细胞标记
Konstantin Yakimchuk (Konstantin dot Yakimchuk at ki dot se)
Karolinska Institutet, Sweden
译者
王秀英 (mary at labome dot com)
美国新泽西州普林斯顿合原研究有限责任公司 (Synatom Research)
DOI
http://dx.doi.org/10.13070/mm.cn.3.183
日期
更新 : 2014-11-22; 原始版 : 2013-05-02
引用
实验材料和方法 2013;3:183
英文摘要

A compilation of immunohistochemical markers for all major cell types, excluding neural cells.

内皮细胞

内皮细胞形成所有血管的内表面,从最大的动脉和静脉到毛细血管。有许多特有的和非特有的内皮标记已经得到确定。

特有的内皮细胞标记包括血管性血友病因子 [1] ,血管内皮细胞钙粘蛋白(VE-cadherin,CD144) [2] ,血栓调节蛋白(CD141) [3] 和Pathologische Anatomie Leiden-内皮(PAL-E) [4] 。重要的是,PAL-E作为血管内皮细胞的特异性标记,可用于区分血管内皮和淋巴管内皮细胞。此外,MECA-79和达菲抗原趋化因子受体(DARC)被证明是内皮细胞的高度特异性标记物 [1] 。

非特异性的内皮细胞标志包括血小板/ EC粘附分子-1(PECAM-1,CD31),血管内皮生长因子受体(VEGFRs):1型血管内皮生长因子受体(Flt-1),2型血管内皮生长因子受体(KDR/FLK-1),以及3型血管内皮生长因子受体,CD146(MUC-18,S- endo),UEA-1(荆豆I型凝集素)和eNOS(内皮一氧化氮合酶)。

还有一些其他标记,包括CD146(MUC-18,S-endo),血栓调节蛋白(CD141),ICAM-1(细胞粘附因子,CD54)和E-选择素(CD62E),这些标记对内皮细胞活化有重要作用 [5].

蛋白蛋白序列号基因序列号数量前三大供应商
血小板/ EC粘附分子-1(PECAM-1, CD31) P16284 5175 108 BD Biosciences (44), Dako (32), Santa Cruz Biotechnology (8)
血管性血友病因子 P04275 7450 25 Dako (18), Sigma-Aldrich (2), AbD Serotec (1)
ICAM-1 (细胞间粘附因子, CD54) P05362 3383 18 Beckman Coulter, Inc. (3), BD Biosciences (3), Life Technologies Corporation (2)
血管内皮钙粘蛋白 (VE-cadherin, CD144) P33151 1003 16 BD Biosciences (4), Santa Cruz Biotechnology (3), EMD Millipore (3)
2型血管内皮生长因子受体(KDR/Flk-1) P35968 3791 15 Santa Cruz Biotechnology (6), BD Biosciences (3), Sigma-Aldrich (3)
UEA-1(荆豆I型凝集素) P08174 1604 11 AbD Serotec (3), Santa Cruz Biotechnology (2), Beckman Coulter, Inc. (2)
1型血管内皮生长因子受体(Flt-1) P17948 2321 10 Santa Cruz Biotechnology (7), R and D Systems (1), WILEX Inc. (1)
eNOS (内皮一氧化氮合酶) P29474 4846 10BD Biosciences (5), Cell Signaling Technology (2), Santa Cruz Biotechnology (1)
3型血管内皮生长因子受体 P35916 2324 8 Santa Cruz Biotechnology (3), EMD Millipore (1), eBioscience (1)
血栓调节蛋白(CD141) P07204 7056 4BD Biosciences (1), Dako (1)
CD146 (MUC-18, S-endo) P43121 4162 4Enzo Life Sciences (1), EMD Millipore (1), Santa Cruz Biotechnology (1)
E-选择素 (CD62E) P16581 6401 2 R and D Systems (1), BD Biosciences (1)
Pathologische Anatomie Leiden-内皮 (PAL-E)
MECA-79
达菲抗原趋化因子受体(DARC) Q16570 2532
表一:来邦网调查的出版物中的主要内皮细胞标志,以及相应抗体用于免疫组化,免疫细胞化学,流式细胞分析,酶联免疫吸附分析的引用文章数量。
上皮细胞

上皮细胞(EpC)来源于所有胚层(外胚层,内胚层和中胚层)。表皮细胞有外胚层来源的。占主导地位的表皮细胞是角质细胞,从表皮干细胞分化而来。有大量上皮亚型的特异性标记。

角蛋白(K)是含角蛋白的蛋白质,在上皮细胞细胞质中发现 [6, 7] 。有酸性的I型角蛋白和碱性的II型角蛋白。角蛋白1-3由鳞状上皮细胞表达。角蛋白5和角蛋白6由间皮细胞特异性表达,而角蛋白7由导管和腺上皮细胞特异性表达。 角蛋白8则在消化道上皮中表达(包括胃,大肠,小肠,胆,肝,胰腺)和乳腺导管 [8] 。皮肤和角质上皮细胞表达以下特定标记物:角蛋白1,5,10,14,15和16。 角蛋白10在鳞状上皮基底层表达。 角蛋白18作为恶性上皮细胞增殖的标记 [9].

蛋白蛋白序列号基因序列号数量前三大供应商
钙粘蛋白 P12830 999 66 BD Biosciences (24), Life Technologies Corporation (13), Santa Cruz Biotechnology (7)
角蛋白1 P04264 3848 26Dako (6), Sigma-Aldrich (4), BD Biosciences (3)
角蛋白7 P08729 3855 26 Dako (20), Santa Cruz Biotechnology (1), BD Biosciences (1)
上皮膜抗原(EMA, CD227, MUC-1) P15941 4582 21 Dako (9), Leica Microsystems (3), Thermo Scientific Pierce Products (2)
角蛋白18 P05783 3875 19 Sigma-Aldrich (6), Life Technologies Corporation (2), Roche Applied Science (2)
存活素 O15392 332 18 Novus Biologicals (7), Abcam (2), Santa Cruz Biotechnology (2)
细胞间黏附分子-1 P05362 3383 18 Beckman Coulter, Inc. (3), BD Biosciences (3), Life Technologies Corporation (2)
角蛋白14 P02533 3861 16Leica Microsystems (4), Covance (4), EMD Millipore (2)
角蛋白5 P13647 3852 15 Dako (5), BD Biosciences (2), Leica Microsystems (2)
角蛋白8 P05787 3856 12Developmental Studies Hybridoma Bank (3), BD Biosciences (3), Dako (2)
VLA-6 P23229 3655 12 EMD Millipore (5), Beckman Coulter, Inc. (2), BD Biosciences (2)
粘附分子LFA-1 P20701 3683 9 BD Biosciences (3), ATCC (2), Life Technologies Corporation (1)
粘附分子LFA-2 P06729 914 9 BD Biosciences (4), Leica Microsystems (2), Stemcell Technologies (2)
角蛋白10 P13645 3858 8 Dako (3), Covance (2), Thermo Scientific Pierce Products (1)
前列腺特异性抗原(PSA) P07288 354 8 Dako (4), Beckman Coulter, Inc. (1), Abcam (1)
VLA-5 P08648 3678 7 EMD Millipore (4), Santa Cruz Biotechnology (2), Beckman Coulter, Inc. (1)
免疫球蛋白G的Fc段 (FcR) P12318 2212 6BD Biosciences (2), AbD Serotec (1), Stemcell Technologies (1)
VLA-3 P26006 3675 6 EMD Millipore (3), Beckman Coulter, Inc. (1), Dako (1)
表面活化蛋白A Q8IWL2 653509 5Dako (3), EMD Millipore (2)
VLA-2 P17301 3673 5BD Biosciences (2), Beckman Coulter, Inc. (1), EMD Millipore (1)
VLA-4 P13612 3676 3 Beckman Coulter, Inc. (1), EMD Millipore (1), eBioscience (1)
角蛋白 3 P12035 3850 2 Santa Cruz Biotechnology (1), BD Biosciences (1)
角蛋白 16 P08779 3868 2Leica Microsystems (2)
上皮钠离子通道alpha P37088 6337 2Abcam (1), EMD Millipore (1)
表面活化蛋白C P11686 6440 2 EMD Millipore (2)
角蛋白 15 P19012 3866 1Covance (1)
上皮钠离子通道delta P51172 6339 1 Thermo Scientific Pierce Products (1)
表面活化蛋白B P07988 6439 1Dako (1)
整合素分子VLA-1 P56199 3672 1Beckman Coulter, Inc. (1)
角蛋白 2 P35908 3849
角蛋白 6 P02538 3853
上皮钠离子通道beta P51168 6338
上皮钠离子通道gamma P51170 6340
表面活化蛋白D P35247 6441
表二:来邦网调查的出版物中,主要上皮细胞标志,以及相应抗体用于免疫组化,免疫细胞化学,流式细胞分析,酶联免疫吸附分析的引用文章数量。

上皮细胞的其他标记还包括钙粘蛋白,上皮细胞膜抗原(EMA,CD227,MUC-1)(大多数分泌内皮型上皮细胞表达),上皮钠离子通道α, β, γ, δ,前列腺特异性抗原(PSA)(前列腺上皮细胞表达),表面活化蛋白A-D(肺上皮细胞表达),存活素(细胞上皮癌)。

此外,它们还表达IgG的Fc部分(FcR),整合素分子:VLA-1,2,3,4,5,6,粘附分子LFA-1,LFA-2,ICAM-1[1548035)。这些形成消化道内层的细胞由内胚层分化而来。体腔内层由中胚层分化形成。

树突状细胞

树突状细胞(DC)在包括抗原特异性免疫的获得性免疫中发挥了关键作用。根据功能和位置,树突状细胞可划分为三个亚群:常规树突细胞,浆细胞样树突状细胞和真皮(皮肤上)树突细胞 [10].

常规树突细胞驻留在淋巴结,脾脏和胸腺内。在小鼠中,常规树突细胞可分为CD8 +(表型CD8+ CD205+ SIRPA CD11b在脾中和CD11chiMHC II+CD8+CD205+在淋巴结中)和CD8-树突状细胞 [11] 。这些细胞激活T细胞向Th1和Th2分化。

浆细胞样树突状细胞(pDC)属于树突状细胞的第二大类,它驻留在淋巴结,脾,胸腺和骨髓中。人的浆细胞样树突状细胞在骨髓中分化成熟,通过分泌抗病毒和促炎症细胞因子,包括干扰素,肿瘤坏死因子alpha,IL-6和IL-12,在抗病毒免疫中发挥特定角色。这些细胞由两个亚群构成:CD2高和CD2低浆细胞样树突状细胞。人类和小鼠的浆细胞样树突状细胞表达以下标记:B220/CD45R,CD11c [12] ,TLR7和TLR9,IRF7,IRF8 [13] ,以及BDCA2 [14] 。

树突状细胞的第三大亚群位于皮肤上,由骨髓发展而来。皮肤树突状细胞有两个不同的小的亚群:表皮朗格汉斯细胞(LC)和真皮树突状细胞。表皮朗格汉斯细胞通过包含凝集素的伯贝克颗粒的存在和表达以下标记鉴定:CD1a、CD45。此外,真皮树突状细胞的两个小亚群已经确定:CD103+CD11b低凝集素+和CD103CD11b高凝集素的树突状细胞 [15] 。真皮树突状细胞也表达CD14。成熟的树突状细胞也表达CD1a、CD1b和CD1C分子,代表对CD1/限制T细胞的脂质和糖脂抗原 [16] 。

有几个调节树突状细胞分化的因子已被确定。与GMC-SF + IL4共培养,人CD14+单核细胞分化成树突状细胞 [17] 。此外,与GMC-SF + TNF共培养,人CD34+细胞也可以分化成树突状细胞 [18] 。小鼠骨髓细胞与GMCSF + TNF +干细胞因子(SCF]共培养可以分化成树突状细胞 [19] 。

还有一些其他的树突状细胞的标记,它们有不同程度的特异性。CD83是成熟树突状细胞的一个特异性分子标记 [20] 。CD21和丛生蛋白是滤泡树突状细胞的标记 [21, 22] 。此外,树突状细胞表达: ADAM19 [23], CD86 [24], DC-LAMP (CD208] [25, 26], DC-SIGN (CD209) [27], DEC-205 [28], CLIP-170/休眠蛋白 [29], NLDC-145 [30] 。MADDAM (金属蛋白酶和解聚素树突状抗原标记)是树突细胞分化的一个标记 [31] 。

蛋白蛋白序列号基因序列号数量前三大供应商
B220/CD45R P08575 5788 112 BD Biosciences (58), Dako (20), Beckman Coulter, Inc. (9)
CD45 P08575 5788 112 BD Biosciences (58), Dako (20), Beckman Coulter, Inc. (9)
CD14 P08571 929 70 BD Biosciences (33), Beckman Coulter, Inc. (10), Life Technologies Corporation (4)
TNF伪 P01375 7124 49 BD Biosciences (16), R and D Systems (11), Life Technologies Corporation (6)
IL-6 P05231 3569 34 R and D Systems (14), BD Biosciences (9), Life Technologies Corporation (4)
CD11c P20702 3687 22 BD Biosciences (15), BioLegend (2), AbD Serotec (2)
CD86 P42081 942 19BD Biosciences (11), BioLegend (2), AbD Serotec (1)
CD83 Q01151 9308 17 BD Biosciences (8), Beckman Coulter, Inc. (4), AbD Serotec (1)
CD1a P06126 909 14 Beckman Coulter, Inc. (5), BD Biosciences (3), Dako (2)
CD21 P20023 1380 12 BD Biosciences (7), Dako (5)
IL-12 P29459 3592 6BD Biosciences (3), R and D Systems (2), AbD Serotec (1)
TLR9 Q9NR96 54106 4 Santa Cruz Biotechnology (1), eBioscience (1), IMGENEX (1)
TLR7 Q9NYK1 51284 3 Santa Cruz Biotechnology (1), Enzo Life Sciences (1), IMGENEX (1)
CD1c P29017 911 2BD Biosciences (1), Miltenyi Biotec (1)
DC-SIGN (CD209) Q9NNX6 30835 2 R and D Systems (1), BD Biosciences (1)
IRF7 Q92985 3665 1 Santa Cruz Biotechnology (1)
BDCA2 Q8WTT0 170482 1Cocalico Biologicals (1)
丛生蛋白 P10909 1191 1 Santa Cruz Biotechnology (1)
DC-LAMP (CD208] Q9UQV4 27074 1 Beckman Coulter, Inc. (1)
CLIP-170/休眠蛋白 P30622 6249 1
IRF8 Q02556 3394
CD1b P29016 910
ADAM19 Q9H013 8728
DEC-205 O60449 4065
NLDC-145
MADDAM (金属蛋白酶和解聚素树突状抗原标记) Q9H013 8728
表三:来邦网调查的出版物中,主要树突状细胞标志,以及相应抗体用于免疫组化,免疫细胞化学,流式细胞分析,酶联免疫吸附分析的引用文章数量。
胶质细胞

神经胶质细胞是存在于神经系统中,为神经元提供保护和营养,调控早期发育中神经元迁移,以及神经元和神经递质释放之间的通信的细胞。胶质细胞谱系包括小神经胶质细胞和大胶质细胞。人类小胶质细胞在骨髓中由造血干细胞分化而来和表达MHC I类分子, MHC II类分子,CD45,CD68,和S22 [32] 。

大胶质细胞由星形胶质细胞,少突胶质细胞,室管膜细胞,放射状胶质细胞,施旺细胞,卫星细胞和肠道神经胶质细胞构成。星形胶质细胞可分为1型星形胶质细胞(RAN2+,GFAP+,FGFR3+ A2B5)和2型星形胶质细胞(A2B5+,GFAP+,FGFR3,Ran2-)。施旺细胞主要有两大类:髓鞘(特异性标志物:S-100蛋白,髓鞘蛋白零(P-Zero)和髓鞘碱性蛋白(MBP))和非髓鞘(特异性标志物:S-100和胶质纤维酸性蛋白(GFAP))。少突胶质前体表达血小板衍生生长因子(PDGF)受体,与PDGF结合 [33] 。室管膜细胞表达S-100,波形蛋白,GFAP,BLBP,3A7和3CB2 [34] 。施旺细胞是外周神经系统的主要神经胶质细胞。识别施旺细胞的特异性标记为S-100,髓鞘碱性蛋白(MBP),髓鞘蛋白零(MPZ)。卫星细胞在周围神经系统中为神经元提供支持,并表达CD45和骨髓系统标记CD14,CD68和CD11b [35] 。肠神经胶质细胞的特异性标志物包括:S-100蛋白,神经丝蛋白和蛋白基因产物9.5(PGP) [36] 。

蛋白蛋白序列号基因序列号数量前三大供应商
CD45 P08575 5788 112 BD Biosciences (58), Dako (20), Beckman Coulter, Inc. (9)
CD68 P34810 968 81 Dako (62), AbD Serotec (4), Santa Cruz Biotechnology (3)
GFAP P14136 2670 79 Dako (35), Sigma-Aldrich (19), EMD Millipore (11)
CD14 P08571 929 70 BD Biosciences (33), Beckman Coulter, Inc. (10), Life Technologies Corporation (4)
波形蛋白 P08670 7431 61 Dako (23), Sigma-Aldrich (13), Life Technologies Corporation (4)
CD11b P11215 3684 36 BD Biosciences (16), Dako (5), Beckman Coulter, Inc. (3)
S-100蛋白 P23297 6271 19Dako (12), Sigma-Aldrich (2), EMD Millipore (1)
髓鞘碱性蛋白(MBP) P02686 4155 17 EMD Millipore (7), Dako (4), Cell Signaling Technology (2)
血小板起源的生长因子(PDGF)受体 P09619 5159 15 Cell Signaling Technology (4), Santa Cruz Biotechnology (4), BD Biosciences (2)
神经丝蛋白 P07196 4747 15 EMD Millipore (6), Santa Cruz Biotechnology (2), Sigma-Aldrich (2)
MHC I类分子 P30443 3105 7 BD Biosciences (3), Santa Cruz Biotechnology (1), ATCC (1)
蛋白基因产物9.5 (PGP) P09936 7345 5 EMD Millipore (2), AbD Serotec (1), Dako (1)
FGFR3 P22607 2261 2 Santa Cruz Biotechnology (2)
BLBP O15540 2173 2 R and D Systems (1), EMD Millipore (1)
Ran2
A2B5
MHC II类分子 P01906 3118
S22 P82650 56945
髓鞘蛋白零(P-Zero) P25189 4359
3A7 P47888 8392
3CB2
表四:来邦网调查的出版物中,主要的神经胶质细胞标记,以及相应抗体用于免疫组化,免疫细胞化学,流式细胞分析,酶联免疫吸附分析的引用文章数量。
骨髓细胞

骨髓包含造血干细胞(HSC),产生的血细胞主要有三大类:白细胞,红细胞和血小板。人类造血干细胞的主要表型是: CD34+, CD38low/-, CD59+, Thy1+, c-Kit+, Lin-。小鼠的造血干细胞可鉴定为: CD34low/-, CD38+, Thy1+/low, SCA-1+, c-Kit+, Lin-。造血干细胞表达的其他标记有: CD90, CD93, CD105, CD110, Ly-6A/E (Sca-1), CD111, CD135 (Flk-2), CD150 (SLAM), CD184 (CXCR4), CD202b, CD243 (MDR-1), CD271 (NFGR), CD309 (VEGFR2) and CD338 [37] 。

骨髓中分化的主要流程包括骨髓细胞生成,红细胞生成和巨核细胞系的发育。骨髓细胞生成过程,产生下面几种类型的细胞:粒细胞,单核细胞和肥大细胞。有三种类型的粒细胞在骨髓中生成:嗜酸性粒细胞,嗜碱性粒细胞和嗜中性粒细胞。在IL-3,IL-5和GM-CSF刺激下嗜酸性粒细胞从骨髓中分化 [38-40] 。小鼠和人的嗜中性粒细胞表达下列标记分子:FcεRI, CD123, CD49b (DX-5), CD69, Thy-1.2, 2B4, CD11bdull [41], Ly-6G [42] 。单核细胞的特定表面标记为CD14 (CD14+细胞)。骨髓肥大细胞持续表达的标记包括: CD9, CD29, CD33, CD43, CD44, CD49d, CD49e, CD51, CD71, CD117和Fc(epsilon)RI [43] 。

蛋白蛋白序列号基因序列号数量前三大供应商
CD34 P28906 947 72 BD Biosciences (25), Dako (15), Beckman Coulter, Inc. (8)
CD14 P08571 929 70 BD Biosciences (33), Beckman Coulter, Inc. (10), Life Technologies Corporation (4)
Ly-6A/E (Sca-1) P42574 836 54 Cell Signaling Technology (19), BD Biosciences (12), R and D Systems (5)
CD44 P16070 960 40BD Biosciences (12), eBioscience (4), Beckman Coulter, Inc. (4)
CD71 P02786 7037 39 Life Technologies Corporation (13), BD Biosciences (6), Roche Applied Science (6)
CD11b P11215 3684 36 BD Biosciences (16), Dako (5), Beckman Coulter, Inc. (3)
c-Kit P10721 3815 33 BD Biosciences (9), Dako (7), Santa Cruz Biotechnology (6)
CD117 P10721 3815 33 BD Biosciences (9), Dako (7), Santa Cruz Biotechnology (6)
CD29 P05556 3688 32 EMD Millipore (8), BD Biosciences (5), Santa Cruz Biotechnology (3)
CD184 (CXCR4) P61073 7852 28 R and D Systems (12), BD Biosciences (7), EMD Millipore (2)
CD38 P28907 952 17 BD Biosciences (12), Life Technologies Corporation (2), GE Healthcare Life Biosciences (1)
Thy1 P04216 7070 16 BD Biosciences (9), EMD Millipore (2), Beckman Coulter, Inc. (2)
CD90 P04216 7070 16 BD Biosciences (9), EMD Millipore (2), Beckman Coulter, Inc. (2)
Thy-1.2 P04216 7070 16 BD Biosciences (9), EMD Millipore (2), Beckman Coulter, Inc. (2)
CD309 (VEGFR2) P35968 3791 15 Santa Cruz Biotechnology (6), BD Biosciences (3), Sigma-Aldrich (3)
CD69 Q07108 969 14BD Biosciences (13), Dako (1)
CD271 (NFGR) P08138 4804 13 EMD Millipore (3), Promega (3), Santa Cruz Biotechnology (1)
CD105 P17813 2022 11BD Biosciences (5), Dako (2), R and D Systems (1)
CD59 P13987 966 9 Beckman Coulter, Inc. (2), Life Technologies Corporation (1), Santa Cruz Biotechnology (1)
CD123 P26951 3563 9 BD Biosciences (6), eBioscience (3)
CD33 P20138 945 8 BD Biosciences (5), Beckman Coulter, Inc. (2), Dako (1)
CD43 P16150 6693 7BD Biosciences (4), Santa Cruz Biotechnology (1)
CD49e P08648 3678 7 EMD Millipore (4), Santa Cruz Biotechnology (2), Beckman Coulter, Inc. (1)
CD202b Q02763 7010 6 Santa Cruz Biotechnology (3), EMD Millipore (2), Cell Signaling Technology (1)
IL-5 P05113 3567 6BD Biosciences (2), Life Technologies Corporation (1), R and D Systems (1)
CD243 (MDR-1) P08183 5243 5 EMD Millipore (2), Santa Cruz Biotechnology (1), Sigma-Aldrich (1)
CD338 Q9UNQ0 9429 5 EMD Millipore (1), Enzo Life Sciences (1), eBioscience (1)
Fc蔚RI P12319 2205 5 EMD Millipore (1), eBioscience (1), Sigma-Aldrich (1)
CD49b (DX-5) P17301 3673 5BD Biosciences (2), Beckman Coulter, Inc. (1), EMD Millipore (1)
CD51 P06756 3685 5 EMD Millipore (4)
GM-CSF P15509 1438 4BD Biosciences (2), Beckman Coulter, Inc. (1), Thermo Scientific Pierce Products (1)
CD9 P21926 928 4 BD Biosciences (1), Sigma-Aldrich (1), Cosmo Bio (1)
CD150 (SLAM) Q13291 6504 3 eBioscience (1), BioLegend (1), BD Biosciences (1)
CD49d P13612 3676 3 Beckman Coulter, Inc. (1), EMD Millipore (1), eBioscience (1)
Lin Q9H9Z2 79727 1 Proteintech Group (1)
CD93 Q9NPY3 22918 1 eBioscience (1)
CD110 P40238 4352 1 R and D Systems (1)
IL-3 P08700 3562 1 Life Technologies Corporation (1)
2B4 Q9BZW8 51744 1 eBioscience (1)
CD111 Q15223 5818
CD135 (Flk-2) P36888 2322
Ly-6G
表五:来邦网调查的出版物中,主要的骨髓细胞标记,以及相应抗体用于免疫组化,免疫细胞化学,流式细胞分析,酶联免疫吸附分析的引用文章数量。
自然杀伤细胞

Natural Killer (NK) cells play the important role in immune response against malignant and infected cells. During NK lineage development, human NK cells pass through five main stages of differentiation. During these five stages NK cells express distinct sets of markers

自然杀伤细胞(NK)在恶性病毒侵袭和受感染细胞的免疫反应中发挥重要作用。 自然杀伤细胞谱系生成过程中,人类自然杀伤细胞经过了五个主要分化阶段。在这五个阶段中自然杀伤细胞表达不同的标记分子: 1) CD34+CD45RA+CD117−CD161−CD94−; 2) CD34+CD45RA+CD117+CD161+/−CD94−; 3) CD34−CD117+CD161+NKp46−CD94−; 4) CD34−CD117+/−NKp46+CD94+CD16−CD56bright; 5) CD34−CD117−NKp46+CD94+/−CD16+CD56dim [44] 。根据CD56 [45, 46] 和低亲和Fc受体CD16表面表达强度,人类血液自然杀伤细胞有两个主要的类群。大量CD56dim自然杀伤细胞(~90%) 表达高水平的CD16,而少量CD56bright自然杀伤细胞表达有限的CD16。

蛋白蛋白序列号基因序列号数量前三大供应商
CD45RA P08575 5788 112 BD Biosciences (58), Dako (20), Beckman Coulter, Inc. (9)
CD34 P28906 947 72 BD Biosciences (25), Dako (15), Beckman Coulter, Inc. (8)
CD56 P13591 4684 49 BD Biosciences (20), Dako (4), Leica Microsystems (4)
CD11b P11215 3684 36 BD Biosciences (16), Dako (5), Beckman Coulter, Inc. (3)
CD107a P11279 3916 36BD Biosciences (13), Developmental Studies Hybridoma Bank (10), Santa Cruz Biotechnology (6)
CD16 P08637 2214 35 BD Biosciences (19), Beckman Coulter, Inc. (3), ATCC (2)
CD117 P10721 3815 33 BD Biosciences (9), Dako (7), Santa Cruz Biotechnology (6)
CD69 Q07108 969 14BD Biosciences (13), Dako (1)
IL-2 P60568 3558 13 BD Biosciences (8), R and D Systems (3), Thermo Scientific Pierce Products (1)
CD27 P26842 939 10BD Biosciences (6), Beckman Coulter, Inc. (2), Life Technologies Corporation (1)
CD57/HNK1 Q9P2W7 27087 9 BD Biosciences (4), Leica Microsystems (2), EMD Millipore (1)
IL-12 P29459 3592 6BD Biosciences (3), R and D Systems (2), AbD Serotec (1)
FcgRII P12318 2212 6BD Biosciences (2), AbD Serotec (1), Stemcell Technologies (1)
CD161 Q12918 3820 4BD Biosciences (4)
IL-15 P40933 3600 4 R and D Systems (3), Santa Cruz Biotechnology (1)
CXC趋化因子受体 P25024 3577 4 R and D Systems (2), Santa Cruz Biotechnology (1), BD Biosciences (1)
DPIV (二肽基肽酶IV) P27487 1803 4 Enzo Life Sciences (1), eBioscience (1), Ancell (1)
CD94 Q13241 3824 3BD Biosciences (3)
IL-18 Q14116 3606 3 Life Technologies Corporation (1), MBL International (1)
CC受体 P32246 1230 3MBL International (1), Genzyme (1), Capralogics (1)
CD94/NKG2 Q13241 3824 3BD Biosciences (3)
NKp46 O76036 9437 2 R and D Systems (1), Beckman Coulter, Inc. (1)
自然杀伤毒细胞受体(NCR) O76036 9437 2 R and D Systems (1), Beckman Coulter, Inc. (1)
2B4 Q9BZW8 51744 1 eBioscience (1)
NKG2A P26715 3821 1 R and D Systems (1)
C受体
KIR P43629 3811
Ly49
NKp80 Q9NZS2 51348
BAT Q14032 570
NKH1 (N901)
H25
表六:来邦网调查的出版物中,主要的自然杀伤细胞标记,以及相应抗体用于免疫组化,免疫细胞化学,流式细胞分析,酶联免疫吸附分析的引用文章数量。

与人类自然杀伤细胞相比,小鼠的自然杀伤细胞亚群可通过CD27和CD11b标记来区分。这些亚群包括不成熟的CD11b 自然杀伤细胞,CD27+自然杀伤细胞,CD27+自然杀伤细胞和成熟的(最终)CD27CD11b+ 自然杀伤细胞。自然杀伤细胞能够被多种白细胞介素激活:IL-12, IL-2, IL-15, IL-18。并且,自然杀伤细胞表达CXC, CC和C趋化因子受体,这在调节自然杀伤细胞功能中非常重要 [47] 。此外,自然杀伤细胞表达受体识别MHC I类分子(人KIRs, 啮齿类Ly49和CD94/NKG2),NKp46, FcgRII 和非MHC结合自然杀伤细胞受体 (NKR-P1 (CD161)) [48],自然细胞毒受体 (NCR)和2B4) [49], NKG2A和NKp80 [50], CD107a-标记有功能的自然杀伤细胞活性 [51], CD69 –自然杀伤细胞活性标记 [48], CD335/NKp46 [52], BAT [53], CD57/HNK1 [54], NKH1 (N901) [55], DPIV (二肽基肽酶IV)-自然杀伤细胞的一个表面标记 [56], H25 [57] 。

蛋白详细蛋白序列号基因序列号数量前三大供应商
Th1细胞
CD4细胞表面 [58] P01730 920109 BD (61), Leica/Novocastra (11), Beckman (8)
TNFalpha分泌P01375 712464 BD (18), R & D (14), Life Tech/Biosource (8)
IFN-gamma分泌 P01579345858 BD (25), Thermo Fisher/Endogen (9), R & D (4)
CD195细胞表面 [58] P51681 123427 BD (14), R & D (8), Berlex Biosciences (2)
CCR5趋化因子 [59, 60] P516811234 27 BD (14), R & D (8), Berlex Biosciences (2)
CXCR3趋化因子受体 [59, 60] P496822833 9R & D (5), BD (4)
CD183细胞表面 [58] P49682 28339 R & D (5), BD (1)
CD119细胞表面 [58] P15260 34594 Thermo Fisher (1), AbD Serotec (1), SCBT (1)
CD26细胞表面 [58] P27487 18034 eBioscience/Bender (1), Enzo/Biomol (1), Ancell (1)
CD94细胞表面 [58] Q13241 38243 BD (3)
CCR1细胞表面 [58] P3224612303 MBL (1), Capralogics (1), GEnzyme (1)
IL-18R细胞表面 [58] Q1347888092 BD, R & D
LT-betaR细胞表面 [58] P3694140551 SCBT
Tim-3细胞表面 [58] Q8TDQ0848680
TNFbeta分泌P0137440490
Tbet转录因子 [61] Q9UL17 30009 0
Th2 cells
CD4 细胞表面 [58] P01730 920109 BD (61), Leica/Novocastra (11), Beckman (8)
CD184/CXCR4 趋化因子, 趋化因子受体 [58, 59, 62] P61073 7852 28R & D (12), BD (7), EMD Millipore (2)
IL-10 分泌 P22301 3586 25 BD (13), R & D (6), eBioscience (3)
IL-4 分泌 P05112 3565 16 BD (9), R & D (2), Thermo Fisher/Endogen (1
IL-13 分泌 P35225 3596 9 BD (3), R & D (2), Thermo Fisher/Affinity Bioreagents (1)
CD197/CCR7 趋化因子, 趋化因子受体 [58, 59, 62] P32248 1236 8 BD (4), R & D (2), eBioscience (1)
IL-5 分泌 P05113 3567 7 BD (20), R & D (1), Life Tech/Biosource (1)
CD193/CCR3 趋化因子, 趋化因子受体 [58, 59, 62] P51677 1232 6 SCBT (2), R & D (2), NIH AID repository (1)
IFNalphaR/TNFR-I 细胞表面 [58] P19438 7132 5 R & D (3), Life Tech/Caltag (1), Genzyme (1)
CD194/CCR4 趋化因子, 趋化因子受体 [58, 59, 62] P51679 1233 3 BD (2), SCBT (1)
CD278/ICOS 细胞表面 [58] Q9Y6W8 29851 2 R & D, ATCC
IL-1R 细胞表面 [58] P14778 3554 2 R & D (2)
GATA-3 转录因子 [61] P23771 2625 2 SCBT (2)
CCR8 趋化因子, 趋化因子受体 [59, 62] P51685 1237 2 Alexis (1), Berlex Biosciences (1)
IL-9 分泌 P15248 3578 0
Jurkat cells
CD45 细胞表面 [63] P08575 5788 115 BD (58), Beckman Coulter/Immunotech (24), eBioscience (7)
IL-2 分泌 P60568 3558 15 BD (9), R & D (3), Thermo Fisher/Endogen (1)
CD3/CD3E 细胞表面 [63] P07766 916 13 BD (9), Life Tech (1), Dako (1)
Mast cells
CD25 细胞表面 [64] P01589 3559 41 BD (22), SCBT (4), Life Tech/Biosource (3)
CD117/c-Kit细胞表面 [64] P10721 3815 33 Dako (11), BD (9), SCBT (6)
CD23 细胞表面 [64] P06734 2208 10 BD (6), Beckman Coulter (2), Leico/Novocastra (1)
High affinity IgE receptor 细胞表面 [64] P12319 2205 3 eBioscience (1), EMD Millipore/Upstate (1), Sigma (1)
CD203c 细胞表面 [64] O14638 5169 0
Retinal ganglion cells
PKC alpha [65] P17252 5578 9 EMD Millipore (3), SCBT (1), CST (1)
NGF [66] P01138 4803 1 Promega (1)
Brn3b [65] Q12837 5458 1 SCBT (1)
NSCL2 [66] P21675 6872 0
Hu-1 [65] P09067 3215 0
Pyramidal cells
MAP2 锥体细胞树突 [67-69] P11137 4133 36 Sigma (15), EMD Millipore (11), BD (3)
SMI-32/CD3epsilon [70-72] P07766 916 13 BD (9), Life Tech (1), Dako (1)
PSD-95 锥体神经元树突 [73] P78352 1742 10 Thermo Fisher (6), EMD Millipore (2), SCBT (1)
CaMK2 alpha [74] Q9UQM7 815 4 SCBT (1), EMD Millipore/Chemicon (1), Enzo (1)
mGluR1 Q132552911 1 EMD Millipore
mGluR5 CA1锥体神经元中表达的主要突触后mGluR [75, 76] P4159429151EMD Millipore
Tbr1 早期锥体神经元标记 [77] Q16650107161EMD Millipore
RPTPgamma 神经系统中的锥体细胞和感应神经元 [78] P2347057931Miltenyl
MATH-2 marker of hippocampal pyramidal cells [79] Q96NK8 639740
SCIP 海马体锥体细胞标记 [79, 80] Q03052 5453 0
Emx1 椎体神经元 [81] Q04741 2016 0
Zfp312 层V和VI皮层下投影锥体神经元 [82] Q8TBJ5 55079 0
神经颗粒素/RC3 [83, 84] Q92686 49000
Germ cells
EGFR 搞完生殖细胞肿瘤内的syncytiotrophoblastic细胞 [85] P00533 1956 60 Life Tech/Biosource (12), EMD Millipore (9), SCBT (8)
OCT3/4 生殖细胞肿瘤,比如性腺母细胞瘤和原位癌,侵袭性胚胎性癌以及精元瘤 [86] Q0186054603SCBT, EMD Millipore, Abcam
AP-2gamma 生殖母细胞和精元生殖细胞瘤 [87, 88] Q92754 7022 1 SCBT
DAZ-like 1/DAZL1 雄性和雌性生殖腺 [89] Q92904 1618 0
MAGE-A4testicular tumors [90] P43358 4103 0
VASA 正常和恶性的人生殖细胞 [91] Q9NQI0 54514 0
ZAR1 [92] Q86SH2 3263400
RBM 正常的雄性生殖细胞 [93] P0DJD3 5940 0
Tesmin 雄性生殖细胞分化 [94] Q9Y4I5 9633 0
TEX101 雄性和雌性生殖细胞 [95] Q9BY14 83639 0
GCNA1only for mouse [92, 96]
GP90-MC301 产前和产后检测的生殖细胞 [97]
M2A CIS生殖细胞 [98]
施旺细胞
胶质纤维酸性蛋白/GFAP 非髓鞘施旺细胞 P14136 2670 79 Dako (35), Sigma (19), EMD Millipore (11)
S100A1 P23297 6271 19 Dako (12), Sigma (2), EMD Millipore (1)
髓鞘碱性蛋白/MBP 髓鞘施旺细胞 P02686 4155 17 EMD Millipore (7), Dako (3), CST (2)
髓鞘蛋白零髓鞘施旺细胞 P25189 43590
Purkinje cells
GABA-T/γ-氨基丁酸转氨酶 浦肯野细胞分化标记 [99, 100] P80404184Sigma
钙结合蛋白 小脑浦肯野细胞 [101] P05937 793 17 Sigma (9), Swant (7), EMD (1)
NMDA-NR1/NMDA-R1 受体亚型 成人小脑浦肯野细胞 [102] Q05586 2902 6EMD (4), BD (2)
谷氨酸脱羧酶GAD67/67-kDa同型 浦肯野细胞分化标记 [100] Q9925925715EMD (2), Enzo, Sigma
PMCA/质膜钙泵更远端树突浦肯野细胞 [103] P20020 490 5Thermo Fisher (3), Enzo (1)
HDAC6大多数神经元都能表达但在小脑浦肯野细胞中丰富 [104] Q9UBN7100132 SCBT
cGMP-依赖型蛋白激酶 [105] Q13976 5592 2 SCBT, Enzo
PMCA2/质膜Ca(2+)-运输ATP酶-2 [106, 107] Q01814 491 2 Thermo Fisher
丛生蛋白人类大脑缺血浦肯野细胞 [108] P10909 1191 1 SCBT
PDE5 [109, 110] O76074 8654 1 Abcam
肌醇1,4,5 - 三磷酸受体/IP3R [111-113] Q14643 3708 1 EMD
Zebrin II/醛缩酶 [114-120] P09972 230 0
PDE1B [109, 110] Q01064 5153 0
SERCA [121] Q93084 4890
钙调素依赖性磷酸二酯酶/PDE1A 在小脑浦肯野细胞表达水平高 [122] P14100 2819690
Car8 在小脑浦肯野细胞表达水平高 [123] P35219 767 0
HFB-16/KIAA0864 Protein人类发育小脑中的浦肯野细胞 [124] Q6WCQ1 231640
OMP/嗅蛋白后叶浦肯野细胞 [125] P4787449750
PCA-1/PCA-2浦肯野细胞细胞质 [126-128] P22413 5167 0
PDE9A 啮齿类动物的小脑浦肯野细胞 [129] O760835152 0
PEP-19/PEP19 小脑浦肯野细胞 [130] P48539 5121 0
小脑肽 浦肯野细胞成熟的量化标记 [131, 132] P23435 8690
鸟苷3':5'-磷酸依赖的蛋白激酶 [133]
MAP-120存在于浦肯野细胞内 [134]
PCPP-260/分子量260,000的浦肯野细胞磷酸化蛋白小脑浦肯野细胞 [135, 136]
Spot 35 蛋白/S-35小脑浦肯野细胞 [137-142]
颗粒细胞
纤连蛋白 颗粒细胞细胞分化的标志物 [143] P02751 2335 22BD (5), Sigma (4), Dako (3)
AMH/抗苗勒管激素 性腺肿瘤起源的支持细胞和颗粒细胞的标记 [144] P039712685SCBT (3), R & D, Beckman Coulter
MCAM/黑色素瘤细胞粘附分子/CD146 [145] P4312141624 SCBT (1), EMD (1), Enzo (1)
chZPC一个特异性的鸡颗粒细胞标记 [146] P217547780
卵泡调节蛋白/FRP卵巢颗粒细胞分泌, 颗粒细胞瘤标记 [147]
大的黄体细胞
磷酸化 Akt [148] P31749 207 15 CST (12), SCBT (1), EMD (1)
luteinizing hormone receptor [149] P22888 3973 1 ATCC
CYP11A1生成类固醇的黄体细胞表达 [150] P05108 1583 0
Sertoli cells
波形蛋白成熟的支持细胞 [151, 152] P086707431 61 DAKO (24), Sigma (13), SCBT (4)
细胞角蛋白18 产前和青春期前的支持细胞 [153-155] P05783387519Sigma (6), Life Tech (2), Leica/Novocastra (2)
钙网膜蛋白不成熟的支持细胞 [154] P22676 79412 AWANT (4), Sigma (3), EMD (2)
SCF/干细胞因子由支持细胞生成 [156-160] P215834254 5SCBT (1), R & D (1), ENZO (1)
MIS/苗勒抑制物质胎儿睾丸支持细胞 [161] P03971 268 5 SCBT (3), R & D, Beckman Coulter
Sox9调节睾丸中支持细胞的分化 [162-165] P484366662 3 SCBT (2), R & D
抑制素B [166, 167] P095293625 2 AbD Serotec
ABP/雄激素结合蛋白 支持细胞有功能的标记 [168-170] P042786462 1Fitzgerald
丛生蛋白 大鼠支持细胞 [171, 172] P1090911911 SCBT
GATA-1Sertoli cells at specific seminiferous tubule stages [173] P15976 2623 1SCBT
GATA-4生精线中的胎儿睾丸支持细胞 [174-178] P436942626 1SCBT
Dhh/desert hedgehog [179-183] O43323 50846 0
5 - 羟色胺受体1A正常睾丸中的支持细胞 [184, 185] P08908 3350 0
M2A 不成熟的支持细胞 [186, 187]
周期蛋白-2/CP-2支持细胞分泌 [188-191]
表七:不同类型细胞的抗体标记和引自来邦网调查的10,000篇文章中的前三大供应商。
参考文献
  1. Middleton J, Americh L, Gayon R, Julien D, Mansat M, Mansat P, et al. A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146. J Pathol. 2005;206:260-8 pubmed
  2. Harris E, Nelson W. VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr Opin Cell Biol. 2010;22:651-8 pubmed publisher
  3. Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta. 2006;368:33-47 pubmed
  4. Keuschnigg J, Henttinen T, Auvinen K, Karikoski M, Salmi M, Jalkanen S. The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood. 2009;114:478-84 pubmed publisher
  5. Lehle K, Straub R, Morawietz H, Kunz-Schughart L. Relevance of disease- and organ-specific endothelial cells for in vitro research. Cell Biol Int. 2010;34:1231-8 pubmed publisher
  6. Sun T, Eichner R, Nelson W, Tseng S, Weiss R, Jarvinen M, et al. Keratin classes: molecular markers for different types of epithelial differentiation. J Invest Dermatol. 1983;81:109s-15s pubmed
  7. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129:705-33 pubmed publisher
  8. Strnad P, Paschke S, Jang K, Ku N. Keratins: markers and modulators of liver disease. Curr Opin Gastroenterol. 2012;28:209-16 pubmed publisher
  9. Weng Y, Cui Y, Fang J. Biological functions of cytokeratin 18 in cancer. Mol Cancer Res. 2012;10:485-93 pubmed publisher
  10. Takeuchi S, Furue M. Dendritic cells: ontogeny. Allergol Int. 2007;56:215-23 pubmed
  11. Shortman K, Liu Y. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151-61 pubmed
  12. Amano H, Amano E, Santiago-Raber M, Moll T, Martinez-Soria E, Fossati-Jimack L, et al. Selective expansion of a monocyte subset expressing the CD11c dendritic cell marker in the Yaa model of systemic lupus erythematosus. Arthritis Rheum. 2005;52:2790-8 pubmed
  13. Colonna M, Trinchieri G, Liu Y. Plasmacytoid dendritic cells in immunity. Nat Immunol. 2004;5:1219-26 pubmed
  14. Conrad C, Gregorio J, Wang Y, Ito T, Meller S, Hanabuchi S, et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells. Cancer Res. 2012;72:5240-9 pubmed publisher
  15. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8:935-47 pubmed publisher
  16. Moody D, Zajonc D, Wilson I. Anatomy of CD1-lipid antigen complexes. Nat Rev Immunol. 2005;5:387-99 pubmed
  17. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179:1109-18 pubmed
  18. 参考文献18.
  19. Zhang Y, Harada A, Wang J, Zhang Y, Hashimoto S, Naito M, et al. Bifurcated dendritic cell differentiation in vitro from murine lineage phenotype-negative c-kit+ bone marrow hematopoietic progenitor cells. Blood. 1998;92:118-28 pubmed
  20. Mahanonda R, Sa-Ard-Iam N, Yongvanitchit K, Wisetchang M, Ishikawa I, Nagasawa T, et al. Upregulation of co-stimulatory molecule expression and dendritic cell marker (CD83) on B cells in periodontal disease. J Periodontal Res. 2002;37:177-83 pubmed
  21. Troxell M, Schwartz E, van de Rijn M, Ross D, Warnke R, Higgins J, et al. Follicular dendritic cell immunohistochemical markers in angioimmunoblastic T-cell lymphoma. Appl Immunohistochem Mol Morphol. 2005;13:297-303 pubmed
  22. Grogg K, Lae M, Kurtin P, Macon W. Clusterin expression distinguishes follicular dendritic cell tumors from other dendritic cell neoplasms: report of a novel follicular dendritic cell marker and clinicopathologic data on 12 additional follicular dendritic cell tumors and 6 additional inter. Am J Surg Pathol. 2004;28:988-98 pubmed
  23. Ehrnsperger A, Rehli M, Thu-Hang P, Kreutz M. Epigenetic regulation of the dendritic cell-marker gene ADAM19. Biochem Biophys Res Commun. 2005;332:456-64 pubmed
  24. Bonnefont-Rebeix C, de Carvalho C, Bernaud J, Chabanne L, Marchal T, Rigal D. CD86 molecule is a specific marker for canine monocyte-derived dendritic cells. Vet Immunol Immunopathol. 2006;109:167-76 pubmed
  25. Salaun B, de Saint-Vis B, Clair-Moninot V, Pin J, Barthelemy-Dubois C, Kissenpfennig A, et al. Cloning and characterization of the mouse homologue of the human dendritic cell maturation marker CD208/DC-LAMP. Eur J Immunol. 2003;33:2619-29 pubmed
  26. Meyerholz D, DeGraaff J, Gallup J, Olivier A, Ackermann M. Depletion of alveolar glycogen corresponds with immunohistochemical development of CD208 antigen expression in perinatal lamb lung. J Histochem Cytochem. 2006;54:1247-53 pubmed
  27. Schlapbach C, Ochsenbein A, Kaelin U, Hassan A, Hunger R, Yawalkar N. High numbers of DC-SIGN+ dendritic cells in lesional skin of cutaneous T-cell lymphoma. J Am Acad Dermatol. 2010;62:995-1004 pubmed publisher
  28. Kronin V, Wu L, Gong S, Nussenzweig M, Shortman K. DEC-205 as a marker of dendritic cells with regulatory effects on CD8 T cell responses. Int Immunol. 2000;12:731-5 pubmed
  29. Sahin U, Neumann F, Tureci O, Schmits R, Perez F, Pfreundschuh M. Hodgkin and Reed-Sternberg cell-associated autoantigen CLIP-170/restin is a marker for dendritic cells and is involved in the trafficking of macropinosomes to the cytoskeleton, supporting a function-based concept of Hodgkin and Reed-Sternberg cells. Blood. 2002;100:4139-45 pubmed
  30. Breel M, Laman J, Kraal G. Murine hybrid cell lines expressing the NLDC-145 dendritic cell determinant. Immunobiology. 1988;178:167-76 pubmed
  31. Fritsche J, Moser M, Faust S, Peuker A, Buttner R, Andreesen R, et al. Molecular cloning and characterization of a human metalloprotease disintegrin--a novel marker for dendritic cell differentiation. Blood. 2000;96:732-9 pubmed
  32. Chen L, Yang P, Kijlstra A. Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm. 2002;10:27-39 pubmed
  33. Grinspan J. Cells and signaling in oligodendrocyte development. J Neuropathol Exp Neurol. 2002;61:297-306 pubmed
  34. Perez-Martin M, Cifuentes M, Grondona J, Bermudez-Silva F, Arrabal P, Pérez-Fígares J, et al. Neurogenesis in explants from the walls of the lateral ventricle of adult bovine brain: role of endogenous IGF-1 as a survival factor. Eur J Neurosci. 2003;17:205-11 pubmed
  35. van Velzen M, Laman J, Kleinjan A, Poot A, Osterhaus A, Verjans G. Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype. J Immunol. 2009;183:2456-61 pubmed publisher
  36. Krammer H, Karahan S, Sigge W, Kuhnel W. Immunohistochemistry of markers of the enteric nervous system in whole-mount preparations of the human colon. Eur J Pediatr Surg. 1994;4:274-8 pubmed
  37. Calloni R, Cordero E, Henriques J, Bonatto D. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev. 2013;22:1455-76 pubmed publisher
  38. Metcalf D, Begley C, Nicola N, Johnson G. Quantitative responsiveness of murine hemopoietic populations in vitro and in vivo to recombinant multi-CSF (IL-3). Exp Hematol. 1987;15:288-95 pubmed
  39. Metcalf D, Burgess A, Johnson G, Nicola N, Nice E, Delamarter J, et al. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Escherichia coli: comparison with purified native GM-CSF. J Cell Physiol. 1986;128:421-31 pubmed
  40. Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, et al. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med. 1988;167:43-56 pubmed
  41. Schroeder J. Basophils beyond effector cells of allergic inflammation. Adv Immunol. 2009;101:123-61 pubmed publisher
  42. Granot Z, Henke E, Comen E, King T, Norton L, Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20:300-14 pubmed publisher
  43. Escribano L, Orfao A, Villarrubia J, Diaz-Agustin B, Cerveró C, Rios A, et al. Immunophenotypic characterization of human bone marrow mast cells. A flow cytometric study of normal and pathological bone marrow samples. Anal Cell Pathol. 1998;16:151-9 pubmed
  44. Freud A, Caligiuri M. Human natural killer cell development. Immunol Rev. 2006;214:56-72 pubmed
  45. Sekita T, Tamaru J, Isobe K, Harigaya K, Masuoka S, Katayama T, et al. Diffuse large B cell lymphoma expressing the natural killer cell marker CD56. Pathol Int. 1999;49:752-8 pubmed
  46. Chan J, Sin V, Wong K, Ng C, Tsang W, Chan C, et al. Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood. 1997;89:4501-13 pubmed
  47. Bernardini G, Gismondi A, Santoni A. Chemokines and NK cells: regulators of development, trafficking and functions. Immunol Lett. 2012;145:39-46 pubmed publisher
  48. Coulam C, Roussev R. Correlation of NK cell activation and inhibition markers with NK cytoxicity among women experiencing immunologic implantation failure after in vitro fertilization and embryo transfer. J Assist Reprod Genet. 2003;20:58-62 pubmed
  49. Inngjerdingen M, Kveberg L, Naper C, Vaage J. Natural killer cell subsets in man and rodents. Tissue Antigens. 2011;78:81-8 pubmed publisher
  50. Mavilio D, Benjamin J, Kim D, Lombardo G, Daucher M, Kinter A, et al. Identification of NKG2A and NKp80 as specific natural killer cell markers in rhesus and pigtailed monkeys. Blood. 2005;106:1718-25 pubmed
  51. Alter G, Malenfant J, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294:15-22 pubmed
  52. Rodríguez-Caulo E, Velazquez C, Barquero J, Garcia-Borbolla M. Atypical chest pain and hemoptysis 27 years after aortic coarctation surgery: aortobronchial fistula, management and endovascular treatment. Rev Esp Cardiol. 2011;64:726-7 pubmed publisher
  53. Habu S, Hayakawa K, Okumura K, Tada T. Surface markers on natural killer cells of the mouse. Eur J Immunol. 1979;9:938-42 pubmed
  54. Brinkmann V, Kristofic C. Massive production of Th2 cytokines by human CD4+ effector T cells transiently expressing the natural killer cell marker CD57/HNK1. Immunology. 1997;91:541-7 pubmed
  55. Ritson A, Bulmer J. Endometrial granulocytes in human decidua react with a natural-killer (NK) cell marker, NKH1. Immunology. 1987;62:329-31 pubmed
  56. Biuling F, Tonevitskii A, Kiuster U, Anzorge S. [Study of dipeptidyl peptidase IV as a surface marker of human natural killer cells]. Biull Eksp Biol Med. 1990;110:411-3 pubmed
  57. Körfer A, Kirchner H, Schneekloth C, Buhrer C, Wisniewski D, Gulati S, et al. Immunophenotypic demonstration of two natural killer surface markers, H25 and H366, on fresh human leukemic cells. Acta Haematol. 1989;82:193-6 pubmed
  58. Romagnani S. Th1/Th2 cells. Inflamm Bowel Dis. 1999;5:285-94 pubmed
  59. Jung S, Littman D. Chemokine receptors in lymphoid organ homeostasis. Curr Opin Immunol. 1999;11:319-25 pubmed
  60. Bonecchi R, Bianchi G, Bordignon P, D'Ambrosio D, Lang R, Borsatti A, et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med. 1998;187:129-34 pubmed
  61. Sallusto F, Lenig D, Mackay C, Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med. 1998;187:875-83 pubmed
  62. Schneider U, Schwenk H, Bornkamm G. Characterization of EBV-genome negative "null" and "T" cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer. 1977;19:621-6 pubmed
  63. Heneberg P. Mast cells and basophils: trojan horses of conventional lin- stem/progenitor cell isolates. Curr Pharm Des. 2011;17:3753-71 pubmed
  64. González-Hoyuela M, Barbas J, Rodriguez-Tebar A. The autoregulation of retinal ganglion cell number. Development. 2001;128:117-24 pubmed
  65. Aoki H, Hara A, Niwa M, Motohashi T, Suzuki T, Kunisada T. An in vitro mouse model for retinal ganglion cell replacement therapy using eye-like structures differentiated from ES cells. Exp Eye Res. 2007;84:868-75 pubmed
  66. Muller J, Mascagni F, McDonald A. Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J Comp Neurol. 2006;494:635-50 pubmed
  67. Filippov A, Choi R, Simon J, Barnard E, Brown D. Activation of P2Y1 nucleotide receptors induces inhibition of the M-type K+ current in rat hippocampal pyramidal neurons. J Neurosci. 2006;26:9340-8 pubmed
  68. Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M. Cell type- and region-specific expression of neurogranin mRNA in the cerebral cortex of the macaque monkey. Cereb Cortex. 2004;14:1134-43 pubmed
  69. Lalonde J, Lachance P, Chaudhuri A. Monocular enucleation induces nuclear localization of calcium/calmodulin-dependent protein kinase IV in cortical interneurons of adult monkey area V1. J Neurosci. 2004;24:554-64 pubmed
  70. Wannier T, Schmidlin E, Bloch J, Rouiller E. A unilateral section of the corticospinal tract at cervical level in primate does not lead to measurable cell loss in motor cortex. J Neurotrauma. 2005;22:703-17 pubmed
  71. del Rio M, Defelipe J. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex. J Comp Neurol. 1994;342:389-408 pubmed
  72. Castro P, Pleasure S, Baraban S. Hippocampal heterotopia with molecular and electrophysiological properties of neocortical neurons. Neuroscience. 2002;114:961-72 pubmed
  73. Frantz G, Bohner A, Akers R, McConnell S. Regulation of the POU domain gene SCIP during cerebral cortical development. J Neurosci. 1994;14:472-85 pubmed
  74. Hammond V, Howell B, Godinho L, Tan S. disabled-1 functions cell autonomously during radial migration and cortical layering of pyramidal neurons. J Neurosci. 2001;21:8798-808 pubmed
  75. Yoshinaga K, Muramatsu H, Muramatsu T. Immunohistochemical localization of the carbohydrate antigen 4C9 in the mouse embryo: a reliable marker of mouse primordial germ cells. Differentiation. 1991;48:75-82 pubmed
  76. Pennetier S, Uzbekova S, Perreau C, Papillier P, Mermillod P, Dalbies-Tran R. Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15,andVASA in adult bovine tissues, oocytes, and preimplantation embryos. Biol Reprod. 2004;71:1359-66 pubmed
  77. Maatouk D, Kellam L, Mann M, Lei H, Li E, Bartolomei M, et al. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development. 2006;133:3411-8 pubmed
  78. Lifschitz-Mercer B, Elliott D, Issakov J, Leider-Trejo L, Schreiber L, Misonzhnik F, et al. Localization of a specific germ cell marker, DAZL1, in testicular germ cell neoplasias. Virchows Arch. 2002;440:387-91 pubmed
  79. Zeeman A, Stoop H, Boter M, Gillis A, Castrillon D, Oosterhuis J, et al. VASA is a specific marker for both normal and malignant human germ cells. Lab Invest. 2002;82:159-66 pubmed
  80. Tsukamoto H, Yoshitake H, Mori M, Yanagida M, Takamori K, Ogawa H, et al. Testicular proteins associated with the germ cell-marker, TEX101: involvement of cellubrevin in TEX101-trafficking to the cell surface during spermatogenesis. Biochem Biophys Res Commun. 2006;345:229-38 pubmed
  81. Lifschitz-Mercer B, Elliott D, Leider-Trejo L, Schreiber-Bramante L, Hassner A, Eisenthal A, et al. Absence of RBM expression as a marker of intratubular (in situ) germ cell neoplasia of the testis. Hum Pathol. 2000;31:1116-20 pubmed
  82. Sugihara T, Wadhwa R, Kaul S, Mitsui Y. A novel testis-specific metallothionein-like protein, tesmin, is an early marker of male germ cell differentiation. Genomics. 1999;57:130-6 pubmed
  83. Gonzalez-Martinez T, Perez-Pinera P, Diaz-Esnal B, Vega J. S-100 proteins in the human peripheral nervous system. Microsc Res Tech. 2003;60:633-8 pubmed
  84. Harauz G, Ishiyama N, Hill C, Bates I, Libich D, Fares C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron. 2004;35:503-42 pubmed
  85. Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, et al. Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol. 2003;163:295-302 pubmed
  86. De Camilli P, Miller P, Levitt P, Walter U, Greengard P. Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience. 1984;11:761-817 pubmed
  87. Hallem J, Thompson J, Gundappa-Sulur G, Hawkes R, Bjaalie J, Bower J. Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIA of the rat. Neuroscience. 1999;93:1083-94 pubmed
  88. Pakan J, Iwaniuk A, Wylie D, Hawkes R, Marzban H. Purkinje cell compartmentation as revealed by zebrin II expression in the cerebellar cortex of pigeons (Columba livia). J Comp Neurol. 2007;501:619-30 pubmed
  89. Lannoo M, Hawkes R. A search for primitive Purkinje cells: zebrin II expression in sea lampreys (Petromyzon marinus). Neurosci Lett. 1997;237:53-5 pubmed
  90. Yan J, Jiao Y, Jiao F, Stuart J, Donahue L, Beamer W, et al. Effects of carbonic anhydrase VIII deficiency on cerebellar gene expression profiles in the wdl mouse. Neurosci Lett. 2007;413:196-201 pubmed
  91. Nakamura Y, Yamamoto M, Oda E, Kanemura Y, Kodama E, Yamamoto A, et al. A novel marker for Purkinje cells, KIAA0864 protein. An analysis based on a monoclonal antibody HFB-16 in developing human cerebellum. J Histochem Cytochem. 2005;53:423-30 pubmed
  92. Morita T, Nakamura K, Sawada M, Shimada A, Sato K, Miyata H, et al. Inositol 1,4,5-triphosphate receptor protein immunohistochemistry of cerebellar Purkinje cells in two dogs with hypoglycemia. Vet Pathol. 2004;41:82-6 pubmed
  93. Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M, et al. Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem. 1991;266:1109-16 pubmed
  94. Miyata M, Miyata H, Mikoshiba K, Ohama E. Development of Purkinje cells in humans: an immunohistochemical study using a monoclonal antibody against the inositol 1,4,5-triphosphate type 1 receptor (IP3R1). Acta Neuropathol. 1999;98:226-32 pubmed
  95. Rey R, Sabourin J, Venara M, Long W, Jaubert F, Zeller W, et al. Anti-Müllerian hormone is a specific marker of sertoli- and granulosa-cell origin in gonadal tumors. Hum Pathol. 2000;31:1202-8 pubmed
  96. Rodgers K, Marks J, Ellefson D, Yanagihara D, Tonetta S, Vasilev S, et al. Follicle regulatory protein: a novel marker for granulosa cell cancer patients. Gynecol Oncol. 1990;37:381-7 pubmed
  97. Pautier P, Bidart J, Lallou N, Duvillard P, Michel G, Droz J, et al. [Value of inhibin as a tumor marker in granulosa cell tumors. Apropos of 6 new cases treated at the Gustave-Roussy Institute]. Bull Cancer. 1995;82:557-60 pubmed
  98. Lappöhn R, Burger H, Bouma J, Bangah M, Krans M, de Bruijn H. Inhibin as a marker for granulosa-cell tumors. N Engl J Med. 1989;321:790-3 pubmed
  99. Yoshioka S, Fujiwara H, Higuchi T, Yamada S, Maeda M, Fujii S. Melanoma cell adhesion molecule (MCAM/CD146) is expressed on human luteinizing granulosa cells: enhancement of its expression by hCG, interleukin-1 and tumour necrosis factor-alpha. Mol Hum Reprod. 2003;9:311-9 pubmed
  100. Skinner M, McKeracher H, Dorrington J. Fibronectin as a marker of granulosa cell cytodifferentiation. Endocrinology. 1985;117:886-92 pubmed
  101. Quirk S, Cowan R, Harman R. Role of the cell cycle in regression of the corpus luteum. Reproduction. 2013;145:161-75 pubmed publisher
  102. Dickinson R, Stewart A, Myers M, Millar R, Duncan W. Differential expression and functional characterization of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis. Endocrinology. 2009;150:2873-81 pubmed publisher
  103. Goto M, Iwase A, Ando H, Kurotsuchi S, Harata T, Kikkawa F. PTEN and Akt expression during growth of human ovarian follicles. J Assist Reprod Genet. 2007;24:541-6 pubmed
  104. Hagenäs L, Ritzen E, Ploöen L, Hansson V, French F, Nayfeh S. Sertoli cell origin of testicular androgen-binding protein (ABP). Mol Cell Endocrinol. 1975;2:339-50 pubmed
  105. Tevosian S, Albrecht K, Crispino J, Fujiwara Y, Eicher E, Orkin S. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development. 2002;129:4627-34 pubmed
  106. Lavoie H. The role of GATA in mammalian reproduction. Exp Biol Med (Maywood). 2003;228:1282-90 pubmed
  107. Wan Y. Multi-tasking of helper T cells. Immunology. 2010;130:166-71 pubmed publisher
  108. Hayashi N, Oohira A, Miyata S. Synaptic localization of receptor-type protein tyrosine phosphatase zeta/beta in the cerebral and hippocampal neurons of adult rats. Brain Res. 2005;1050:163-9 pubmed
  109. Shimada A, Tsuzuki M, Keino H, Satoh M, Chiba Y, Saitoh Y, et al. Apical vulnerability to dendritic retraction in prefrontal neurones of ageing SAMP10 mouse: a model of cerebral degeneration. Neuropathol Appl Neurobiol. 2006;32:1-14 pubmed
  110. Curtetti R, Garbossa D, Vercelli A. Development of dendritic bundles of pyramidal neurons in the rat visual cortex. Mech Ageing Dev. 2002;123:473-9 pubmed
  111. Kawachi H, Tamura H, Watakabe I, Shintani T, Maeda N, Noda M. Protein tyrosine phosphatase zeta/RPTPbeta interacts with PSD-95/SAP90 family. Brain Res Mol Brain Res. 1999;72:47-54 pubmed
  112. Yeh T, Wang H. Global ischemia downregulates the function of metabotropic glutamate receptor subtype 5 in hippocampal CA1 pyramidal neurons. Mol Cell Neurosci. 2005;29:484-92 pubmed
  113. Mannaioni G, Marino M, Valenti O, Traynelis S, Conn P. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci. 2001;21:5925-34 pubmed
  114. Englund C, Fink A, Lau C, Pham D, Daza R, Bulfone A, et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci. 2005;25:247-51 pubmed
  115. Lamprianou S, Vacaresse N, Suzuki Y, Meziane H, Buxbaum J, Schlessinger J, et al. Receptor protein tyrosine phosphatase gamma is a marker for pyramidal cells and sensory neurons in the nervous system and is not necessary for normal development. Mol Cell Biol. 2006;26:5106-19 pubmed
  116. Chen J, Rasin M, Kwan K, Sestan N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc Natl Acad Sci U S A. 2005;102:17792-7 pubmed
  117. Hechelhammer L, Störkel S, Odermatt B, Heitz P, Jochum W. Epidermal growth factor receptor is a marker for syncytiotrophoblastic cells in testicular germ cell tumors. Virchows Arch. 2003;443:28-31 pubmed
  118. de Jong J, Looijenga L. Stem cell marker OCT3/4 in tumor biology and germ cell tumor diagnostics: history and future. Crit Rev Oncog. 2006;12:171-203 pubmed
  119. Pauls K, Jäger R, Weber S, Wardelmann E, Koch A, Buttner R, et al. Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. Int J Cancer. 2005;115:470-7 pubmed
  120. Hoei-Hansen C, Nielsen J, Almstrup K, Sonne S, Graem N, Skakkebaek N, et al. Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res. 2004;10:8521-30 pubmed
  121. Aubry F, Satie A, Rioux-Leclercq N, Rajpert-De Meyts E, Spagnoli G, Chomez P, et al. MAGE-A4, a germ cell specific marker, is expressed differentially in testicular tumors. Cancer. 2001;92:2778-85 pubmed
  122. Tanii I, Yoshinaga K. Change in expression of a 90-kDa glycoprotein GP90-MC301 during prenatal and postnatal testicular development: a differentiation marker for rat germ cells. Histochem Cell Biol. 2002;118:409-14 pubmed
  123. Giwercman A, Marks A, Bailey D, Baumal R, Skakkebaek N. A monoclonal antibody as a marker for carcinoma in situ germ cells of the human adult testis. APMIS. 1988;96:667-70 pubmed
  124. Martyniuk C, Awad R, Hurley R, Finger T, Trudeau V. Glutamic acid decarboxylase 65, 67, and GABA-transaminase mRNA expression and total enzyme activity in the goldfish (Carassius auratus) brain. Brain Res. 2007;1147:154-66 pubmed
  125. Zanjani H, Lemaigre-Dubreuil Y, Tillakaratne N, Blokhin A, McMahon R, Tobin A, et al. Cerebellar Purkinje cell loss in aging Hu-Bcl-2 transgenic mice. J Comp Neurol. 2004;475:481-92 pubmed
  126. Vigot R, Kado R, Batini C. Increased calbindin-D28K immunoreactivity in rat cerebellar Purkinje cell with excitatory amino acids agonists is not dependent on protein synthesis. Arch Ital Biol. 2004;142:69-75 pubmed
  127. Kakegawa W, Tsuzuki K, Iino M, Ozawa S. Functional NMDA receptor channels generated by NMDAR2B gene transfer in rat cerebellar Purkinje cells. Eur J Neurosci. 2003;17:887-91 pubmed
  128. Tolosa de Talamoni N, Smith C, Wasserman R, Beltramino C, Fullmer C, Penniston J. Immunocytochemical localization of the plasma membrane calcium pump, calbindin-D28k, and parvalbumin in Purkinje cells of avian and mammalian cerebellum. Proc Natl Acad Sci U S A. 1993;90:11949-53 pubmed
  129. Southwood C, Peppi M, Dryden S, Tainsky M, Gow A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res. 2007;32:187-95 pubmed
  130. Kurnellas M, Lee A, Li H, Deng L, Ehrlich D, Elkabes S. Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Mol Cell Neurosci. 2007;34:178-88 pubmed
  131. Sepulveda M, Hidalgo-Sanchez M, Marcos D, Mata A. Developmental distribution of plasma membrane Ca2+-ATPase isoforms in chick cerebellum. Dev Dyn. 2007;236:1227-36 pubmed
  132. Yasuhara O, Aimi Y, Yamada T, Matsuo A, McGeer E, McGeer P. Clusterin as a marker for ischaemic Purkinje cells in human brain. Neurodegeneration. 1994;3:325-9 pubmed
  133. Shimizu-Albergine M, Rybalkin S, Rybalkina I, Feil R, Wolfsgruber W, Hofmann F, et al. Individual cerebellar Purkinje cells express different cGMP phosphodiesterases (PDEs): in vivo phosphorylation of cGMP-specific PDE (PDE5) as an indicator of cGMP-dependent protein kinase (PKG) activation. J Neurosci. 2003;23:6452-9 pubmed
  134. Bender A, Beavo J. Specific localized expression of cGMP PDEs in Purkinje neurons and macrophages. Neurochem Int. 2004;45:853-7 pubmed
  135. Ginzburg L, Futerman A. Defective calcium homeostasis in the cerebellum in a mouse model of Niemann-Pick A disease. J Neurochem. 2005;95:1619-28 pubmed
  136. Royds J, Ironside J, Warnaar S, Taylor C, Timperley W. Monoclonal antibody to aldolase C: a selective marker for Purkinje cells in the human cerebellum. Neuropathol Appl Neurobiol. 1987;13:11-21 pubmed
  137. Caffe A, von Schantz M, Szel A, Voogd J, van Veen T. Distribution of Purkinje cell-specific Zebrin-II/aldolase C immunoreactivity in the mouse, rat, rabbit, and human retina. J Comp Neurol. 1994;348:291-7 pubmed
  138. Buono P, Barbieri O, Alfieri A, Rosica A, Astigiano S, Cantatore D, et al. Diverse human aldolase C gene promoter regions are required to direct specific LacZ expression in the hippocampus and Purkinje cells of transgenic mice. FEBS Lett. 2004;578:337-44 pubmed
  139. Sepulveda M, Hidalgo-Sanchez M, Mata A. A developmental profile of the levels of calcium pumps in chick cerebellum. J Neurochem. 2005;95:673-83 pubmed
  140. Balaban C, Billingsley M, Kincaid R. Evidence for transsynaptic regulation of calmodulin-dependent cyclic nucleotide phosphodiesterase in cerebellar Purkinje cells. J Neurosci. 1989;9:2374-81 pubmed
  141. Nunzi M, Grillo M, Margolis F, Mugnaini E. Compartmental organization of Purkinje cells in the mature and developing mouse cerebellum as revealed by an olfactory marker protein-lacZ transgene. J Comp Neurol. 1999;404:97-113 pubmed
  142. Pittock S, Kryzer T, Lennon V. Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome. Ann Neurol. 2004;56:715-9 pubmed
  143. Vernino S, Lennon V. New Purkinje cell antibody (PCA-2): marker of lung cancer-related neurological autoimmunity. Ann Neurol. 2000;47:297-305 pubmed
  144. Lee H, Lennon V, Camilleri M, Prather C. Paraneoplastic gastrointestinal motor dysfunction: clinical and laboratory characteristics. Am J Gastroenterol. 2001;96:373-9 pubmed
  145. van Staveren W, Glick J, Markerink-van Ittersum M, Shimizu M, Beavo J, Steinbusch H, et al. Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J Neurocytol. 2002;31:729-41 pubmed
  146. Mugnaini E, Berrebi A, Dahl A, Morgan J. The polypeptide PEP-19 is a marker for Purkinje neurons in cerebellar cortex and cartwheel neurons in the dorsal cochlear nucleus. Arch Ital Biol. 1987;126:41-67 pubmed
  147. Slemmon J, Danho W, Hempstead J, Morgan J. Cerebellin: a quantifiable marker for Purkinje cell maturation. Proc Natl Acad Sci U S A. 1985;82:7145-8 pubmed
  148. Slemmon J, Goldowitz D, Blacher R, Morgan J. Evidence for the transneuronal regulation of cerebellin biosynthesis in developing Purkinje cells. J Neurosci. 1988;8:4603-11 pubmed
  149. Huber G, Schuler A. Characterization of a new 120 kDa microtubule-associated protein (MAP) of rat brain. Neurosci Lett. 1991;128:221-5 pubmed
  150. Walaas S, Nairn A, Greengard P. PCPP-260, a Purkinje cell-specific cyclic AMP-regulated membrane phosphoprotein of Mr 260,000. J Neurosci. 1986;6:954-61 pubmed
  151. O'Callaghan J, Miller D. Cerebellar hypoplasia in the Gunn rat is associated with quantitative changes in neurotypic and gliotypic proteins. J Pharmacol Exp Ther. 1985;234:522-33 pubmed
  152. Kondo H, Yamamoto M, Yamakuni T, Takahashi Y. An immunohistochemical study of the ontogeny of the horizontal cell in the rat retina using an antiserum against spot 35 protein, a novel Purkinje cell-specific protein, as a marker. Anat Rec. 1988;222:103-9 pubmed
  153. Takahashi-Iwanaga H. Reticular endings of Purkinje cell axons in the rat cerebellar nuclei: scanning electron microscopic observation of the pericellular plexus of Cajal. Arch Histol Cytol. 1992;55:307-14 pubmed
  154. Yamagishi M, Nakamura H, Nakano Y, Kuwano R. Immunohistochemical study of the fourth cell type in the olfactory epithelium in guinea pigs and in a patient. ORL J Otorhinolaryngol Relat Spec. 1992;54:85-90 pubmed
  155. Yoshie S, Wakasugi C, Teraki Y, Iwanaga T, Fujita T. Fine structure of the taste bud in guinea pigs. II. Localization of spot 35 protein, a cerebellar Purkinje cell-specific protein, as revealed by electron-microscopic immunocytochemistry. Arch Histol Cytol. 1991;54:113-8 pubmed
  156. Kondo H, Yamamoto M, Yamakuni T, Takahashi Y. Heterogeneity of the ciliary epithelium of the rat eye as revealed by spot 35 protein (a Purkinje cell specific protein)-like immunoreactivity. Histochemistry. 1988;89:53-6 pubmed
  157. Takahashi-Iwanaga H, Kondo H, Yamakuni T, Takahashi Y. An immunohistochemical study on the ontogeny of cells immunoreactive for spot 35 protein, a novel Purkinje cell-specific protein, in the rat cerebellum. Brain Res. 1986;394:225-31 pubmed
  158. Waclawek M, Foisner R, Nimpf J, Schneider W. The chicken homologue of zona pellucida protein-3 is synthesized by granulosa cells. Biol Reprod. 1998;59:1230-9 pubmed
  159. Rogatsch H, Jezek D, Hittmair A, Mikuz G, Feichtinger H. Expression of vimentin, cytokeratin, and desmin in Sertoli cells of human fetal, cryptorchid, and tumour-adjacent testicular tissue. Virchows Arch. 1996;427:497-502 pubmed
  160. Steger K, Rey R, Kliesch S, Louis F, Schleicher G, Bergmann M. Immunohistochemical detection of immature Sertoli cell markers in testicular tissue of infertile adult men: a preliminary study. Int J Androl. 1996;19:122-8 pubmed
  161. Franke F, Pauls K, Rey R, Marks A, Bergmann M, Steger K. Differentiation markers of Sertoli cells and germ cells in fetal and early postnatal human testis. Anat Embryol (Berl). 2004;209:169-77 pubmed
  162. Bar-Shira Maymon B, Yavetz H, Yogev L, Kleiman S, Lifschitz-Mercer B, Schreiber L, et al. Detection of calretinin expression in abnormal immature Sertoli cells in non-obstructive azoospermia. Acta Histochem. 2005;107:105-12 pubmed
  163. Bar-Shira Maymon B, Paz G, Elliott D, Hammel I, Kleiman S, Yogev L, et al. Maturation phenotype of Sertoli cells in testicular biopsies of azoospermic men. Hum Reprod. 2000;15:1537-42 pubmed
  164. Chowdhury M, Steinberger A, Steinberger E. Inhibition of de novo synthesis of FSH by the Sertoli cell factor (SCF). Endocrinology. 1978;103:644-7 pubmed
  165. Hofmann M, Van Der Wee K, Dargart J, Dirami G, Dettin L, Dym M. Establishment and characterization of neonatal mouse sertoli cell lines. J Androl. 2003;24:120-30 pubmed
  166. Fox R, Sigman M, Boekelheide K. Transmembrane versus soluble stem cell factor expression in human testis. J Androl. 2000;21:579-85 pubmed
  167. Hakovirta H, Yan W, Kaleva M, Zhang F, Vänttinen K, Morris P, et al. Function of stem cell factor as a survival factor of spermatogonia and localization of messenger ribonucleic acid in the rat seminiferous epithelium. Endocrinology. 1999;140:1492-8 pubmed
  168. Mauduit C, Chatelain G, Magre S, Brun G, Benahmed M, Michel D. Regulation by pH of the alternative splicing of the stem cell factor pre-mRNA in the testis. J Biol Chem. 1999;274:770-5 pubmed
  169. Tremblay J, Viger R. Nuclear receptor Dax-1 represses the transcriptional cooperation between GATA-4 and SF-1 in Sertoli cells. Biol Reprod. 2001;64:1191-9 pubmed
  170. Zhao C, Bratthauer G, Barner R, Vang R. Immunohistochemical analysis of sox9 in ovarian Sertoli cell tumors and other tumors in the differential diagnosis. Int J Gynecol Pathol. 2007;26:1-9 pubmed
  171. Kato N, Fukase M, Motoyama T. Expression of a transcription factor, SOX9, in Sertoli-stromal cell tumors of the ovary. Int J Gynecol Pathol. 2004;23:180-1 pubmed
  172. Hemendinger R, Gores P, Blacksten L, Harley V, Halberstadt C. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplant. 2002;11:499-505 pubmed
  173. Fröjdman K, Harley V, Pelliniemi L. Sox9 protein in rat sertoli cells is age and stage dependent. Histochem Cell Biol. 2000;113:31-6 pubmed
  174. Winters S, Wang C, Abdelrahaman E, Hadeed V, Dyky M, Brufsky A. Inhibin-B levels in healthy young adult men and prepubertal boys: is obesity the cause for the contemporary decline in sperm count because of fewer Sertoli cells?. J Androl. 2006;27:560-4 pubmed
  175. Bordallo M, Guimarães M, Pessoa C, Carrico M, Dimetz T, Gazolla H, et al. Decreased serum inhibin B/FSH ratio as a marker of Sertoli cell function in male survivors after chemotherapy in childhood and adolescence. J Pediatr Endocrinol Metab. 2004;17:879-87 pubmed
  176. Sanborn B, Elkington J, Steinberger A, Steinberger E. Androgen binding in the testis: in vitro production of androgen binding protein (ABP) by Sertoli cell cultures and measurement of nuclear bound androgen by a nuclear exchange assay. Curr Top Mol Endocrinol. 1975;2:293-309 pubmed
  177. Hansson V, Weddington S, Naess O, Attramadal A, French F, Kotite N, et al. Testicular androgen binding protein (ABP) - a parameter of Sertoli cell secretory function. Curr Top Mol Endocrinol. 1975;2:323-36 pubmed
  178. Clark A, Griswold M. Expression of clusterin/sulfated glycoprotein-2 under conditions of heat stress in rat Sertoli cells and a mouse Sertoli cell line. J Androl. 1997;18:257-63 pubmed
  179. Cheng C, Chen C, Feng Z, Marshall A, Bardin C. Rat clusterin isolated from primary Sertoli cell-enriched culture medium is sulfated glycoprotein-2 (SGP-2). Biochem Biophys Res Commun. 1988;155:398-404 pubmed
  180. Yagi M, Takenaka M, Suzuki K, Suzuki H. Reduced mitotic activity and increased apoptosis of fetal sertoli cells in rat hypogonadic (hgn/hgn) testes. J Reprod Dev. 2007;53:581-9 pubmed
  181. Jimenez-Severiano H, Mussard M, Fitzpatrick L, D'Occhio M, Ford J, Lunstra D, et al. Testicular development of Zebu bulls after chronic treatment with a gonadotropin-releasing hormone agonist. J Anim Sci. 2005;83:2111-22 pubmed
  182. Bielinska M, Seehra A, Toppari J, Heikinheimo M, Wilson D. GATA-4 is required for sex steroidogenic cell development in the fetal mouse. Dev Dyn. 2007;236:203-13 pubmed
  183. Imai T, Kawai Y, Tadokoro Y, Yamamoto M, Nishimune Y, Yomogida K. In vivo and in vitro constant expression of GATA-4 in mouse postnatal Sertoli cells. Mol Cell Endocrinol. 2004;214:107-15 pubmed
  184. McCoard S, Lunstra D, Wise T, Ford J. Specific staining of Sertoli cell nuclei and evaluation of Sertoli cell number and proliferative activity in Meishan and White Composite boars during the neonatal period. Biol Reprod. 2001;64:689-95 pubmed
  185. Pierucci-Alves F, Clark A, Russell L. A developmental study of the Desert hedgehog-null mouse testis. Biol Reprod. 2001;65:1392-402 pubmed
  186. Kroft T, Patterson J, Won Yoon J, Doglio L, Walterhouse D, Iannaccone P, et al. GLI1 localization in the germinal epithelial cells alternates between cytoplasm and nucleus: upregulation in transgenic mice blocks spermatogenesis in pachytene. Biol Reprod. 2001;65:1663-71 pubmed
  187. Clark A, Garland K, Russell L. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod. 2000;63:1825-38 pubmed
  188. Bitgood M, Shen L, McMahon A. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol. 1996;6:298-304 pubmed
  189. Syed V, Hecht N. Selective loss of Sertoli cell and germ cell function leads to a disruption in sertoli cell-germ cell communication during aging in the Brown Norway rat. Biol Reprod. 2001;64:107-12 pubmed
  190. Syed V, Gomez E, Hecht N. Messenger ribonucleic acids encoding a serotonin receptor and a novel gene are induced in Sertoli cells by a secreted factor(s) from male rat meiotic germ cells. Endocrinology. 1999;140:5754-60 pubmed
  191. Blagosklonova O, Joanne C, Roux C, Bittard H, Fellmann F, Bresson J. Absence of anti-Müllerian hormone (AMH) and M2A immunoreactivities in Sertoli cell-only syndrome and maturation arrest with and without AZF microdeletions. Hum Reprod. 2002;17:2062-5 pubmed
ISSN : 2329-5147