膜片钳技术
王秀英 (mary at labome dot com)
美国新泽西州普林斯顿合原研究有限责任公司 (Synatom Research)
译者
王秀英 (mary at labome dot com)
美国新泽西州普林斯顿合原研究有限责任公司 (Synatom Research)
DOI
http://dx.doi.org/10.13070/mm.cn.3.190
日期
更新 : 2015-10-19; 原始版 : 2011-09-01
引用
实验材料和方法 2013;3:190
摘要

详细标准膜片钳操作步骤,和来邦网对振动式切片机和膜片钳放大器的文献调查报告。

英文摘要

A detailed step-by-step description of the standard patch clamp protocol and Labome survey results for vibratomes and patch-clamp amplifiers.

介绍

膜片钳是一种用于研究神经元电兴奋性以及离子通道密度和功能特性的实验室电生理技术。包括电流钳和电压钳,并根据膜完整性、膜片方向及细胞内环境和电极内液的连通性不同,分为不同的构型(全细胞,单通道,穿孔膜片钳等等)。这里是一份标准的盲法膜片钳流程。

材料
试剂组合

麻醉剂、实验动物、振动切片机、解剖盘、其他用于样本解剖处理所需的材料。

装尼龙线的U型铂金网电极内插式吸管
注射器显微镜及光纤光源
电脑,模拟器及软件膜片钳放大器
防震台微电极
微电极夹持器微操纵器
记录槽灌药系统
电极拉制仪
表一:膜片钳装置。注意:所有与细胞接触的溶液和设备必需是无菌的,根据需要也要采用适当的灭菌技术。
人工脑脊液 (ACSF)

125 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 1.25 mM NaH2PO4, 25 mM NaHCO3 and 25 mM 葡萄糖e, pH 7.4.
▲ 重要:渗透压应为305-315 mosm,混匀后通入95% O2–5%CO2混合气。

电极内液

(全细胞膜片钳适用: 130 mM KCl, 5 mM NaCl, 0.4 mM CaCl2, 1 mM MgCl2, 10 mM HEPES和 11 mM EGTA, pH 7.3.).
▲ 重要:渗透压应为260-2800,2 μm滤网过滤后储存于4°C。

设备组合

参考表一。

流程
  1. 急性分离脑片/培养细胞/酶消化细胞室温下浸没于持续通% CO2/95% O2的ACSF/细胞外液中,记录前至少孵育2小时。
  2. 拉制记录电极至输入电阻为 5–8 MΩ.
    ▲ 关键步骤
  3. 设置灌流系统速度1–2 ml/min。放入脑片/细胞。
  4. 装灌电极内液。
  5. 如果需要一定的细胞形态,可选择在电极内液中加入细胞内染液,如Lucifer yellow, Cell Tracker, biocytin, Alexa biocytin, neurobiotin等。
  6. 将微电极放上夹持器,用10-ml注射器施加1 ml作用正压。
    ▲ 关键步骤
  7. 设置放大器至电压钳模式并应用5-10 msec 20 mV的测试脉冲。将电极缓慢接近感兴趣区域直至测试脉冲幅度可见明显的变化。
  8. 当微电极电阻出现明显且稳定的变化时,迅速去掉正压。
    ▲ 关键步骤
  9. 自动获得GΩ封接,或通过嘴短暂轻吸直至电阻达到至少1 GΩ。
  10. 一旦形成GΩ封接,运用相应的膜片钳构型方案。
    1. 细胞贴附型: 当达到GΩ封接时即进行实验。在此构型下,电极液应与细胞外液成分类似。
    2. 内面向外型: 达到GΩ封接后,缓慢将电极拉离细胞,最终一小片细胞膜将与细胞表面分离并保持GΩ封接。在此构型下电极液也应与细胞外液成分类似。
    3. 全细胞模型:
      1. 在此构型下,电极液应与细胞内液离子组分类似。
      2. 记录全细胞模型需将钳制电压调至与细胞静息电位相近的负电压(如星形胶质细胞-60 mV)并校正快电容。通过嘴持续轻吸直至电容和测试脉冲电流的改变显示破膜。 ▲ 关键步骤
      3. 如用穿孔膜片钳记录,在微电极前端灌注不含抗生素的电极液,后端灌注含抗生素的电极液。达到GΩ封接后,设置钳制电压与静息电位相近,等待阻抗缓慢降低并稳定。
    4. 外面向外型:达到全细胞构型后,缓慢将电极退后至阻抗剧增,显示膜片“气泡”形成。
  11. 分析记录。大部分数据采集软件内包含了分析软件。
供应商文章数目具体文献
Leica8 [1-8]
Dosaka2 [2, 9]
Campden Instrument1 [10]
表二:振动式切片机主要供应商
文献中的振动式切片机(Vibratome)和膜片钳放大器(patch clamp amplifier)

来邦网 系统性地调查正式出版文章里摘录的试剂和仪器。表二列出了来自八篇出版物的振动式切片机两家主要供应商。表三列出了膜片钳放大器的主要供应商。

供应商主要模型号文章数目具体文献
Molecular Devices / Axon InstrumentsAxoPatch 200B, Digidata 1322A, Digidata 1440A, MultiClamp 700B35 [1-5, 11-40]
Heka ElektronikEPC-105 [41-45]
Dagan Corporation2 [46, 47]
Warner2 [16, 38]
表三:膜片钳放大器的主要供应商。其他供应商,如Hugo Sachs Elektroniks, Piezosystem Jena, A-M Systems, Neuralynx, 都被引用了一次。
疑难解决
无法形成GΩ封接
  1. 确认样本活性良好且一直通氧;检查ACSF和电极内液的pH和渗透压。
  2. 确认电极放置于细胞密度高的区域。
  3. 检查电极尖端的形状;阻抗保持在正确范围(成熟细胞4-6 MΩ,小细胞8-12 MΩ)。
  4. 检查微电极夹持器的压力管道是否漏气。
  5. 清洁微电极,确认手拿时没有污染油污。
能形成GΩ封接,但尝试破膜时失去封接,无法破膜
  1. 检查微电极夹持器的压力管道是否漏气或堵塞。
  2. 尝试放大器的“zap”功能。
  3. 换用不同电极,降低阻抗也许有帮助。
封接无法持续很长时间
  1. 当形成全细胞构型,施加轻微正压。
  2. 检查微电极尖端形状。
  3. 确认样本活性良好。
  4. 检查溶液渗透压。
  5. 确认ACSF浴液和灌药系统没有气泡。
  6. 确认操作台或微电极夹持器没有振动。
不确定是否钳制到正确的细胞类型
  1. 确认样本活性良好。
  2. 熟知感兴趣细胞类型的基本电学特性。
  3. 电极液加入染料以显示细胞形态。
不确定样本是否活性良好
  1. 对代表性样本使用荧光标记物如碘化丙啶(死细胞)和Syto-11(活细胞)进行快速细胞死亡和存活分析。
常见问题
动物年龄是否有影响?

是,P12前的细胞可以持久钳制,P12后的细胞越来越难钳制。

我的电极入液阻抗7MΩ,但加压后升至15MΩ,还应该用吗?

不,电极内液中的灰尘堵塞了电极尖端。如果这种情况重复了3次,重新过滤电极液。

我的电极可见电容大于50MΩ,怎么办?

电极尖端有气泡,拿出电极并轻敲几次。

电极穿透的角度是否有影响?

一般来说有,45度或更小的角度更利于形成GΩ封接。

我常常钳制树突,但我老板需要胞体记录。

拉制尖端更大的电极(如4-6MΩ),电极下压起始在脑部更深的位置(如2/3层)。

什么是理想的电极阻抗?

视情况而定。如只是钳制并建立电流钳记录则可能选择5 MΩ。尖端更小(或阻抗更高)较容易形成封接但更难破膜,且通道电阻更大。尖端更大(或阻抗更低)可钳制胞体且利于电压钳,但封接较难。使用阻抗小于3MΩ的电极从未能够成功封接。

怎样氯化电极银丝?

将银丝放入漂白剂15 – 30min.

在150-300 mM NaCl盐溶液,5-10V电压中电解。

电压显示缓慢的DC漂移,特别是启动步阶电位程序时,我应该怎么做?

有可能你的电极(记录或参比电极均有可能)未氯化完全(如银丝而不是AgCl暴露,或银氧化)。将银线放入漂白剂大约15分钟。

为什么无法施加压力/轻吸?

检查三通管/T型管。

电极内液中应该加入多少抗生素?

还是视情况而定。通常0.5%-2% (w/v)一定足够。注意溶液渗透压应在290-310。

参考文献
  1. Nguyen D, Deng P, Matthews E, Kim D, Feng G, Dickenson A, et al. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity. Mol Pain. 2009;5:6 pubmed publisher
  2. Paolicelli R, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456-8 pubmed publisher
  3. Gong R, Ding C, Hu J, Lu Y, Liu F, Mann E, et al. Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science. 2011;333:1642-6 pubmed publisher
  4. Magnus C, Lee P, Atasoy D, Su H, Looger L, Sternson S. Chemical and genetic engineering of selective ion channel-ligand interactions. Science. 2011;333:1292-6 pubmed publisher
  5. Fischer R, Fontinha B, Kirchmaier S, Steger J, Bloch S, Inoue D, et al. Co-expression of VAL- and TMT-opsins uncovers ancient photosensory interneurons and motorneurons in the vertebrate brain. PLoS Biol. 2013;11:e1001585 pubmed publisher
  6. Jayachandran R, Liu X, BoseDasgupta S, Müller P, Zhang C, Moshous D, et al. Coronin 1 regulates cognition and behavior through modulation of cAMP/protein kinase A signaling. PLoS Biol. 2014;12:e1001820 pubmed publisher
  7. Rebello M, McTavish T, Willhite D, Short S, Shepherd G, Verhagen J. Perception of odors linked to precise timing in the olfactory system. PLoS Biol. 2014;12:e1002021 pubmed publisher
  8. Roland A, Ricobaraza A, Carrel D, Jordan B, Rico F, Simon A, et al. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth. elife. 2014;3:e03159 pubmed publisher
  9. Sato Y, Iketani M, Kurihara Y, Yamaguchi M, Yamashita N, Nakamura F, et al. Cartilage acidic protein-1B (LOTUS), an endogenous Nogo receptor antagonist for axon tract formation. Science. 2011;333:769-73 pubmed publisher
  10. Walmsley L, Hanna L, Mouland J, Martial F, West A, Smedley A, et al. Colour as a signal for entraining the Mammalian circadian clock. PLoS Biol. 2015;13:e1002127 pubmed publisher
  11. Princen F, Bard E, Sheikh F, Zhang S, Wang J, Zago W, et al. Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death. Mol Cell Biol. 2009;29:378-88 pubmed publisher
  12. Yang H, Zhang J, Breyer R, Chen C. Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J Neurochem. 2009;108:295-304 pubmed publisher
  13. Schnizler M, Schnizler K, Zha X, Hall D, Wemmie J, Hell J, et al. The cytoskeletal protein alpha-actinin regulates acid-sensing ion channel 1a through a C-terminal interaction. J Biol Chem. 2009;284:2697-705 pubmed publisher
  14. Varela J, Hirsch S, Chapman D, Leverich L, Greene R. D1/D5 modulation of synaptic NMDA receptor currents. J Neurosci. 2009;29:3109-19 pubmed publisher
  15. Wang H, Westin L, Nong Y, Birnbaum S, Bendor J, Brismar H, et al. Norbin is an endogenous regulator of metabotropic glutamate receptor 5 signaling. Science. 2009;326:1554-7 pubmed publisher
  16. Tao X, Avalos J, Chen J, MacKinnon R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science. 2009;326:1668-74 pubmed publisher
  17. Michard E, Lima P, Borges F, Silva A, Portes M, Carvalho J, et al. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science. 2011;332:434-7 pubmed publisher
  18. Papadopoulou M, Cassenaer S, Nowotny T, Laurent G. Normalization for sparse encoding of odors by a wide-field interneuron. Science. 2011;332:721-5 pubmed publisher
  19. Guillem K, Bloem B, Poorthuis R, Loos M, Smit A, Maskos U, et al. Nicotinic acetylcholine receptor β2 subunits in the medial prefrontal cortex control attention. Science. 2011;333:888-91 pubmed publisher
  20. Emery E, Young G, Berrocoso E, Chen L, McNaughton P. HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science. 2011;333:1462-6 pubmed publisher
  21. Karpova N, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agústsdóttir A, et al. Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science. 2011;334:1731-4 pubmed publisher
  22. Takahashi N, Kitamura K, Matsuo N, Mayford M, Kano M, Matsuki N, et al. Locally synchronized synaptic inputs. Science. 2012;335:353-6 pubmed publisher
  23. Eren E, Vijayaraghavan J, Liu J, Cheneke B, Touw D, Lepore B, et al. Substrate specificity within a family of outer membrane carboxylate channels. PLoS Biol. 2012;10:e1001242 pubmed publisher
  24. Brohawn S, del Mármol J, MacKinnon R. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science. 2012;335:436-41 pubmed publisher
  25. Vervaeke K, Lorincz A, Nusser Z, Silver R. Gap junctions compensate for sublinear dendritic integration in an inhibitory network. Science. 2012;335:1624-8 pubmed publisher
  26. Wardill T, List O, Li X, Dongre S, McCulloch M, Ting C, et al. Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science. 2012;336:925-31 pubmed publisher
  27. Hammond G, Fischer M, Anderson K, Holdich J, Koteci A, Balla T, et al. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science. 2012;337:727-30 pubmed publisher
  28. Kreysing M, Pusch R, Haverkate D, Landsberger M, Engelmann J, Ruiter J, et al. Photonic crystal light collectors in fish retina improve vision in turbid water. Science. 2012;336:1700-3 pubmed publisher
  29. Saab A, Neumeyer A, Jahn H, Cupido A, Simek A, Boele H, et al. Bergmann glial AMPA receptors are required for fine motor coordination. Science. 2012;337:749-53 pubmed publisher
  30. Wang T, Yu Y, Govindaiah G, Ye X, Artinian L, Coleman T, et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science. 2012;337:839-42 pubmed publisher
  31. Zimmermann I, Marabelli A, Bertozzi C, Sivilotti L, Dutzler R. Inhibition of the prokaryotic pentameric ligand-gated ion channel ELIC by divalent cations. PLoS Biol. 2012;10:e1001429 pubmed publisher
  32. Pawlak V, Greenberg D, Sprekeler H, Gerstner W, Kerr J. Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo. elife. 2013;2:e00012 pubmed publisher
  33. Suzuki R, Ferris H, Chee M, Maratos-Flier E, Kahn C. Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. PLoS Biol. 2013;11:e1001532 pubmed publisher
  34. Mitrovic S, Nogueira C, Cantero-Recasens G, Kiefer K, Fernández-Fernández J, Popoff J, et al. TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells. elife. 2013;2:e00658 pubmed publisher
  35. Chaudhuri D, Sancak Y, Mootha V, Clapham D. MCU encodes the pore conducting mitochondrial calcium currents. elife. 2013;2:e00704 pubmed publisher
  36. Indzhykulian A, Stepanyan R, Nelina A, Spinelli K, Ahmed Z, Belyantseva I, et al. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biol. 2013;11:e1001583 pubmed publisher
  37. Garion L, Dubin U, Rubin Y, Khateb M, Schiller Y, Azouz R, et al. Texture coarseness responsive neurons and their mapping in layer 2-3 of the rat barrel cortex in vivo. elife. 2014;3:e03405 pubmed publisher
  38. Ramu Y, Xu Y, Shin H, Lu Z. Counteracting suppression of CFTR and voltage-gated K+ channels by a bacterial pathogenic factor with the natural product tannic acid. elife. 2014;3:e03683 pubmed publisher
  39. Testa-Silva G, Verhoog M, Linaro D, de Kock C, Baayen J, Meredith R, et al. High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biol. 2014;12:e1002007 pubmed publisher
  40. Farina M, van de Bospoort R, He E, Persoon C, van Weering J, Broeke J, et al. CAPS-1 promotes fusion competence of stationary dense-core vesicles in presynaptic terminals of mammalian neurons. elife. 2015;4: pubmed publisher
  41. Czupryn A, Zhou Y, Chen X, McNay D, Anderson M, Flier J, et al. Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science. 2011;334:1133-7 pubmed publisher
  42. Smith E, Omerbasic D, Lechner S, Anirudhan G, Lapatsina L, Lewin G. The molecular basis of acid insensitivity in the African naked mole-rat. Science. 2011;334:1557-60 pubmed publisher
  43. Prosser B, Ward C, Lederer W. X-ROS signaling: rapid mechano-chemo transduction in heart. Science. 2011;333:1440-5 pubmed publisher
  44. Lechner S, Frenzel H, Wang R, Lewin G. Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J. 2009;28:1479-91 pubmed publisher
  45. Yan H, Pablo J, Wang C, Pitt G. FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons. elife. 2014;3:e04193 pubmed publisher
  46. Eikermann-Haerter K, Dilekoz E, Kudo C, Savitz S, Waeber C, Baum M, et al. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest. 2009;119:99-109 pubmed publisher
  47. Navarrete M, Perea G, Fernandez de Sevilla D, Gomez-Gonzalo M, Nunez A, Martin E, et al. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol. 2012;10:e1001259 pubmed publisher
ISSN : 2329-5147