endothelial cell monolayers. Microvasc Res. 2010;80:240-9 pubmed publisher
  203. Ruiz-Loredo A, Lopez E, López-Colomé A. Thrombin stimulates stress fiber assembly in RPE cells by PKC/CPI-17-mediated MLCP inactivation. Exp Eye Res. 2012;96:13-23 pubmed publisher
  204. Park S, Rasmussen H. Activation of tracheal smooth muscle contraction: synergism between Ca2+ and activators of protein kinase C. Proc Natl Acad Sci U S A. 1985;82:8835-9 pubmed
  205. Staudt M, Depass A, Sarkar D, Fisher P. Model cell culture system for defining the molecular and biochemical events mediating terminal differentiation of human melanoma cells. J Cell Physiol. 2009;218:304-14 pubmed publisher
  206. Bogi K, Lorenzo P, Acs P, Szallasi Z, Wagner G, Blumberg P. Comparison of the roles of the C1a and C1b domains of protein kinase C alpha in ligand induced translocation in NIH 3T3 cells. FEBS Lett. 1999;456:27-30 pubmed
  207. Bossu J, Elhamdani A, Feltz A, Tanzi F, Aunis D, Thierse D. Voltage-gated Ca entry in isolated bovine capillary endothelial cells: evidence of a new type of BAY K 8644-sensitive channel. Pflugers Arch. 1992;420:200-7 pubmed
  208. Benaim G, Garcia-Marchan Y, Reyes C, Uzcanga G, Figarella K. Identification of a sphingosine-sensitive Ca2+ channel in the plasma membrane of Leishmania mexicana. Biochem Biophys Res Commun. 2013;430:1091-6 pubmed publisher
  209. Noh A, Park H, Zheng T, Ha H, Yim M. L-type Ca(2+) channel agonist inhibits RANKL-induced osteoclast formation via NFATc1 down-regulation. Life Sci. 2011;89:159-64 pubmed publisher
  210. Mukherjee S, Trice J, Shinde P, Willis R, Pressley T, Perez-Zoghbi J. Ca2+ oscillations, Ca2+ sensitization, and contraction activated by protein kinase C in small airway smooth muscle. J Gen Physiol. 2013;141:165-78 pubmed publisher
  211. Verhovshek T, Cai Y, Osborne M, Sengelaub D. Androgen regulates brain-derived neurotrophic factor in spinal motoneurons and their target musculature. Endocrinology. 2010;151:253-61 pubmed publisher
  212. Schmidt A, Koch P. Desmosomes: just cell adhesion or is there more?. Cell Adh Migr. 2007;1:28-32 pubmed
  213. Green K, Jones J. Desmosomes and hemidesmosomes: structure and function of molecular components. FASEB J. 1996;10:871-81 pubmed
  214. Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8:215 pubmed
  215. Berman A, Kozlova N, Morozevich G. Integrins: structure and signaling. Biochemistry (Mosc). 2003;68:1284-99 pubmed
  216. Humphries J, Byron A, Humphries M. Integrin ligands at a glance. J Cell Sci. 2006;119:3901-3 pubmed
  217. Qin J, Vinogradova O, Plow E. Integrin bidirectional signaling: a molecular view. PLoS Biol. 2004;2:e169 pubmed
  218. Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9:263-8 pubmed
  219. Rosen S, Bertozzi C. The selectins and their ligands. Curr Opin Cell Biol. 1994;6:663-73 pubmed
  220. Cummings R, Smith D. The selectin family of carbohydrate-binding proteins: structure and importance of carbohydrate ligands for cell adhesion. Bioessays. 1992;14:849-56 pubmed
  221. McEver R. Selectins. Curr Opin Immunol. 1994;6:75-84 pubmed
  222. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988;102:639-55 pubmed
  223. Halbleib J, Nelson W. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006;20:3199-214 pubmed
  224. Angst B, Marcozzi C, Magee A. The cadherin superfamily: diversity in form and function. J Cell Sci. 2001;114:629-41 pubmed
  225. Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol. 2009;41:349-69 pubmed publisher
  226. Mochizuki A, Takami M, Miyamoto Y, Nakamaki T, Tomoyasu S, Kadono Y, et al. Cell adhesion signaling regulates RANK expression in osteoclast precursors. PLoS ONE. 2012;7:e48795 pubmed publisher
  227. Gould R, Polokoff M, Friedman P, Huang T, Holt J, Cook J, et al. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med. 1990;195:168-71 pubmed
  228. Garsky V, Lumma P, Freidinger R, Pitzenberger S, Randall W, Veber D, et al. Chemical synthesis of echistatin, a potent inhibitor of platelet aggregation from Echis carinatus: synthesis and biological activity of selected analogs. Proc Natl Acad Sci U S A. 1989;86:4022-6 pubmed
  229. Kumar C, Nie H, Rogers C, Malkowski M, Maxwell E, Catino J, et al. Biochemical characterization of the binding of echistatin to integrin alphavbeta3 receptor. J Pharmacol Exp Ther. 1997;283:843-53 pubmed
  230. Winkenwerder J, Palechek P, Reece J, Saarinen M, Arnold M, Cohen M, et al. Evaluating prostate cancer cell culturing methods: a comparison of cell morphologies and metabolic activity. Oncol Rep. 2003;10:783-9 pubmed
  231. Kawada M, Fukazawa H, Mizuno S, Uehara Y. Inhibition of anchorage-independent growth of ras-transformed cells on polyHEMA surface by antisense oligodeoxynucleotides directed against K-ras. Biochem Biophys Res Commun. 1997;231:735-7 pubmed
  232. Chen A, DelRio F, Peterson A, Chung K, Bhadiraju K, Plant A. Cell spreading and proliferation in response to the composition and mechanics of engineered fibrillar extracellular matrices. Biotechnol Bioeng. 2013;110:2731-41 pubmed publisher
  233. Georgoulis A, Havaki S, Drosos Y, Goutas N, Vlachodimitropoulos D, Aleporou-Marinou V, et al. RGD binding to integrin alphavbeta3 affects cell motility and adhesion in primary human breast cancer cultures. Ultrastruct Pathol. 2012;36:387-99 pubmed publisher
  234. Grigoriou V, Shapiro I, Cavalcanti-Adam E, Composto R, Ducheyne P, Adams C. Apoptosis and survival of osteoblast-like cells are regulated by surface attachment. J Biol Chem. 2005;280:1733-9 pubmed
  235. Poh K, Lutfun N, Manikandan J, Ong W, Yeo J. Global gene expression analysis in the mouse brainstem after hyperalgesia induced by facial carrageenan injection--evidence for a form of neurovascular coupling?. Pain. 2009;142:133-41 pubmed publisher
  236. Ohta S, Inujima Y, Abe M, Uosaki Y, Sato S, Miki I. Inhibition of P-selectin specific cell adhesion by a low molecular weight, non-carbohydrate compound, KF38789. Inflamm Res. 2001;50:544-51 pubmed
  237. Kaila N, Janz K, DeBernardo S, Bedard P, Camphausen R, Tam S, et al. Synthesis and biological evaluation of quinoline salicylic acids as P-selectin antagonists. J Med Chem. 2007;50:21-39 pubmed
  238. Stewart A, Bhatia P, McCarty C, Patel M, Staeger M, Arendsen D, et al. Discovery of inhibitors of cell adhesion molecule expression in human endothelial cells. 1. Selective inhibition of ICAM-1 and E-selectin expression. J Med Chem. 2001;44:988-1002 pubmed
  239. Zhu G, Arendsen D, Gunawardana I, Boyd S, Stewart A, Fry D, et al. Selective inhibition of ICAM-1 and E-selectin expression in human endothelial cells. 2. Aryl modifications of 4-(aryloxy)thieno[2,3-c]pyridines with fine-tuning at C-2 carbamides. J Med Chem. 2001;44:3469-87 pubmed
  240. Zhu G, Schaefer V, Boyd S, Okasinski G. Synthesis and mode of action of (125)I- and (3)H-labeled thieno[2,3-c]pyridine antagonists of cell adhesion molecule expression. J Org Chem. 2002;67:943-8 pubmed
  241. Keating S, Clark K, Stefanich L, Arellano F, Edwards C, Bodary S, et al. Competition between intercellular adhesion molecule-1 and a small-molecule antagonist for a common binding site on the alphal subunit of lymphocyte function-associated antigen-1. Protein Sci. 2006;15:290-303 pubmed
  242. Liu G, Link J, Pei Z, Reilly E, Leitza S, Nguyen B, et al. Discovery of novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 1. Identification of an additional binding pocket based on an anilino diaryl sulfide lead. J Med Chem. 2000;43:4025-40 pubmed
  243. Golubovskaya V, Nyberg C, Zheng M, Kweh F, Magis A, Ostrov D, et al. A small molecule inhibitor, 1,2,4,5-benzenetetraamine tetrahydrochloride, targeting the y397 site of focal adhesion kinase decreases tumor growth. J Med Chem. 2008;51:7405-16 pubmed publisher
  244. Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S. RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J Cell Physiol. 2012;227:2722-9 pubmed publisher
  245. Slack-Davis J, Martin K, Tilghman R, Iwanicki M, Ung E, Autry C, et al. Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem. 2007;282:14845-52 pubmed
  246. Daidone I, Aschi M, Patamia M, Bozzi A, Petruzzelli R. Structural and dynamical properties of KTS-disintegrins: A comparison between Obtustatin and Lebestatin. Biopolymers. 2013;99:47-54 pubmed publisher
  247. Marcinkiewicz C, Weinreb P, Calvete J, Kisiel D, Mousa S, Tuszynski G, et al. Obtustatin: a potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res. 2003;63:2020-3 pubmed
  248. Calvete J, Marcinkiewicz C, Sanz L. KTS and RTS-disintegrins: anti-angiogenic viper venom peptides specifically targeting the alpha 1 beta 1 integrin. Curr Pharm Des. 2007;13:2853-9 pubmed
  249. Olfa K, José L, Salma D, Amine B, Najet S, Nicolas A, et al. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab Invest. 2005;85:1507-16 pubmed
  250. O'Shea J, Tcheng J. Eptifibatide: a potent inhibitor of the platelet receptor integrin glycoprotein IIb/IIIa. Expert Opin Pharmacother. 2002;3:1199-210 pubmed
  251. Charonis A, Skubitz A, Koliakos G, Reger L, Dege J, Vogel A, et al. A novel synthetic peptide from the B1 chain of laminin with heparin-binding and cell adhesion-promoting activities. J Cell Biol. 1988;107:1253-60 pubmed
  252. Skubitz A, McCarthy J, Zhao Q, Yi X, Furcht L. Definition of a sequence, RYVVLPR, within laminin peptide F-9 that mediates metastatic fibrosarcoma cell adhesion and spreading. Cancer Res. 1990;50:7612-22 pubmed
  253. Jakus Z, Simon E, Frommhold D, Sperandio M, Mocsai A. Critical role of phospholipase Cgamma2 in integrin and Fc receptor-mediated neutrophil functions and the effector phase of autoimmune arthritis. J Exp Med. 2009;206:577-93 pubmed publisher
  254. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 2009;325:1555-9 pubmed publisher
  255. Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science. 2011;334:194 pubmed publisher
  256. Barnett B, Ciocca M, Goenka R, Barnett L, Wu J, Laufer T, et al. Asymmetric B cell division in the germinal center reaction. Science. 2012;335:342-4 pubmed publisher
  257. Nicholson J, Macedo J, Mattingly A, Wangsa D, Camps J, Lima V, et al. Chromosome mis-segregation and cytokinesis failure in trisomic human cells. elife. 2015;4: pubmed publisher
  258. Kuiper J, van Horssen R, Oerlemans F, Peters W, van Dommelen M, te Lindert M, et al. Local ATP generation by brain-type creatine kinase (CK-B) facilitates cell motility. PLoS ONE. 2009;4:e5030 pubmed publisher
  259. Frühbeis C, Fröhlich D, Kuo W, Amphornrat J, Thilemann S, Saab A, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11:e1001604 pubmed publisher
  260. Kim S, Lewis A, Singh V, Ma X, Adelstein R, Bush J. Convergence and extrusion are required for normal fusion of the Mammalian secondary palate. PLoS Biol. 2015;13:e1002122 pubmed publisher
  261. Roland A, Ricobaraza A, Carrel D, Jordan B, Rico F, Simon A, et al. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth. elife. 2014;3:e03159 pubmed publisher
  262. Chambers J, Dalton L, Clarke H, Malzer E, Dominicus C, Patel V, et al. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation. elife. 2015;4: pubmed publisher
  263. Provance D, Addison E, Wood P, Chen D, Silan C, Mercer J. Myosin-Vb functions as a dynamic tether for peripheral endocytic compartments during transferrin trafficking. BMC Cell Biol. 2008;9:44 pubmed publisher
  264. Mitrovic S, Nogueira C, Cantero-Recasens G, Kiefer K, Fernández-Fernández J, Popoff J, et al. TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells. elife. 2013;2:e00658 pubmed publisher
  265. Haupt A, Campetelli A, Bonazzi D, Piel M, Chang F, Minc N. Electrochemical regulation of budding yeast polarity. PLoS Biol. 2014;12:e1002029 pubmed publisher
  266. Hagan G, Lin Y, Magnuson M, Avruch J, Czech M. A Rictor-Myo1c complex participates in dynamic cortical actin events in 3T3-L1 adipocytes. Mol Cell Biol. 2008;28:4215-26 pubmed publisher
  267. Hung R, Pak C, Terman J. Direct redox regulation of F-actin assembly and disassembly by Mical. Science. 2011;334:1710-3 pubmed publisher
  268. Taylor M, Lampe M, Merrifield C. A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis. PLoS Biol. 2012;10:e1001302 pubmed publisher
  269. Wegiel B, Bjartell A, Tuomela J, Dizeyi N, Tinzl M, Helczynski L, et al. Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis. J Natl Cancer Inst. 2008;100:1022-36 pubmed publisher
  270. Sathish N, Zhu F, Yuan Y. Kaposi's sarcoma-associated herpesvirus ORF45 interacts with kinesin-2 transporting viral capsid-tegument complexes along microtubules. PLoS Pathog. 2009;5:e1000332 pubmed publisher
  271. Yamagishi Y, Honda T, Tanno Y, Watanabe Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science. 2010;330:239-43 pubmed publisher
  272. Hombauer H, Srivatsan A, Putnam C, Kolodner R. Mismatch repair, but not heteroduplex rejection, is temporally coupled to DNA replication. Science. 2011;334:1713-6 pubmed publisher
  273. Thaunat O, Granja A, Barral P, Filby A, Montaner B, Collinson L, et al. Asymmetric segregation of polarized antigen on B cell division shapes presentation capacity. Science. 2012;335:475-9 pubmed publisher
  274. Lee J, Silhavy J, Lee J, Al-Gazali L, Thomas S, Davis E, et al. Evolutionarily assembled cis-regulatory module at a human ciliopathy locus. Science. 2012;335:966-9 pubmed publisher
  275. Suzuki G, Shimazu N, Tanaka M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science. 2012;336:355-9 pubmed publisher
  276. Henderson K, Hughes A, Gottschling D. Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. elife. 2014;3:e03504 pubmed publisher
  277. Sha Y, Pandit L, Zeng S, Eissa N. A critical role for CHIP in the aggresome pathway. Mol Cell Biol. 2009;29:116-28 pubmed publisher
  278. Elias S, McGuire J, Yu H, Humbert S. Huntingtin Is Required for Epithelial Polarity through RAB11A-Mediated Apical Trafficking of PAR3-aPKC. PLoS Biol. 2015;13:e1002142 pubmed publisher
  279. Roostalu J, Hentrich C, Bieling P, Telley I, Schiebel E, Surrey T. Directional switching of the kinesin Cin8 through motor coupling. Science. 2011;332:94-9 pubmed publisher
  280. Chen Y, Hsu H, Chen Y, Tsai T, How C, Wang C, et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS ONE. 2008;3:e2637 pubmed publisher
  281. Zhang S, Balch C, Chan M, Lai H, Matei D, Schilder J, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311-20 pubmed publisher
  282. Denard B, LEE C, Ye J. Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. elife. 2012;1:e00090 pubmed publisher
  283. Atherton J, Farabella I, Yu I, Rosenfeld S, Houdusse A, Topf M, et al. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins. elife. 2014;3:e03680 pubmed publisher
  284. Lee P, Ohlson M, Pfeffer S. Rab6 regulation of the kinesin family KIF1C motor domain contributes to Golgi tethering. elife. 2015;4: pubmed publisher
  285. Zhou B, Liu J, Wang Q, Liu X, Li X, Li P, et al. The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha. J Virol. 2008;82:6962-71 pubmed publisher
  286. Krady M, Zeng J, Yu J, MacLauchlan S, Skokos E, Tian W, et al. Thrombospondin-2 modulates extracellular matrix remodeling during physiological angiogenesis. Am J Pathol. 2008;173:879-91 pubmed publisher
  287. Samarakoon R, Higgins S, Higgins C, Higgins P. TGF-beta1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling. J Mol Cell Cardiol. 2008;44:527-38 pubmed publisher
  288. Barkan D, Kleinman H, Simmons J, Asmussen H, Kamaraju A, Hoenorhoff M, et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 2008;68:6241-50 pubmed publisher
  289. Germain E, Santos T, Rabinovitz I. Phosphorylation of a novel site on the {beta}4 integrin at the trailing edge of migrating cells promotes hemidesmosome disassembly. Mol Biol Cell. 2009;20:56-67 pubmed publisher
  290. De Felice F, Vieira M, Bomfim T, Decker H, Velasco P, Lambert M, et al. Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A. 2009;106:1971-6 pubmed publisher
  291. Maître J, Berthoumieux H, Krens S, Salbreux G, Jülicher F, Paluch E, et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science. 2012;338:253-6 pubmed publisher
  292. Menacho-Marquez M, García-Escudero R, Ojeda V, Abad A, Delgado P, Costa C, et al. The Rho exchange factors Vav2 and Vav3 favor skin tumor initiation and promotion by engaging extracellular signaling loops. PLoS Biol. 2013;11:e1001615 pubmed publisher
  293. Wang B, Collins J, Newmark P. Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. elife. 2013;2:e00768 pubmed publisher
  294. Alves-Filho J, Freitas A, Souto F, Spiller F, Paula-Neto H, Silva J, et al. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci U S A. 2009;106:4018-23 pubmed publisher
  295. Piwko-Czuchra A, Koegel H, Meyer H, Bauer M, Werner S, Brakebusch C, et al. Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion. PLoS ONE. 2009;4:e5488 pubmed publisher
  296. Deng H, Hughes S, Bell J, Simmonds A. Alternative requirements for Vestigial, Scalloped, and Dmef2 during muscle differentiation in Drosophila melanogaster. Mol Biol Cell. 2009;20:256-69 pubmed publisher
  297. Nightingale T, Pattni K, Hume A, Seabra M, Cutler D. Rab27a and MyRIP regulate the amount and multimeric state of VWF released from endothelial cells. Blood. 2009;113:5010-8 pubmed publisher
  298. Joshi T, Ganesan L, Cheney C, Ostrowski M, Muthusamy N, Byrd J, et al. The PtdIns 3-kinase/Akt pathway regulates macrophage-mediated ADCC against B cell lymphoma. PLoS ONE. 2009;4:e4208 pubmed publisher
  299. Doceul V, Hollinshead M, van der Linden L, Smith G. Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science. 2010;327:873-6 pubmed publisher
  300. Watanabe K, Tachibana M, Kim S, Watarai M. Participation of ezrin in bacterial uptake by trophoblast giant cells. Reprod Biol Endocrinol. 2009;7:95 pubmed publisher
  301. Seo J, Yaneva R, Hinson E, Cresswell P. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science. 2011;332:1093-7 pubmed publisher
  302. Sato Y, Iketani M, Kurihara Y, Yamaguchi M, Yamashita N, Nakamura F, et al. Cartilage acidic protein-1B (LOTUS), an endogenous Nogo receptor antagonist for axon tract formation. Science. 2011;333:769-73 pubmed publisher
  303. Janssen A, van der Burg M, Szuhai K, Kops G, Medema R. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science. 2011;333:1895-8 pubmed publisher
  304. Alvarez J, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre P, Terouz S, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 2011;334:1727-31 pubmed publisher
  305. Cui J, Yao Q, Li S, Ding X, Lu Q, Mao H, et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science. 2010;329:1215-8 pubmed publisher
  306. Dickinson D, Nelson W, Weis W. A polarized epithelium organized by beta- and alpha-catenin predates cadherin and metazoan origins. Science. 2011;331:1336-9 pubmed publisher
  307. Togashi H, Kominami K, Waseda M, Komura H, Miyoshi J, Takeichi M, et al. Nectins establish a checkerboard-like cellular pattern in the auditory epithelium. Science. 2011;333:1144-7 pubmed publisher
  308. Hammond G, Fischer M, Anderson K, Holdich J, Koteci A, Balla T, et al. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science. 2012;337:727-30 pubmed publisher
  309. Messerschmidt D, DE VRIES W, Ito M, Solter D, Ferguson-Smith A, Knowles B. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science. 2012;335:1499-502 pubmed publisher
  310. Xiong B, Bayat V, Jaiswal M, Zhang K, Sandoval H, Charng W, et al. Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol. 2012;10:e1001438 pubmed publisher
  311. Indzhykulian A, Stepanyan R, Nelina A, Spinelli K, Ahmed Z, Belyantseva I, et al. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biol. 2013;11:e1001583 pubmed publisher
  312. Kempf A, Tews B, Arzt M, Weinmann O, Obermair F, Pernet V, et al. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biol. 2014;12:e1001763 pubmed publisher
  313. Wang S, Tan K, Agosto M, Xiong B, Yamamoto S, Sandoval H, et al. The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration. PLoS Biol. 2014;12:e1001847 pubmed publisher
  314. Montaville P, Jégou A, Pernier J, Compper C, Guichard B, Mogessie B, et al. Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong mechanism. PLoS Biol. 2014;12:e1001795 pubmed publisher
  315. Stolfi A, Lowe E, Racioppi C, Ristoratore F, Brown C, Swalla B, et al. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. elife. 2014;3:e03728 pubmed publisher
  316. Aspden J, Eyre-Walker Y, Phillips R, Amin U, Mumtaz M, Brocard M, et al. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. elife. 2014;3:e03528 pubmed publisher
  317. Levy-Adam F, Feld S, Suss-Toby E, Vlodavsky I, Ilan N. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE. 2008;3:e2319 pubmed publisher
  318. Horswill M, Narayan M, Warejcka D, Cirillo L, Twining S. Epigenetic silencing of maspin expression occurs early in the conversion of keratocytes to fibroblasts. Exp Eye Res. 2008;86:586-600 pubmed publisher
  319. Yu W, Sun X, Clough N, Cobos E, Tao Y, Dai Z. Abi1 gene silencing by short hairpin RNA impairs Bcr-Abl-induced cell adhesion and migration in vitro and leukemogenesis in vivo. Carcinogenesis. 2008;29:1717-24 pubmed publisher
  320. Conover G, Henderson S, Gregorio C. A myopathy-linked desmin mutation perturbs striated muscle actin filament architecture. Mol Biol Cell. 2009;20:834-45 pubmed publisher
  321. Colombani J, Andersen D, Leopold P. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science. 2012;336:582-5 pubmed publisher
  322. Cho H, Cho H, Lee H, Song M, Seo J, Bae Y, et al. Vascular calcifying progenitor cells possess bidirectional differentiation potentials. PLoS Biol. 2013;11:e1001534 pubmed publisher
  323. Lee J, Budanov A, Park E, Birse R, Kim T, Perkins G, et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science. 2010;327:1223-8 pubmed publisher
  324. Yip P, Wong L, Sears T, Yáñez-Muñoz R, McMahon S. Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biol. 2010;8:e1000399 pubmed publisher
  325. Nishimura T, Ishima T, Iyo M, Hashimoto K. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS ONE. 2008;3:e2558 pubmed publisher
  326. Coles C, Shen Y, Tenney A, Siebold C, Sutton G, Lu W, et al. Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension. Science. 2011;332:484-8 pubmed publisher
  327. Hamanaka R, Bobrovnikova-Marjon E, Ji X, Liebhaber S, Diehl J. PERK-dependent regulation of IAP translation during ER stress. Oncogene. 2009;28:910-20 pubmed publisher
  328. Altman B, Wofford J, Zhao Y, Coloff J, Ferguson E, Wieman H, et al. Autophagy provides nutrients but can lead to Chop-dependent induction of Bim to sensitize growth factor-deprived cells to apoptosis. Mol Biol Cell. 2009;20:1180-91 pubmed publisher
  329. Vecchi C, Montosi G, Zhang K, Lamberti I, Duncan S, Kaufman R, et al. ER stress controls iron metabolism through induction of hepcidin. Science. 2009;325:877-80 pubmed publisher
  330. Tsaytler P, Harding H, Ron D, Bertolotti A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 2011;332:91-4 pubmed publisher
  331. Lei P, Abdelrahim M, Cho S, Liu S, Chintharlapalli S, Safe S. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes inhibit colon cancer cell and tumor growth through activation of c-jun N-terminal kinase. Carcinogenesis. 2008;29:1139-47 pubmed publisher
  332. Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn B, Li H, et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. elife. 2013;2:e00498 pubmed publisher
  333. Sidrauski C, Tsai J, Kampmann M, Hearn B, Vedantham P, Jaishankar P, et al. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. elife. 2015;4:e07314 pubmed publisher
  334. Weidenfeld-Baranboim K, Bitton-Worms K, Aronheim A. TRE-dependent transcription activation by JDP2-CHOP10 association. Nucleic Acids Res. 2008;36:3608-19 pubmed publisher
  335. Misawa T, Arima K, Mizusawa H, Satoh J. Close association of water channel AQP1 with amyloid-beta deposition in Alzheimer disease brains. Acta Neuropathol. 2008;116:247-60 pubmed publisher
  336. Scanlin H, Carroll E, Jenkins V, Balkowiec A. Endomorphin-2 is released from newborn rat primary sensory neurons in a frequency- and calcium-dependent manner. Eur J Neurosci. 2008;27:2629-42 pubmed publisher
  337. Vafiadaki E, Arvanitis D, Pagakis S, Papalouka V, Sanoudou D, Kontrogianni-Konstantopoulos A, et al. The anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival. Mol Biol Cell. 2009;20:306-18 pubmed publisher
  338. Bachar E, Ariav Y, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1. PLoS ONE. 2009;4:e4954 pubmed publisher
  339. Walser R, Burke J, Gogvadze E, Bohnacker T, Zhang X, Hess D, et al. PKCβ phosphorylates PI3Kγ to activate it and release it from GPCR control. PLoS Biol. 2013;11:e1001587 pubmed publisher
  340. Del Vecchio C, Feng Y, Sokol E, Tillman E, Sanduja S, Reinhardt F, et al. De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biol. 2014;12:e1001945 pubmed publisher
  341. Boost K, Sadik C, Bachmann M, Zwissler B, Pfeilschifter J, Muhl H. IFN-gamma impairs release of IL-8 by IL-1beta-stimulated A549 lung carcinoma cells. BMC Cancer. 2008;8:265 pubmed publisher
  342. Castilow E, Olson M, Meyerholz D, Varga S. Differential role of gamma interferon in inhibiting pulmonary eosinophilia and exacerbating systemic disease in fusion protein-immunized mice undergoing challenge infection with respiratory syncytial virus. J Virol. 2008;82:2196-207 pubmed
  343. Ichinohe T, Lee H, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009;206:79-87 pubmed publisher
  344. Bonville C, Percopo C, Dyer K, Gao J, Prussin C, Foster B, et al. Interferon-gamma coordinates CCL3-mediated neutrophil recruitment in vivo. BMC Immunol. 2009;10:14 pubmed publisher
  345. Sasai M, Linehan M, Iwasaki A. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science. 2010;329:1530-4 pubmed publisher
  346. Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling H, Langa F, et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science. 2010;330:665-9 pubmed publisher
  347. Velasquez S, Ricardi M, Dorosz J, Fernandez P, Nadra A, Pol-Fachin L, et al. O-glycosylated cell wall proteins are essential in root hair growth. Science. 2011;332:1401-3 pubmed publisher
  348. Epstein J, Tewari K, Lyke K, Sim B, Billingsley P, Laurens M, et al. Live attenuated malaria vaccine designed to protect through hepatic CD8⁺ T cell immunity. Science. 2011;334:475-80 pubmed publisher
  349. Harker J, Lewis G, Mack L, Zuniga E. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science. 2011;334:825-9 pubmed publisher
  350. Sonnenberg G, Monticelli L, Alenghat T, Fung T, Hutnick N, Kunisawa J, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336:1321-5 pubmed publisher
  351. Iliev I, Funari V, Taylor K, Nguyen Q, Reyes C, Strom S, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336:1314-7 pubmed publisher
  352. Peine M, Rausch S, Helmstetter C, Fröhlich A, Hegazy A, Kuhl A, et al. Stable T-bet(+)GATA-3(+) Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopathologic inflammation. PLoS Biol. 2013;11:e1001633 pubmed publisher
  353. Cao M, Mao Z, Kam C, Xiao N, Cao X, Shen C, et al. PICK1 and ICA69 control insulin granule trafficking and their deficiencies lead to impaired glucose tolerance. PLoS Biol. 2013;11:e1001541 pubmed publisher
  354. Wieland Brown L, Penaranda C, Kashyap P, Williams B, Clardy J, Kronenberg M, et al. Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol. 2013;11:e1001610 pubmed publisher
  355. Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez R, Wang Y, et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science. 2010;329:849-53 pubmed publisher
  356. Naik S, Bouladoux N, Wilhelm C, Molloy M, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115-9 pubmed publisher
  357. Hand T, Dos Santos L, Bouladoux N, Molloy M, Pagán A, Pepper M, et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science. 2012;337:1553-6 pubmed
  358. Bernardino A, Myers T, Alvarez X, Hasegawa A, Philipp M. Toll-like receptors: insights into their possible role in the pathogenesis of lyme neuroborreliosis. Infect Immun. 2008;76:4385-95 pubmed publisher
  359. Ehehalt R, Sparla R, Kulaksiz H, Herrmann T, Fullekrug J, Stremmel W. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts). BMC Cell Biol. 2008;9:45 pubmed publisher
  360. Vij N, Mazur S, Zeitlin P. CFTR is a negative regulator of NFkappaB mediated innate immune response. PLoS ONE. 2009;4:e4664 pubmed publisher
  361. Holm T, Habashi J, Doyle J, Bedja D, Chen Y, Van Erp C, et al. Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science. 2011;332:358-61 pubmed publisher
  362. Delloye-Bourgeois C, Gibert B, Rama N, Delcros J, Gadot N, Scoazec J, et al. Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity. PLoS Biol. 2013;11:e1001623 pubmed publisher
  363. Bowes A, Khan M, Shi Y, Robertson L, Werstuck G. Valproate attenuates accelerated atherosclerosis in hyperglycemic apoE-deficient mice: evidence in support of a role for endoplasmic reticulum stress and glycogen synthase kinase-3 in lesion development and hepatic steatosis. Am J Pathol. 2009;174:330-42 pubmed publisher
  364. Steen M, Adams M, Tesch Y, Froehner S. Amelioration of muscular dystrophy by transgenic expression of Niemann-Pick C1. Mol Biol Cell. 2009;20:146-52 pubmed publisher
  365. Marschner K, Kollmann K, Schweizer M, Braulke T, Pohl S. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science. 2011;333:87-90 pubmed publisher
  366. Nishitsuji K, Tomiyama T, Ishibashi K, Ito K, Teraoka R, Lambert M, et al. The E693Delta mutation in amyloid precursor protein increases intracellular accumulation of amyloid beta oligomers and causes endoplasmic reticulum stress-induced apoptosis in cultured cells. Am J Pathol. 2009;174:957-69 pubmed publisher
  367. Gong R, Ding C, Hu J, Lu Y, Liu F, Mann E, et al. Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science. 2011;333:1642-6 pubmed publisher
  368. Yokota A, Takeuchi H, Maeda N, Ohoka Y, Kato C, Song S, et al. GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity. Int Immunol. 2009;21:361-77 pubmed publisher
  369. Beatty G, Chiorean E, Fishman M, Saboury B, Teitelbaum U, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331:1612-6 pubmed publisher
  370. Heger K, Fierens K, Vahl J, Aszodi A, Peschke K, Schenten D, et al. A20-deficient mast cells exacerbate inflammatory responses in vivo. PLoS Biol. 2014;12:e1001762 pubmed publisher
  371. Buchholz K, Rahlfs S, Schirmer R, Becker K, Matuschewski K. Depletion of Plasmodium berghei plasmoredoxin reveals a non-essential role for life cycle progression of the malaria parasite. PLoS ONE. 2008;3:e2474 pubmed publisher
  372. Zhang Z, Wippo C, Wal M, Ward E, Korber P, Pugh B. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science. 2011;332:977-80 pubmed publisher
  373. Michaud M, Martins I, Sukkurwala A, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334:1573-7 pubmed publisher
  374. ZIRIN J, Nieuwenhuis J, Perrimon N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol. 2013;11:e1001708 pubmed publisher
  375. Giannopoulou M, Dai C, Tan X, Wen X, Michalopoulos G, Liu Y. Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling. Am J Pathol. 2008;173:30-41 pubmed publisher
  376. Gulati P, Gaspers L, Dann S, Joaquin M, Nobukuni T, Natt F, et al. Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab. 2008;7:456-65 pubmed publisher
  377. Gao C, Boylan B, Bougie D, Gill J, Birenbaum J, Newman D, et al. Eptifibatide-induced thrombocytopenia and thrombosis in humans require FcgammaRIIa and the integrin beta3 cytoplasmic domain. J Clin Invest. 2009;119:504-11 pubmed publisher
  378. Li L, Monckton E, Godbout R. A role for DEAD box 1 at DNA double-strand breaks. Mol Cell Biol. 2008;28:6413-25 pubmed publisher
  379. Hein J, Boichuk S, Wu J, Cheng Y, Freire R, Jat P, et al. Simian virus 40 large T antigen disrupts genome integrity and activates a DNA damage response via Bub1 binding. J Virol. 2009;83:117-27 pubmed publisher
  380. Kaidi A, Weinert B, Choudhary C, Jackson S. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010;329:1348-53 pubmed publisher
  381. Kir S, Beddow S, Samuel V, Miller P, Previs S, Suino-Powell K, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science. 2011;331:1621-4 pubmed publisher
  382. Slipicevic A, Jørgensen K, Skrede M, Rosnes A, Trøen G, Davidson B, et al. The fatty acid binding protein 7 (FABP7) is involved in proliferation and invasion of melanoma cells. BMC Cancer. 2008;8:276 pubmed publisher
  383. Urano-Tashiro Y, Yajima A, Takashima E, Takahashi Y, Konishi K. Binding of the Streptococcus gordonii DL1 surface protein Hsa to the host cell membrane glycoproteins CD11b, CD43, and CD50. Infect Immun. 2008;76:4686-91 pubmed publisher
  384. Beck H, Semisch M, Culmsee C, Plesnila N, Hatzopoulos A. Egr-1 regulates expression of the glial scar component phosphacan in astrocytes after experimental stroke. Am J Pathol. 2008;173:77-92 pubmed publisher
  385. Arenas F, Hervias I, Uriz M, Joplin R, Prieto J, Medina J. Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells. J Clin Invest. 2008;118:695-709 pubmed publisher
  386. Perkins K, Lusic M, Mitar I, Giacca M, Proudfoot N. Transcription-dependent gene looping of the HIV-1 provirus is dictated by recognition of pre-mRNA processing signals. Mol Cell. 2008;29:56-68 pubmed publisher
  387. Clarke S, Khaliulin I, Das M, Parker J, Heesom K, Halestrap A. Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res. 2008;102:1082-90 pubmed publisher
  388. Bidere N, Ngo V, Lee J, Collins C, Zheng L, Wan F, et al. Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival. Nature. 2009;458:92-6 pubmed publisher
  389. Ferreira M, Fujiwara H, Morita K, Watt F. An activating beta1 integrin mutation increases the conversion of benign to malignant skin tumors. Cancer Res. 2009;69:1334-42 pubmed publisher
  390. Canettieri G, Coni S, Della Guardia M, Nocerino V, Antonucci L, Di Magno L, et al. The coactivator CRTC1 promotes cell proliferation and transformation via AP-1. Proc Natl Acad Sci U S A. 2009;106:1445-50 pubmed publisher
  391. Pesce J, Ramalingam T, Mentink-Kane M, Wilson M, El Kasmi K, Smith A, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5:e1000371 pubmed publisher
  392. Hou W, Kang H, Kim B. Th17 cells enhance viral persistence and inhibit T cell cytotoxicity in a model of chronic virus infection. J Exp Med. 2009;206:313-28 pubmed publisher
  393. Feng S, Muraoka-Cook R, Hunter D, Sandahl M, Caskey L, Miyazawa K, et al. The E3 ubiquitin ligase WWP1 selectively targets HER4 and its proteolytically derived signaling isoforms for degradation. Mol Cell Biol. 2009;29:892-906 pubmed publisher
  394. Granja A, Sánchez E, Sabina P, Fresno M, Revilla Y. African swine fever virus blocks the host cell antiviral inflammatory response through a direct inhibition of PKC-theta-mediated p300 transactivation. J Virol. 2009;83:969-80 pubmed publisher
  395. Rayner K, Suarez Y, Davalos A, Parathath S, Fitzgerald M, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570-3 pubmed publisher
  396. Bendall S, Simonds E, Qiu P, Amir E, Krutzik P, Finck R, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332:687-96 pubmed publisher
  397. Puel A, Cypowyj S, Bustamante J, Wright J, Liu L, Lim H, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332:65-8 pubmed publisher
  398. Modi B, Neustadter J, Binda E, Lewis J, Filler R, Roberts S, et al. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science. 2012;335:104-8 pubmed publisher
  399. McIlwain D, Lang P, Maretzky T, Hamada K, Ohishi K, Maney S, et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science. 2012;335:229-32 pubmed publisher
  400. Shenoy A, Wellington D, Kumar P, Kassa H, Booth C, Cresswell P, et al. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science. 2012;336:481-5 pubmed publisher
  401. Faivre E, Daniel A, Hillard C, Lange C. Progesterone receptor rapid signaling mediates serine 345 phosphorylation and tethering to specificity protein 1 transcription factors. Mol Endocrinol. 2008;22:823-37 pubmed publisher
  402. Klessner J, Desai B, Amargo E, Getsios S, Green K. EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol Biol Cell. 2009;20:328-37 pubmed publisher
  403. Round J, Lee S, Li J, Tran G, Jabri B, Chatila T, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974-7 pubmed publisher
  404. Vaishnava S, Yamamoto M, Severson K, Ruhn K, Yu X, Koren O, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334:255-8 pubmed publisher
  405. Khalil A, Cambier J, Shlomchik M. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science. 2012;336:1178-81 pubmed publisher
  406. Ye H, Daoud-El Baba M, Peng R, Fussenegger M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science. 2011;332:1565-8 pubmed publisher
  407. Janic B, Iskander A, Rad A, Soltanian-Zadeh H, Arbab A. Effects of ferumoxides-protamine sulfate labeling on immunomodulatory characteristics of macrophage-like THP-1 cells. PLoS ONE. 2008;3:e2499 pubmed publisher
  408. Gillis P, Okagaki L, Rice S. Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. J Virol. 2009;83:1767-77 pubmed publisher
  409. Houshmandi S, Emnett R, Giovannini M, Gutmann D. The neurofibromatosis 2 protein, merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner. Mol Cell Biol. 2009;29:1472-86 pubmed publisher
  410. Tu H, Ren D, Wang G, Chen D, Westergard T, Kim H, et al. The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage. Proc Natl Acad Sci U S A. 2009;106:1093-8 pubmed publisher
  411. Tagliabracci V, Engel J, Wen J, Wiley S, Worby C, Kinch L, et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012;336:1150-3 pubmed publisher
ISSN : 2329-5147